首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tonA gene codes for an outer membrane protein, a receptor of phage T5, the TonA protein. Strains harboring pLG513, a multicopy plasmid in which the tonA gene has been cloned, overproduced TonA protein, which appeared in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cell envelope proteins as a 78,000-molecular-weight protein. Identical results have been observed by Plastow et al. (FEBS Lett. 131:262-264, 1981) with plasmid pLC19-19, in which the tonA gene has also been cloned. The activity of the TonA protein, measured by its capacity to inactivate phage T5, increased by five- to sixfold in purified envelopes of cells harboring pLG513 compared with cells lacking the plasmid. Solubilization of the cytoplasmic membrane by Triton-Mg2+ treatment did not increase this activity. However, partial solubilization of outer membrane proteins by Triton-EDTA unmasked further T5 receptor activity, resulting in a final increase of around 50-fold, a value more consistent with the expected gene dosage effect. Treatment of whole cells by trypsin in conditions in which trypsin is allowed to enter the outer membrane revealed that part of the overproduced T5 receptors were embedded in the outer membrane and masked by a trypsin-sensitive protein. In addition, no T5 receptor activity was detected in either the periplasmic space or the cytoplasm. These results suggest that all of the overproduced TonA molecules were synthesized in an active form and integrated in the outer membrane, but only a small fraction could be reached or recognized by phage T5 in vivo.  相似文献   

2.
We have compared the rate of assembly of outer membrane proteins including the lipoprotein in a pair of isogenic mlpA+ (lpp+) and mlpA (lpp) strains by pulse-chase experiments. The rate of assembly of the mutant prolipoprotein into the outer membrane was slightly slower than that of the wild-type lipoprotein. The rate of assembly of protein I and protein H-2 was similar in the wild type and the mutant, whereas the rate of assembly of protein II into the outer membrane was slightly reduced in the mutant strain. The organization of outer membrane was slightly reduced in the mutant strain. The organization of outer membrane proteins in the mutant cells appeared not to be grossly altered, based on the apparent resistance (or susceptibility) of these proteins toward trypsin treatment and their resistance to solubilization by Sarkosyl. Like the wild-type lipoprotein, the mutant prolipoprotein in the outer membrane was resistant to trypsin. On the other hand, the prolipoprotein in the cytoplasmic membrane fraction of the mutant cell envelope was susceptible to trypsin digestion. We conclude from these data that proteolytic cleavage of prolipoprotein is not essential for the translocation and proper assembly of lipoprotein into outer membrane.  相似文献   

3.
M Schleyer  W Neupert 《Cell》1985,43(1):339-350
Translocational intermediates of precursor proteins of ATPase F1 beta subunit and cytochrome c1 across mitochondrial membranes were analyzed using two different approaches, transport at low temperature and transport after binding of precursor proteins to antibodies. Under both conditions precursors were partially transported into mitochondria in an energy-dependent manner. They were processed by the metalloprotease in the matrix but a major proportion of the polypeptide chains was still present at the outer face of the outer mitochondrial membrane. We conclude that transfer of precursors into the inner membrane or matrix space occurs through "translocation contact sites"; precursor polypeptides to F1 beta and cytochrome c1 enter the matrix space with the amino terminus first; and a membrane potential is required for the transmembrane movement on an amino-terminal "domain-like" structure but not for completing translocation of the major part of the polypeptides.  相似文献   

