首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HeLa cells in S phase induce DNA synthesis in cycling cells, serum-deprived quiescent cells, and non-replicative senescent cells following cell fusion. In contrast normal human diploid fibroblasts (HDF) do not induce DNA synthesis in either quiescent cells or senescent cells. Instead, the replicative HDF nuclei are inhibited from entering S phase in heterokaryons formed with these two types of non-replicative cells. These differences in the inducing capabilities of normal HDF and HeLa cells raise the question whether normal HDF in S phase can induce DNA synthesis in cycling cells. This paper demonstrates that young HDF in S phase can induce DNA synthesis in cycling HDF. Thus, the hypothesis that initiation of DNA synthesis in cycling cells is positively controlled by inducer molecules appears to be valid for normal HDF as well as for transformed cells such as HeLa.  相似文献   

2.
Senescent human diploid cells (HDC) were fused to T98G human glioblastoma cells and to RK13 rabbit kidney cells, and DNA synthesis was analyzed in the heterodikaryons. T98G and RK13 cells are “partially transformed” cell lines that have some characteristics of normal cells, yet are transformed to immortality, i.e., they do not senesce. Previous experiments have shown that “fully transformed” HeLa and SV80 cells induce DNA synthesis in senescent HDC nuclei, whereas normal young HDC do not. Our experiments show that T98G and RK13 cells do not induce DNA synthesis in senescent HDC nuclei. These results demonstrate that the ability to induce DNA synthesis in senescent HDC is not correlated with immortality per se. Our results show further that a T98G cell in S phase at the time of fusion to a senescent HDC will continue to make DNA. However, a T98G cell in G1 phase at the time of fusion is prevented from initiating DNA synthesis. RK13 cells behave similarly to T98G. These results are consistent with the hypothesis that the molecular basis for the senescent phenotype involves a block that prevents cells in G1 phase from entering S phase. Thus, we conclude that the senescent phenotype can be dominant in heterokaryons composed of senescent HDC fused with certain immortal cell lines. To explain the different results obtained with various immortal cell lines, we present a model that suggests that T98G and RK13 cells are immortal because they have lost a normal regulatory factor, whereas HeLa and SV80 are immortal because they have gained a dominant transformation factor.  相似文献   

3.
Previous experiments have shown that when young human diploid cells (HDC) were fused to senescent HDC, neither nucleus synthesized DNA. This paper demonstrates that when young HDC are in S phase at the time of fusion to senescent HDC, they do make DNA in heterodikaryons; therefore, ongoing DNA synthesis is not inhibited by senescent cells. On the other hand, entry into S phase is inhibited: young HDC nuclei in G1 phase do not make DNA in heterodikaryons with senescent HDC.  相似文献   

4.
Cytoplasts were prepared from senescent human diploid fibroblasts. The cytoplasts were fused to young human diploid fibroblasts and DNA synthesis was analyzed in the fusion products. DNA synthesis was inhibited (greater than or equal to 40%) in the senescent cytoplast fusion products when compared to unfused young cells or young cytoplasts fused with young cells. These results are consistent with previous experiments that have shown the blockage of DNA synthesis in both nuclei of heterokaryons from fusions of senescent and young human diploid fibroblast cells. Furthermore, these results support the postulate that senescent cells synthesize a specific substance(s), which is present in the cytoplasm of the senescent cell that inhibits DNA synthesis.  相似文献   

5.
The objective of this study was to investigate whether G1 cells could enter S phase after premature chromosome condensation resulting from fusion with mitotic cells. HeLa cell synchronized in early G1, mid-G1, late G1, and G2 and human diploid fibroblasts synchronized in G0 and G1 phases were separately fused by use of UV-inactivated Sendai virus with mitotic HeLa cells. After cell fusion and premature chromosome condensation, the fused cells were incubated in culture medium containing Colcemid (0.05 micrograms/ml) and [3H]thymidine ([3H]ThdR) (0.5 microCi/ml; sp act, 6.7 Ci/mM). At 0, 2, 4, and 6 h after fusion, cell samples were taken to determine the initation of DNA synthesis in the prematurely condensed chromosomes (PCC) on the basis of their morphology and labeling index. The results of this study indicate that PCC from G0, G1, and G2 cells reach the maximum degree of compaction or condensation at 2 h after PCC induction. In addition, the G1-PCC from normal and transformed cells initiated DNA synthesis, as indicated by their "pulverized" appearance and incorporation of [3H]ThdR. Further, the initiation of DNA synthesis in G1-PCC occurred significantly earlier than in the mononucleate G1 cells. Neither pulverization nor incorporation of label was observed in the PCC of G0 and G2 cells. These findings suggest that chromosome decondensation, although not controlling the timing of a cell's entry into S phase, is an important step for the initiation of DNA synthesis. These data also suggest that the entry of a S phase may be regulated by cell cycle phase-specific changes in the permeability of the nuclear envelope to the inducers of DNA synthesis present in the cytoplasm.  相似文献   

