首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardioprotection by Mg Sulfate (MgSO4) during ischemia/reperfusion (I/R) is attributed largely to the Mg2+ cation. However, Mg-gluconate (MgGl2) may provide added benefit, possibly through its anion's antioxidant properties. Protective effects of both Mg-salts and their anions during 30 min global I and 50 min R were assessed in Langendorff-perfused (Krebs-Henseleit buffer) rat hearts. Recovery of function was compared between untreated hearts and those receiving supplement (2.4 mM MgGl2, MgSO4, or Na2SO4, or 4.8 mM NaGI) for 5 min prior to I and during the initial 30 min R. The final 20 min R was conducted without supplement. End diastolic pressure (EDP, mmHg) of the 50 min reperfused MgGl2 group (2.6) was lower than MgSO4 (16.2) and untreated (35.6) groups, and the NaGI group (25.2) was considerably lower than Na2SO4 (38.8). Recovery of developed pressure (% preischemic DP) at the onset of R for MgGl2 (74.9) was greater than MgSO4 (37.9) and untreated (33.2). After 50 min, MgGl2 (77.9) and MgSO4 (66.9) provided protection compared to untreated (51.8). In separate studies, ESR spin trapping with alpha-phenyl-N-tert-butylnitrone (3 mM PBN) showed that I/R alkoxyl radical production was reduced with MgGl2 (0.0 vs. 2.4 vs. 3.6 mM: 184 vs. 97 vs. 54.8 nM/g tissue x min) to a greater extent than seen with MgSO4 (3.6 mM: 108). Additional studies suggest that Gl(1-), unlike SO4(2-), may scavenge hydroxyl radicals, accounting for the added protection. MgGl2 treated hearts exhibited less postischemic dysfunction and oxidative injury compared to MgSO4, suggesting the contribution of Gl(1-) to cardioprotection.  相似文献   

2.
We examined the direct effect of magnesium ion on aldosterone production by adrenal cells using collagenase-dispersed zona-glomerulosa cells in rats. The effects of magnesium on aldosterone production stimulated by angiotensin II or ACTH were also investigated. Both magnesium sulphate (MgSO4) and magnesium chloride (MgCl2) (0 to 2 mM) decreased aldosterone production in a dose-dependent manner. In comparison with magnesium-free medium, 2 mM MgSO4 inhibited aldosterone production by 73% and MgCl2 by 65%. In addition, MgSO4 showed an inhibitory effect on aldosterone production stimulated by angiotensin II (10pM to 10nM), whereas it had no significant effect on aldosterone production due to ACTH stimulation (10pM to 10nM). These data suggest that magnesium has an inhibitory action on aldosterone production in vitro and may be a physiological regulator of aldosterone production.  相似文献   

3.
Acetohydroxy acid synthase (EC 4.1.3.18) of the archaebacterium Methanococcus aeolicus was purified 1,150-fold to homogeneity. The molecular weight of the purified enzyme was 125,000, and it contained only one type of subunit (M(r) = 58,000). The amino-terminal sequence had 46 to 57% similarity to those of the large subunits of the eubacterial anabolic enzymes and 37 to 43% similarity to those of the yeast and plant enzymes. The methanococcal enzyme had a pH optimum of 7.6. The pI, estimated by chromatofocusing, was 5.6. Activity required Mg2+ or Mn2+ ions, thiamine pyrophosphate, and a flavin. Flavin adenine dinucleotide, flavin mononucleotide, and riboflavin plus 10 mM phosphate all supported activity. However, activity was strongly inhibited by these flavins at 0.3 mM. The Michaelis constants for pyruvate, MgCl2, MnCl2, thiamine pyrophosphate, flavin adenine dinucleotide, and flavin mononucleotide were 6.8 mM, 0.3 mM, 0.16 mM, 1.6 microM, 0.4 microM, and 1.3 microM, respectively. In cell extracts, the enzyme was sensitive to O2 (half-life = 2.7 min with 5% O2 in the headspace), but the purified enzyme was less sensitive to O2 (half-life = 78.0 min with 20% O2). Reconstitution of the enzyme with flavin adenine dinucleotide increased the sensitivity to O2. Moreover, in the assay the homogeneous enzyme was rapidly inactivated by O2, and the concentration required for 50% inhibition (I50) was obtained with an atmosphere of 0.11% O2. The methanococcal enzyme has similarities to the eubacterial and eucaryotic enzymes, consistent with the ancient origin of the archaebacterial enzyme.  相似文献   