4.
Host range mutants of phage T1 (T1h), which productively infected tonB mutants of Escherichia coli, were isolated. The phage mutants were inactivated by isolated outer membranes of E. coli in contrast to the wild-type phage, which only adsorbed reversibly. For the infection process, the tonB function is apparently only required for the irreversible adsorption of the phage T1, but not for the transfer of the phage DNA through the outer membrane and the cytoplasmic membrane of the cell. Mutants of the tonA gene expressing normal amounts of outer membrane receptor proteins were isolated and found to be partially sensitive to phage T5 and resistant to the phages T1 and T1h, colicin M, and albomycin and unable to take up iron as a ferrichrome complex. One tonA mutant remained partially sensitive to T5, colicin M, and albomycin and supported growth of T1h (not of T1) with the same plating efficiency as the parent strain. Only a small region of the tonA receptor protein seems to function for all the very different substrates. A newly isolated host range mutant of T5 (T5h) adsorbed faster to tonA(+) cells than did wild-type T5 and infected tonA missense mutants resistant to wild-type T5. The interplay of the tonA with the tonB function was observed with phage T5 infection, although T5 required only the tonA receptor. Ferrichrome inhibited plaque formation of T5 only when plated on tonB mutants. Adsorption of T5 to cells in liquid medium was influenced by ferrichrome as follows: complete inhibition by 0.1 muM ferrichrome with tonB mutants, not more than 35% inhibition by 1 to 100 muM ferrichrome with the tonB(+) parent strain in the presence of glucose as energy source, and 90% inhibition by 1 muM ferrichrome with partially starved parent cells. We conclude that there exist different functional states of the receptor protein that depend on the energy state of the cell and the tonB function. The latter seems to be required only for translocation processes with outer membrane proteins involved.  相似文献   

5.
The assembly of the wild-type and several mutant forms of the trimeric outer membrane porin PhoE of Escherichia coli was investigated in vitro and in vivo. In in vivo pulse-chase experiments, approximately half of the wild-type PhoE molecules assembled within the 30-s pulse in the native conformation in the cell envelope. The other half of the molecules followed slower kinetics, and three intermediates in this multistep assembly process were detected: a soluble trypsin-sensitive monomer, a trypsin-sensitive monomeric form that was loosely associated with the cell envelope and a metastable trimer, which was integrated into the membranes and converted to the stable trimeric configuration within minutes. The metastable trimers disassembled during sample preparation for standard SDS/PAGE into folded monomers. In vitro, the isolated PhoE protein could efficiently be folded in the presence of N,N-dimethyldodecylamine-N-oxide (LDAO). A mutant PhoE protein, DeltaF330, which lacks the C-terminal phenylalanine residue, mainly followed the slower kinetic pathway observed in vivo, resulting in increased amounts of the various assembly intermediates. It appears that the DeltaF330 mutant protein is intrinsically able to fold, because it was able to fold in vitro with LDAO with similar efficiencies as the wild-type protein. Therefore, we propose that the conserved C-terminal Phe is (part of) a sorting signal, directing the protein efficiently to the outer membrane. Furthermore, we analysed a mutant protein with a hydrophilic residue introduced at the hydrophobic side of one of the membrane-spanning amphipathic beta strands. The assembly of this mutant protein was not affected in vivo or in vitro in the presence of LDAO. However, it was not able to form folded monomers in a previously established in vitro folding system, which requires the presence of lipopolysaccharides and Triton. Hence, a folded monomer might not be a true assembly intermediate of PhoE in vivo.  相似文献   

6.
We characterized UC-1, a previously undescribed Escherichia coli phage. UC-1 was observed to have an icosahedral head and a long, flexible, noncontractile tail: its genome consisted of linear double-stranded DNA having a molecular weight of 34 X 10(6). The product of the tonA gene served as at least part of the receptor for UC-1. E. coli tonA strains neither plated nor adsorbed UC-1 well, tonA mutants were selected on the basis of UC-1 resistance, and ferrichrome, a siderophore which utilizes TonA as its receptor, blocked infection. Restriction analyses, DNA-DNA hybridization experiments, and guanine-plus-cytosine determinations demonstrated that UC-1 DNA was unrelated to that of other phages (T1, T5, and phi 80) which employ TonA as a receptor. Also, mutants specifically resistant to UC-1 were isolated. UC-1 may be useful as a probe for investigating TonA, which functions as a receptor for more ligands than any other membrane protein. Study of the resistant mutants may improve our understanding of how phage DNA penetrates the cell envelope.  相似文献   