6.
Postreplicative, "senescent" human fibroblasts were fused to HeLa or to SV-40 transformed human fibroblasts with Sendai virus. DNA synthesis was reinitiated in senescent nuclei in a high proportion of the heterodikaryons. The [3H]thymidine labeling index of senescent fibroblast nuclei in heteropolykaryons was a function of the ratio of HeLa to senescent nuclei.  相似文献   

7.
In two different cell fusion experiments a synchronized population of HeLa cells, prelabeled with 3H-TdR, was fused with an unlabeled one using inactivated Sendai virus. In the first experiment, HeLa cells in early G2 phase which were exposed to either 4 °C, cycloheximide, actinomycin D or X-irradiation were fused separately with untreated and more advanced G2 cells. A comparison of the rates of mitotic accumulation (in the presence of Colcemid) for the various classes of mono- and binucleate cells revealed that the hybrid (binucleate) cells were intermediate between those of the advanced and the retarded parental types indicating that the chromosome condensing factors of the advanced component were diluted as a result of such fusion. The manner in which the retarding effects of actinomycin D and cycloheximide were reversed in the hybrid cells suggested that proteins had a major role as chromosome condensing factors in the G2 mitotic transition. In the second experiment, when S phase HeLa cells were fused with those in G2, the resulting heterophasic (S/G2) binucleate cells reached mitosis at about the same time as the homophasic (S/S) cells of the lagging parent indicating a complete dominance of the S over the G2 with regard to their progress towards mitosis. However, the addition of Mg2+ (2 × 10?2 M of MgCl2) to the medium helped the G2 nuclei to enter mitosis asynchronously, which consequently induced premature chromosome condensation (PCC) in the S phase component. These data suggested that in the heterophasic (S/G2) binucleate cells the S phase component caused decondensation of the G2 chromatin thus blocking it from entering into mitosis. This effect which did not appear to be dose-dependent could be neutralized and the G2 nuclei relieved from this repression by an external supply of Mg2+ ions.  相似文献   

8.
The synchronization effects of the plant amino acid mimosine on proliferating higher eukaryotic cells are still controversial. Here, I show that 0.5 mM mimosine can induce a cell cycle arrest of human somatic cells in late G1 phase, before establishment of active DNA replication forks. The DNA content of nuclei isolated from mimosine-treated cells was determined by flow cytometry. The presence or absence of DNA replication forks in these isolated nuclei was then detected by DNA replication run-on assays in vitro. Treatment of asynchronously proliferating HeLa or EJ30 cells for 24 h with 0.5 mM mimosine resulted in a population synchronized in late G1 phase. S phase entry was inhibited by 0.5 mM mimosine in cells released from a block in mitosis or from quiescence. When added to early S phase cells, 0.5 mM mimosine did not prevent S phase transit, but delayed progression through late stages of S phase after a lag of 4 h, eventually resulting in a G1 phase population by preventing entry into the subsequent S phase. In contrast, lower concentrations of mimosine (0.1-0.2 mM) failed to prevent S phase entry, resulting in cells containing active DNA replication foci. The G1 phase arrest by 0.5 mM mimosine was reversible upon mimosine withdrawal. This synchronization protocol using 0.5 mM mimosine can be exploited for studying the initiation of human DNA replication in vitro.  相似文献   