4.
Sopina VA 《Tsitologiia》2002,44(11):1120-1128
Tartrate-resistant acid phosphatase (TRAP) of Amoeba proteus (strain B) was represented by 3 of 6 bands (= electromorphs) revealed after disc-electrophoresis in polyacrylamide gels with the use of 2-naphthyl phosphate as a substrate at pH 4.0. The presence of MgCl2, CaCl2 or ZnCl2 (50 mM) in the incubation mixture used for gel staining stimulated activities of all 3 TRAP electromorphs or of two of them (in the case of ZnCl2). When gels were treated with MgCl2, CaCl2 or ZnCl2 (10 and 100 mM, 30 min) before their staining activity of TRAP electromorphs also increased. But unlike 1 M MgCl2 or 1 M CaCl2, 1 M ZnCl2 partly inactivated two of the three TRAP electromorphs. EDTA and EGTA (5 mM), and H2O2 (10 mM) completely inhibited TRAP electromorphs after gel treatment for 10, 20 and 30 min, resp. Of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+ and Zn2+), only the latter reactivated the TRAP electromorphs previously inactivated by EDTA or EGTA treatment. In addition, after EDTA inactivation, TRAP electromorphs were reactivated better than after EGTA. The resistance of TRAP electromorphs to okadaic acid and phosphatase inhibitor cocktail 1 used in different concentrations is indicative of the absence of PP1 and PP2A among these electromorphs. Mg2+, Ca2+ and Zn2+ dependence of TRAP activity, and the resistance of its electromorphs to vanadate and phosphatase inhibitor cocktail 2 prevents these electromorphs from being classified as PTP. It is suggested that the active center of A. proteus TRAP contains zinc ion, which is essential for catalytic activity of the enzyme. Thus, TRAP of these amoebae is metallophosphatase showing phosphomonoesterase activity in acidic medium. This metalloenzyme differs from both mammalian tartrate-resistant PAPs and tartrate-resistant metallophosphatase of Rana esculenta.  相似文献   

5.
6.
Secondary alkylsulfatases (S-1 and S-2) were detected in Pseudomonas C12B cultured in minimal media lacking alkylsulfatases. The synthesis of these enzymes was not repressed by SO4-2- and L-cysteine or derepressed by L-methionine. Growth on 4% sodium citrate caused a 98% loss in the secondary alkylsulfatase activity of cells and 9% of this activity was detected in the culture medium. Citrate (20 mM) inhibited the activity of cell extracts (18%) but the inhibition was reversible by dialysis. The primary alkylsulfatase content of cells was not diminished by growth on citrate. The MgCl2 concentration of the medium also influenced the cellular levels of secondary alkylsulfatase. Bacteria grown on MgCl2 (0.05 mM - 40 mM) exhibited progressively increasing activity while the converse distribution was observed for activity present in the medium after growth at each MgCl2 concentration. Both primary and secondary alkylsulfatases were released when cells were either subjected to osmotic shock or treated for cell wall removal. Cells washed with 0.085 M sodium citrate-10 mM Tris-20%sucrose released roughly 87% of both enzymes and MgCl2 (0.04 M) inhibited the release of primary alkylsulfatase by 11% and secondary alkylsulfatase by 50%. It is suggested that citrate chelates divalent cations necessary for the attachment of secondary alkylsulfatase at the cell periphery.  相似文献   