7.
We have identified a series of mutations in the signal peptide of yeast prepro-alpha-factor which specifically attenuate translocation across the endoplasmic reticulum membrane in vivo. In prepro-alpha-factor-somatostatin hybrids, transposition of the amino-terminal tripeptide from wild-type NH2-Met-Arg-Phe to NH2-Met-Phe-Lys or NH2-Met-Phe-Arg causes a 45-75% reduction in the efficiency of membrane translocation. This is evidenced by the intracellular accumulation of unglycosylated, signal-containing precursors which are membrane-associated and are exposed to the cytosol. Surprisingly, abolition of the single positive charge by replacing arginine with phenylalanine has little effect on translocation into the endoplasmic reticulum. We conclude that the presence of an amino-terminal positive charge is not necessary for efficient targeting or translocation; however, misplacement by one position markedly disrupts translocation without affecting targeting. These mutations thus define an early stage of membrane interaction that is sensitive to local charge effects. Furthermore, our data suggest that post-translational translocation, signal cleavage, and core glycosylation of these polypeptides may occur to a significant extent in vivo.  相似文献   

8.
The twin arginine translocation (Tat) pathway exports folded proteins from the cytoplasm to the periplasm of bacteria. The targeting of the exported proteins to the Tat pathway relies on a specific amino-terminal signal sequence, which is cleaved after exportation. In the phytopathogen Dickeya dadantii, the pectin lyase homologue PnlH is exported by the Tat pathway without cleavage of its signal sequence, which anchors PnlH into the outer membrane. In proteobacteria, the vast majority of outer membrane proteins consists of β-barrel proteins and lipoproteins. Thus, PnlH represents a new kind of outer membrane protein. In Escherichia coli, periplasmic chaperones SurA, Skp, and DegP work together with the β-barrel assembly machinery (Bam) to target and insert β-barrel proteins into the outer membrane. In this work, we showed that SurA is required for an efficient targeting of PnlH to the outer membrane. Moreover, we were able to detect an in vitro interaction between SurA and the PnlH signal sequence. Since the PnlH signal sequence contains a highly hydrophobic region, we propose that SurA protects it from the hydrophobic periplasm during targeting of PnlH to the outer membrane. We also studied the nature of the information carried by the PnlH signal sequence responsible for its targeting to the outer membrane after exportation by the Tat system.  相似文献   

9.
The tonB gene product is required for several outer membrane transport processes in bacteria. The tonB gene from Salmonella typhimurium was sequenced and found to be similar to that of Escherichia coli. The TonB protein is highly proline-rich and includes an unusual segment consisting of multiple X-Pro dipeptide repeats. A synthetic peptide corresponding to this segment has been used to raise anti-TonB antibodies. TonB was shown to be associated with the cytoplasmic membrane, apparently anchored via a single hydrophobic N-terminal segment. Protease accessibility studies, and the use of a series of TonB-beta-lactamase fusions, showed that the rest of the TonB protein is periplasmic. Unusually, export of TonB is not accompanied by cleavage of the N-terminal signal peptide. In the accompanying paper, we show that TonB interacts directly with the outer membrane FhuA (TonA) receptor. Thus, TonB must span the periplasm, providing a link between the cytoplasmic membrane and receptors in the outer membrane. On the basis of these data, and those published by other laboratories, we propose a model whereby TonB serves as a "mechanical" linkage that, by transmitting protein conformational changes from the cytoplasmic membrane across the periplasm, acts as a means of coupling energy to outer membrane transport processes. Such a mechanism has general implications for signal transduction within and between proteins.  相似文献   