9.
The objective of this study was to determine whether transformed cells have greater DNA synthesis-inducing ability (DSIA) than normal cells when fused with G1 phase cells. HeLa cells synchronized in G1 phase, prelabeled with large latex beads, were fused separately with (a) quiescent human diploid fibroblasts (HDF), (b) HDF partially synchronized in late G1, and random populations of (c) HeLa, (d) WI-38, (e) SV-40 transformed WI-38, (f) CHO, (g) chemically transformed mouse cells (AKR-MCA), and (h) T98G human glioblastoma cells (all prelabeled with small latex beads) using UV-inactivated Sendai virus. The fusion mixture was incubated with [3H] thymidine, sampled at regular intervals, and processed for radioautography. Among the heterodikaryons, the frequency of those with a labeled and an unlabeled nuclei (L/U) were scored as a function of time after fusion. The faster the induction of DNA synthesis in HeLa G1, the steeper the drop in the L/U class and hence the higher DSIA in the S phase cells. The DSIA, which is indicative of the intracellular levels of the inducers of DNA synthesis, was the highest in HeLa and virally transformed WI-38 cells and the lowest in normal human diploid fibroblasts (HDF) while those of chemically and spontaneously transformed cells are intermediate between these two extremes. Higher level of DNA synthesis inducers appears to be one of the pleotropic effects of transformation by DNA tumor viruses. These studies also revealed that initiation of DNA synthesis per se is regulated by the presence of inducers and not by inhibitors.  相似文献   

10.
The objective of this study was to determine whether cells in G(0) phase are functionally distinct from those in G(1) with regard to their ability to respond to the inducers of DNA synthesis and to retard the cell cycle traverse of the G(2) component after fusion. Synchronized populations of HeLa cells in G(1) and human diploid fibroblasts in G(1) and G(0) phases were separately fused using UV-inactivated Sendai virus with HeLa cells prelabeled with [(3)H]ThdR and synchronized in S or G(2) phases. The kinetics of initiation of DNA synthesis in the nuclei of G(0) and G(1) cells residing in G(0)/S and G(1)/S dikaryons, respectively, were studied as a function of time after fusion. In the G(0)/G(2) and G(1)/G(2) fusions, the rate of entry into mitosis of the heterophasic binucleate cells was monitored in the presence of Colcemid. The effects of protein synthesis inhibition in the G(1) cells, and the UV irradiation of G(0) cells before fusion, on the rate of entry of the G(2) component into mitosis were also studied. The results of this study indicate that DNA synthesis can be induced in G(0)nuclei after fusion between G(0)- and S-phase cells, but G(0) nuclei are much slower than G(1) nuclei in responding to the inducers of DNA synthesis because the chromatin of G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells differ from G(1) cells with regard to their effects on the cell cycle progression of the G(2) nucleus into mitosis. This difference between G(0) and G(1) cells appears to depend on certain factors, probably nonhistone proteins, present in G(1) cells but absent in G(0) cells. These factors can be induced in G(0) cells by UV irradiation and inhibited in G(1) cells by cycloheximide treatment.  相似文献   

11.
To study further the factors providing for cellular quiescence, we used okadaic acid (OA) at concentrations (0.1, 1, 10 or 100 nM) inhibiting type 1 and/or type 2A protein phosphatases in mammalian cell cultures. Brief (2 h) exposure of resting (0.2% serum for 72 h) NIH 3T3 mouse fibroblasts to OA with subsequent incubation of cells in a medium with 0.2% serum, stimulated DNA synthesis at all concentrations studied. Maximal stimulation was observed following pre-incubation of resting cells with 10 nM OA. Treatment of cycling cells (10% serum) with OA (2 h pulses at 12 h intervals for 72 h) prevented their exit to the resting state on transfer to a medium with 0.2% serum. Brief exposures of resting cells to OA did not affect the rate of protein synthesis. OA pulses in the late pre-replicative period had no effect on the entry of serum-stimulated cells into the S phase. Cell fusion experiments with resting (serum-deprived) and proliferating (serum-stimulated) NIH 3T3 cells, using radioautography with a double-labelling technique, revealed that pre-incubation of resting cells with OA for 2 h before and after fusion abrogates their ability to suppress the onset of DNA synthesis in the nuclei of proliferating cells in heterodikaryons. The results indicate that protein phosphatases of type 1 and/or 2A may be involved in the growth-arrest machinery that provides for cellular quiescence.  相似文献   