7.
Properties of phosphatidylinositol kinase activities in rabbit erythrocyte membranes were studied by measuring 32P incorporation into di- and triphosphoinositide from Mg-[gamma-32P]ATP. The Km's for 32P incorporation into di- and triphosphoinositide were 110 and 48 microM ATP, respectively. The optimal temperature for 32P incorporation into diphosphoinositide was at 32 degrees C, whereas the optimum for triphosphoinositide labeling occurred at 43 degrees C. Differences in the effects of pH on the rate of 32P incorporation into di- and triphosphoinositide were also found. At 37 degrees C but not at 25 degrees C 32P-labeled diphosphoinositide was phosphorylated to triphosphoinositide in the presence of Mg-ATP. Triton X-100 partially inhibited 32P incorporation into diphosphoinositide but completely inhibited the synthesis of triphosphoinositide. At physiological concentrations, 0.4 mM MgCl2 half-maximally activated di- and triphosphoinositide synthesis. Higher concentrations of MgCl2 (5 to 50 mM) decreased 32P incorporation into diphosphoinositide and greatly enhanced 32P incorporation into triphosphoinositide. NaCl or KCl (less than or equal to 100 mM) did not have any effects on polyphosphoinositide synthesis, whereas 150 to 300 mM NaCl or KCl decreased synthesis of diphosphoinositide and increased synthesis of triphosphoinositide. Further studies showed that 50 mM MgCl2 and 200 mM NaCl or KCl stimulate kinase-mediated phosphorylation of diphosphoinositide to triphosphoinositide. Triton X-100 inhibited the ability of 50 mM MgCl2 and neomycin to stimulate phosphorylation of diphosphoinositide to triphosphoinositide. The pathways for synthesis of di- and triphosphoinositides in erythrocyte membranes are discussed.  相似文献   

8.
The effect of magnesium (Mg)-deficient culture on endothelial cell susceptibility to oxidative stress was examined. Bovine endothelial cells were cultured in either control sufficient (0.8 mM) or deficient (0.4 mM) levels of MgCl2. Oxygen radicals were produced extracellularly by the addition of dihydroxyfumarate and Fe(3+)-ADP. Isolated Mg-deficient endothelial cells produced 2- to 3-fold higher levels of thiobarbituric acid (TBA)-reactive materials when incubated with this free radical system. Additional studies were performed using digitized video microscopy and 2',7'-dichlorofluorescein diacetate (DCFDA) as an intracellular indicator for oxidative events at the single cell level. In response to the exogenous oxidative stress, endothelial cells exhibited a time-dependent increase in fluorescence, suggestive of intracellular lipid peroxidation. The increase in cellular fluorescence began within 1 min of free radical addition; the Mg-deficient cells exhibited a more rapid increase in fluorescence than that of Mg-sufficient cells. In separate experiments, cellular viability was assessed using the Trypan blue exclusion assay. Mg deficiency increased cytotoxicity of the added oxyradicals, but the loss of cellular viability began to occur only after 15 min of free radical exposure, lagging behind the detection of intracellular oxidation products. These results suggest that increased oxidative endothelial cell injury may contribute to vascular injury during Mg deficiency.  相似文献   

9.
The role of reactive oxygen species (ROS) in the pathogenesis of vascular diseases is well established, but few data exist on the mechanisms by which ROS induce endothelial cell (EC) death. We examined the conditions and the mechanisms by which oxidative stress induces EC death, using cultured confluent bovine aortic ECs exposed for 30 min to different concentrations of hydroxyl radicals (HO*) generated by hydrogen peroxide (H(2)O(2)) in the presence of 100 microM ferrous sulfate (FeSO(4)). Cell viability assays, Hoechst DNA staining, TUNEL (TDT-mediated dUTP-biotin nick end-labeling) analysis, agarose gel electrophoresis and annexin V assay were used to determine the effect of HO* on the viability of ECs, and to distinguish between apoptosis and necrosis. The results showed that at concentrations of up to 0.1 mM H(2)O(2)/FeSO(4), the large majority of cells are viable, except for approximately 12.5% death, which occurs by apoptosis. At a concentration of 0.2 mM H(2)O(2), the cell viability is reduced to 66%, while EC apoptosis remained at comparable values (14%). At high oxidative stress (0.5 mM H(2)O(2)), the cell viability was drastically reduced (approximately 39%), and the prevalent form of death was necrosis; apoptosis accounted for only approximately 17%. Together, these data indicate that: (1) HO* induce EC death either by apoptosis or necrosis and (2) the mechanisms of EC death differ as a function of the concentration of HO. Thus, the same insult can cause apoptosis and/or necrosis, as a function of the intensity rather than the nature of the insult.  相似文献   