10.
The growth of secAts or secYts mutants at the restrictive temperature has been shown to inhibit the export of many outer membrane proteins. We report here that in two secAts strains the rate of incorporation of newly synthesized protein into both inner and outer membrane fractions decreased by about 70% at the restrictive temperature. The export of the outer membrane protein TonA was used as a model system in which to study the effects of SecA or SecY inactivation. pre-TonA that accumulated at the restrictive temperature was found to co-sediment with the outer membrane fraction. However, the precursor was sensitive to protease and did not float up a sucrose gradient with the membrane fractions. It was therefore concluded that pre-TonA was not integrated into the outer membrane fraction but probably accumulated in the cytoplasm. Studies on the rate of processing of pre-TonA, pulse-labelled at the restrictive temperature then chased at the permissive temperature, revealed differences between secA and secY mutants. In the secAts mutant the great majority of cytoplasmic pre-TonA was not apparently processed to the mature form, whereas in the secYts mutant significant amounts of precursors were rapidly chased into mature TonA, which appeared in the outer membrane. These results suggest that SecA and SecY may act sequentially in the export of proteins to the outer membrane. In particular these data indicate that SecA is required to maintain pre-TonA in a translocationally competent form prior to interaction with the SecY export site.  相似文献   

11.
Autotransporters are a superfamily of proteins that use the type V secretion pathway for their delivery to the surface of Gram-negative bacteria. At first glance, autotransporters look to contain all the functional elements required to promote their own secretion: an amino-terminal signal peptide to mediate translocation across the inner membrane, a central passenger domain that is the secreted functional moiety, and a channel-forming carboxyl terminus that facilitates passenger domain translocation across the outer membrane. However, recent discoveries of common structural themes, translocation intermediates and accessory interactions have challenged the perceived simplicity of autotransporter secretion. Here, we discuss how these studies have led to an improved understanding of the mechanisms responsible for autotransporter biogenesis.  相似文献   

12.
Four chromosomal genes, tonA (fhuA), fhuB, tonB, and exbB, were required for the transport of iron(III)-aerobactin specified by the plasmids ColV-K311, ColV-K229, ColV-K328, and ColV-K30. These genes also determine the transport system in Escherichia coli for the iron ionophore ferrichrome. Aerobactin and ferrichrome are both iron ligands of the hydroxamate type, but they are of different structure. The ColV plasmids determine an outer membrane protein that serves as a receptor for cloacin. Cloacin-resistant mutants were devoid of iron(III)-aerobactin transport but were unimpaired in ferrichrome transport. We conclude that for iron(III)-aerobactin transport two outer membrane proteins, the TonA and the cloacin receptor protein, have to interact functionally or structurally or both.  相似文献   

13.
We have used a hybrid precursor protein to study the pathway of protein import into chloroplasts. This hybrid (pS/protA) consists of the precursor to the small subunit of Rubisco (pS) fused to the IgG binding domains of staphylococcal protein A. The pS/protA is efficiently imported into isolated chloroplasts and is processed to its mature form (S/protA). In addition to the mature stromal form, two intermediates in the pathway of pS/protA import were identified at early time points in the import reaction. The first intermediate represents unprocessed pS/protA bound to the outer surface of the chloroplast envelope and is analogous to a previously characterized form of pS that is specifically bound to the chloroplast surface and can be subsequently translocated in the stroma (Cline, K., M. Werner-Washburne, T. H. Lubben, and K. Keegstra. 1985. J. Biol. Chem. 260:3691-3696.) The second intermediate represents a partially translocated form of the precursor that remains associated with the envelope membrane. This form is processed to mature S/protA, but remains susceptible to exogenously added protease in intact chloroplasts. We conclude that the envelope associated S/protA is spanning both the outer and inner chloroplast membranes en route to the stroma. Biochemical and immunochemical localization of the two translocation intermediates indicates that both forms are exposed at the surface of the outer membrane at sites where the outer and inner membrane are closely apposed. These contact zones appear to be organized in a reticular network on the outer envelope. We propose a model for protein import into chloroplasts that has as its central features two distinct protein conducting channels in the outer and inner envelope membranes, each gated open by a distinct subdomain of the pS signal sequence.  相似文献   