12.
The dominance or recessiveness of the senescent phenotype in cells from patients with Werner's syndrome (WS cells) was investigated using cell fusion. The [3H]thymidine labeling index of normal human diploid fibroblast cell X WS cell heterodikaryons was considerably lower than that of normal homodikaryons, but was significantly higher than that of WS homodikaryons. The labeling index of WS cell X HeLa cell heterodikaryons was the same as that of HeLa homodikaryons. The labeling indices of heterodikaryons obtained by fusion between various strains of premature aging cells were as low as those of parental homodikaryons. These results indicate: (1) the senescent phenotype of WS cells appears to be partially recessive to the phenotype of normal cells and completely recessive to that of HeLa cells; (2) the marked inhibition of DNA synthesis in normal nuclei in heterodikaryons with WS cells could be due to ‘senescent factor(s)’ in WS cells; and (3) no complementation phenomenon was observed among genetically different premature aging cells, probably due to ‘senescent factor(s)’.  相似文献   

13.
Previous studies have shown that the senescent phenotype is dominant with respect to DNA synthesis in fusions between late passage and actively replicating human diploid fibroblasts. Brief postfusion treatments with the protein synthesis inhibitor cycloheximide (CHX) or puromycin have been found to significantly delay (by 24-48 h) the inhibition of entry into DNA synthesis of young nuclei in heterokaryons after fusion with senescent cells. A significant fraction of the senescent nuclei incorporated tritiated thymidine in CHX-treated heterokaryons. The optimal duration of exposure to CHX was 1-3 h immediately after fusion, although treatments beginning as late as 9 h after fusion elevated the heterokaryon labeling index. Prefusion treatments with CHX were without a significant effect. These results are consistent with the interpretation that regulatory cell cycle inhibitor(s) which are dependent upon protein synthesis may be present in heterokaryons between senescent and actively replicating cells.  相似文献   

14.
It has previously been shown that serum-deprived, early passage quiescent human diploid fibroblastlike (HDFL) cells are able to inhibit cycling cells from entry into DNA synthesis upon cell fusion. We have found that the degree of inhibition of DNA synthesis in the heterokaryon correlates with the duration of serum deprivation, which is consistent with the suggestion that serum-deprived cells may enter progressively deeper stages of G0 as they increase their time in quiescence. In contrast to fusions with senescent cells, in heterokaryons between serum-deprived early passage and cycling young cells transient inhibition of protein synthesis with cycloheximide or inhibition of RNA synthesis with 5–6-dichloro-1-β-D-ribofuranosyl benzimidazole (DRB) did not stimulate nuclear [3H]-thymidine incorporation. These results suggest that differences may exist in the mechanisms responsible for inhibiting cell cycle progression in senescent vs early passage quiescent HDFL cells.  相似文献   

15.
Incorporation of [3H]thymidine was observed in both parental nuclei in heterokaryons resulting from the fusion of post-mitotic, "senescent" human diploid cells and a thymidine kinase-deficient murine cell line (3T3der-4E). The senescent nuclei displayed a sudden increase of activity approximately 4--6 hours after fusion. A moderate increase of thymidine incorporation was observed in 3T3der-4E cells cocultivated with but not fused to senescent cells, consistent with metabolic cooperation. Chromosome preparations of cultures fixed approximately 24 hr after fusion revealed the presence of hybrid metaphase cells containing almost the entire human complement. All of the identifiable human chromosomes were bi-armed, suggesting that the senescent nuclei were stimulated to reinitiate replicative DNA synthesis rather than repair synthesis in these heterokaryons.  相似文献   

16.
Serum-deprived (0.2%) resting NIH 3T3 mouse fibroblasts were fused with serum-stimulated (10%) proliferating cells to elucidate mechanisms of entering into S-period operating in the nuclei of the heterokaryons under the effect of cycloheximide--an inhibitor of protein synthesis. Using radioautography DNA synthesis was investigated in mono-, homo- and heterodikaryons. After short (0.5-3.0 h) depressing of protein synthesis, the nuclei of stimulated cells in heterokaryons were found to enter into S-period. Under these conditions no induction of DNA synthesis was found in the nuclei of resting cells in heterodikaryons. In other experiments, resting cells were under the effect of cycloheximide during 2-4 h before the fusion, that led to a great induction of DNA synthesis in the nuclei of these cells in heterodikaryons. The data obtained are consistent with the idea of fibroblast transition to the rest under the action of labile proteins-repressors.  相似文献   

17.
Nonsynchronized and hydroxyurea (HU)-synchronized SV40-transformed human cells (W98VaD) were fused with chick embryo erythrocytes (CE). The uptake of T antigen by CE nuclei was compared with initiation of chick nuclear DNA synthesis. Uptake of T antigen by CE nuclei occurred at about the same time after fusion with asynchronous as with HU-synchronized cells. CE nuclei rapidly became T antigen-positive between 16 h and 28 h after fusion and usually almost all CE nuclei were T antigen-positive by 48 h after fusion. In contrast, initiation of chick nuclear DNA synthesis occurred as a function of time after reversal of the HU block, when the host cell nuclei were also synthesizing DNA. Chick nuclear DNA synthesis occurred in many heterokaryons before the CE nuclei became T antigen-positive by immunofluorescence.  相似文献   

18.
DNA replication in haploid spermatid nuclei has been induced by hybridization of mouse early spermatids to proliferating HeLa cells. Use of polyethylene glycol rather than inactivated Sendai virus as the cell fusion agent was found to be essential to the production of large numbers of heterokaryons containing spermatid nuclei. DNA replication was detected in the heterokaryons by autoradiography. Density of silver grains over spermatid nuclei closely approximated the grain density over labelled HeLa nuclei in the same heterokaryons. Mouse centromeric heterochromatin appeared to be labelled last during the spermatid DNA synthetic period. On the average, HeLa nuclei in heterokaryons began DNA synthesis before spermatid nuclei. Results indicated, however, that DNA synthesis by HeLa nuclei might not be a prerequisite for spermatid DNA synthesis. These experiments demonstrate induction of DNA synthesis in spermatid nuclei, the first major step toward reactivation and recovery of their haploid genome by cell hybridization.  相似文献   

19.
Growing mouse oocytes are physiologically arrested in the G2 phase of prophase of the first meiotic division. Growing oocytes were isolated from ovaries of 9- to 12-day-old mice and fused with parthenogenetic one-cell eggs or two-cell embryos derived from fertilized eggs. Resulting hybrids were injected with Dig-11-dUTP and examined for DNA replication using immunofluorescence. Parthenogenetic one-cell eggs fused at telophase II, G1, and middle-to-late S phase, and also S-phase two-cell blastomeres, were able to trigger DNA synthesis in oocyte germinal vesicle (GV) in the majority of hybrids cultured to the end of the first cell cycle. Activation of replication in the GV occurred within 2-3 h after fusion of growing oocytes with S-phase eggs. We show indirectly that the reactivation of replication in GVs was not dependent on the breakdown of the GV envelope. Although GVs had the ability to renew DNA replication after fusion, the G2 blastomere nuclei were incapable of reinitiating DNA replication under the influence of S-phase one-cell eggs. We hypothesize that the nuclei of growing oocytes arrested in meiotic prophase are in a physiological state that is equivalent to replication-competent G1, and not G2, nuclei.  相似文献   

20.
J Zeuthen 《Humangenetik》1975,27(4):275-301
Cytological and chemical analysis of heterokaryons, the immediate product of cell fusion, offer new possibilities for studying the factors responsible for genetic regulation in eukaryotic cells. In comparison with proliferating cell hybrids the heterokaryon state offers the important advantage that a heterokaryon contains two complete genomes since chromosome loss does not occur, but since segregation and recombination are absent, heterokaryons cannot be used for gene mapping in the same way as proliferating cell hybrids. However, if two cell types carrying different genetic defects are fused the analysis can be used for studies of gene complementation. The biological information obtained with heterokaryons has emphasized the role of the cytoplasm in the control of nuclear activity. When a G1 nucleus is brought into contact with the cytoplasm of an S phase cell the G1 nucleus is stimulated to synthesize DNA. If the nucleus is brought into a mitotic cell, the chromatin of the G1 nucleus is forced to condense into prematurely condensed chromosomes. Inactive nuclei such as the dormant chick erythrocyte nucleus will be stimulated to initiate RNA and DNA synthesis when brought into contact with an active cytoplasm by cell fusion. Specific nuclear proteins have been shown to be responsible for this process of reactivation. Other inactive nuclei such as the nuclei of macrophages and spermatozoa have likewise been shown to be reactivated by fusion with active cells. The degree of activation in all of these cases appears to be determined by the state of the active cell. Inactive nuclei are activated to the same level as the active nucleus but seldom beyond this level. If differentiated cells are fused with undifferentiated cells, usually the differentiated character is lost rapidly after fusion. This observation is in agreement with several studies on proliferating cell hybrids indicating some type of negative control of differentiated properties. In heterokaryons obtained by fusion of cells of a similar type of histotypic differentiation usually coexpression of the differentiated markers is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号