14.
The TOM complex (Translocase of the Outer mitochondrial Membrane) is responsible for the recognition of mitochondrial preproteins synthesized in the cytosol and for their translocation across or into the outer mitochondrial membrane. Tom40 is the major component of the TOM complex and forms the translocation pore. We have created a tom40 mutant of Neurospora crassa and have demonstrated that the gene is essential for the viability of the organism. Mitochondria with reduced levels of Tom40 were deficient for import of mitochondrial preproteins and contained reduced levels of the TOM complex components Tom22 and Tom6, suggesting that the import and/or stability of these proteins is dependent on the presence of Tom40. Mutant Tom40 preproteins were analyzed for their ability to be assembled into the TOM complex. In vitro import assays revealed that conserved regions near the N terminus (residues 51-60) and the C terminus (residues 321-323) of the 349-amino acid protein were required for assembly beyond a 250-kDa intermediate form. Mutant strains expressing Tom40 with residues 51-60 deleted were viable but exhibited growth defects. Slow growing mutants expressing Tom40, where residues 321-323 were changed to Ala residues, were isolated but showed TOM complex defects, whereas strains in which residues 321-323 were deleted could not be isolated. Analysis of the assembly of mutant Tom40 precursors in vitro supported a previous model in which Tom40 precursors progress from the 250-kDa intermediate to a 100-kDa form and then assemble into the 400-kDa TOM complex. Surprisingly, when wild type mitochondria containing Tom40 precursors arrested at the 250-kDa intermediate were treated with sodium carbonate, further assembly of intermediates into the TOM complex occurred, suggesting that disruption of protein-protein interactions may facilitate assembly. Import of wild type Tom40 precursor into mitochondria containing a mutant Tom40 lacking residues 40-48 revealed an alternate assembly pathway and demonstrated that the N-terminal region of pre-existing Tom40 molecules in the TOM complex plays a role in the assembly of incoming Tom40 molecules.  相似文献   

15.
In primate cells, assembly of a single HIV-1 capsid involves multimerization of thousands of Gag polypeptides, typically at the plasma membrane. Although studies support a model in which HIV-1 assembly proceeds through complexes containing Gag and the cellular adenosine triphosphatase ABCE1 (also termed HP68 or ribonuclease L inhibitor), whether these complexes constitute true assembly intermediates remains controversial. Here we demonstrate by pulse labeling in primate cells that a population of Gag associates with endogenous ABCE1 within minutes of translation. In the next approximately 2 h, Gag-ABCE1 complexes increase in size to approximately that of immature capsids. Dissociation of ABCE1 from Gag correlates closely with Gag processing during virion maturation and occurs much less efficiently when the HIV-1 protease is inactivated. Finally, quantitative double-label immunogold electron microscopy reveals that ABCE1 is recruited to sites of assembling wild-type Gag at the plasma membrane but not to sites of an assembly-defective Gag mutant at the plasma membrane. Together these findings demonstrate that a population of Gag present at plasma membrane sites of assembly associates with ABCE1 throughout capsid formation until the onset of virus maturation, which is then followed by virus release. Moreover, the data suggest a linkage between Gag-ABCE1 dissociation and subsequent events of virion production.  相似文献   

16.
Molecular function of the dual-start motif in the λ S holin   总被引:1,自引:0,他引:1  
The lambda S gene represents the prototype of holin genes with a dual-start motif, which leads to the synthesis of two polypeptides, S105 and S107. They differ at their N-terminus by only two amino acids, Met-1 and Lys-2, at the beginning of the longer product. Despite the minor difference, the two proteins have opposing functions in lysis, with protein S107 being an inhibitor and protein S105 being an effector of 'hole formation' in the inner membrane. Here, we have studied the molecular mechanism underlying the 'lysis clock' contributed by the dual-start motif. We have used protein fusions in which the secretory signal sequence of the M13 procoat protein VIII has been abutted to the N-terminal Met residues of S105 and S107 respectively. S-dependent 'hole formation' required removal of the signal sequence in both fusion proteins, as both the VIII-S105 and the VIII-S107 fusion proteins were non-functional when leader peptidase cleavage was inhibited. These results strongly supported the hypothesis that functional assembly of S proteins requires translocation of their N-terminus to the periplasm. Using signal sequence cleavage as a measure of translocation, we observed that the translocation kinetics of the N-terminus of the S107 moiety was reduced about threefold when compared with the N-terminus of the S105 moiety. Moreover, depolarization of the membrane resulted in an immediate cleavage of the signal sequence and 'hole formation' exerted by the S107 moiety of the VIII-S107 fusion protein. A model is presented in which S107 with a reversed topology of its N-terminus interacts with S105 and poisons 'hole formation'. Upon depolarization of the membrane, translocation of the N-terminus of S107 to the periplasm results in the functional assembly of S proteins, i.e. 'hole formation'.  相似文献   

17.
Yamamoto H  Fujita H  Kida Y  Sakaguchi M 《Biochemistry》2012,51(17):3596-3605
Various proteins are translocated through and inserted into the endoplasmic reticulum membrane via translocon channels. The hydrophobic segments of signal sequences initiate translocation, and those on translocating polypeptides interrupt translocation to be inserted into the membrane. Positive charges suppress translocation to regulate the orientation of the signal sequences. Here, we investigated the effect of membrane cholesterol on the translocational behavior of nascent chains in a cell-free system. We found that the three distinct translocation processes were sensitive to membrane cholesterol. Cholesterol inhibited the initiation of translocation by the signal sequence, and the extent of inhibition depended on the signal sequence. Even when initiation was not inhibited, cholesterol impeded the movement of the positively charged residues of the translocating polypeptide chain. In surprising contrast, cholesterol enhanced the translocation of hydrophobic sequences through the translocon. On the basis of these findings, we propose that membrane cholesterol greatly affects partitioning of hydrophobic segments into the membrane and impedes the movement of positive charges.  相似文献   

18.
大肠杆菌周质和外膜蛋白的定位   总被引:1,自引:0,他引:1  
大肠杆菌周质和外膜蛋白发挥功能必须首先到达其特定亚细胞分区.大肠杆菌通过一系列与蛋白质分泌有关的蛋白(Sec蛋白)将周质和外膜蛋白转运至内膜.在切除了信号肽后,与周质蛋白的定位不同的是,外膜蛋白的最终定位还需要其他因子的协助.外膜蛋白的定位近来认为是以周质作为中介的.  相似文献   

19.
The filamentous phage-encoded gene IV protein is required at high levels for virus assembly, although it is not a constituent of the virion. It is an integral membrane protein that does not contain an extended hydrophobic region of the kind often required for stable integration in the inner membrane. Rather, like a number of Escherichia coli outer membrane proteins, pIV is rich in charged amino acid residues and is predicted to consist of extensive beta-sheet structures. In phage-producing cells, pIV is primarily detected in the outer membrane, while in cells that produce it from the cloned gene, pIV is found in both the inner and outer membranes. The protein is synthesized as a precursor. Following cleavage of the signal sequence and translocation into the periplasm, the mature form is initially found as a soluble species. Soluble pIV then integrates into the membrane with a half-time of one to two minutes. Neither phage assembly nor other phage proteins are needed for this membrane integration, and phage assembly does not require the presence of the soluble form. The gene IV protein may be part of the structure through which the assembling phage is extruded.  相似文献   

20.
The general secretory pathway of Pseudomonas aeruginosa is required for the transport of signal peptide-containing exoproteins across the cell envelope. After completion of the Sec-dependent translocation of exoproteins across the inner membrane and cleavage of the signal peptide, the Xcp machinery mediates translocation across the outer membrane. This machinery consists of 12 components, of which XcpQ (GspD) is the sole outer membrane protein. XcpQ forms a multimeric ring-shaped structure, with a central opening through which exoproteins could pass to reach the medium. Surprisingly, all of the other Xcp proteins are located in or are associated with the cytoplasmic membrane. This study is focused on the characteristics of one such cytoplasmic membrane protein, XcpP. An xcpP mutant demonstrated that the product of this gene is indeed an essential element of the P. aeruginosa secretion machinery. Construction and analysis of truncated forms of XcpP made it possible to define essential domains for the function of the protein. Some of these domains, such as the N-terminal transmembrane domain and a coiled-coil structure identified at the C terminus of XcpP, may be involved in protein-protein interaction during the assembly of the secretory apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号