10.
cAMP induces a transient increase of cAMP and cGMP levels in Dictyostelium discoideum cells. Fast binding experiments reveal three types of cAMP-binding site (S, H and L), which have different off-rates (t0.5, 0.7-15 s) and different affinities (Kd, 15-450 nM). A time- and cAMP-concentration-dependent transition of H- to L-sites occurs during the binding reaction (Van Haastert, P.J.M. and De Wit, R.J.W. (1984) J. Biol. Chem. 13321-13328). Extracellular Ca2+ had multiple effects on cAMP-binding sites. (i) The number of H + L-sites increased 2.5-fold, while the number of S-sites was not strongly affected. (ii) The Kd of the S-sites was reduced from 16 nM to 5 nM (iii) The conversion of H-sites to L-sites was inhibited up to 80%. The kinetics of the cAMP-induced cAMP accumulation was not strongly altered by Ca2+, but the amount of cAMP produced was inhibited up to 80%. The kinetics of the cAMP-induced cGMP accumulation was strongly altered; maximal levels were obtained sooner, and the Ka was reduced from 15 to 3.5 nM cAMP. Ca2+, Mg2+ and Mn2+ increased the number of binding sites, all with EC50 = 0.5 mM. The S-sites and the cGMP response were modified by equal Ca2+ concentrations and by higher concentrations of Mg2+ and Mn2+ (EC50 are respectively 0.4 mM, 2.5 mM and about 25 mM). The conversion of H- to L-sites and the cAMP response were specifically inhibited by Ca2+ with EC50 = 20 microM. It is concluded that cAMP activates guanylate cyclase through the S-sites; adenylate cyclase is activated by the H + L-sites, in which the appearance of the L-sites during the binding reaction represents the coupling of occupied surface cAMP receptors to adenylate cyclase.  相似文献   

11.
Live Trypanosoma cruzi amastigotes hydrolyzed p-nitrophenylphosphate (PNPP), phospho-amino-acids and 32P-casein under physiologically appropriate conditions. PNPP was hydrolysed at a rate of 80 nmol.mg-1.h-1 in the presence of 5 mM MgCl2, pH 7.2 at 30 degrees C. In the absence of Mg2+ the activity was reduced 40% and we call this basal activity. At saturating concentration of PNPP, half-maximal PNPP hydrolysis was obtained with 0.22 mM MgCl2. Ca2+ had no effect on the basal activity, could not substitute Mg2+ as an activator and in contrast inhibited the PNPP hydrolysis stimulated by Mg2+ (I50 = 0.43 mM). In the absence of Mg2+ (basal activity) the stimulating half concentration (S0.5) for PNPP was 1.57 mM, while at saturating MgCl2 concentrations the corresponding S0.5 for PNPP for Mg(2+)-stimulated phosphatase activity (difference between total minus basal phosphatase activity) was 0.99 mM. The Mg-dependent PNPP hydrolysis was strongly inhibited by sodium fluoride (NaF), vanadate and Zn2+ but not by tartrate and levamizole. The Mg-independent basal phosphatase activity was insensitive to tartrate, levamizole as well NaF and less inhibited by vanadate and Zn2+. Intact amastigotes were also able to hydrolyse phosphoserine, phosphothreonine and phosphotyrosine but only the phosphotyrosine hydrolysis was stimulated by MgCl2 and inhibited by CaCl2 and phosphotyrosine was a competitive inhibitor of the PNPP hydrolysis stimulated by Mg2+. The cells were also able to hydrolyse 32P-casein phosphorylated on serine and threonine residues but only in the presence of MgCl2. These results indicate that in the amastigote form of T. cruzi there are at least two ectophosphatase activities, one of which is Mg2+ dependent and can dephosphorylate phospho-amino acids and phosphoproteins under physiological conditions.  相似文献   

12.
The enzymatic properties of purified preparations of chicken liver and chicken skeletal muscle fructose bisphosphatases (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) were compared. Both enzymes have an absolute requirement for Mg2+ or Mn2+. The apparent Km for MgCl2 at pH 7.5 was 0.5 mM for the muscle enzyme and 5 mM for the liver enzyme. Fructose bisphosphate inhibited both enzymes. At pH 7.5, the inhibitor constants (Ki) were 0.18 and 1.3 mM for muscle and liver fructose bisphosphatases, respectively. The muscle enzyme was considerably more sensitive to AMP inhibition than the liver enzyme. At pH 7.5 and in the presence of 1 mM MgCl2, 50% inhibition of muscle and liver fructose bisphosphatases occurred at AMP concentrations of 7 X 10(-9) and 1 X 10(-6) M, respectively. EDTA activated both enzymes. The degree of activation was time and concentration dependent. The degree of EDTA activation of both enzymes decreased with increasing MgCl2 concentration. Ca2+ was a potent inhibitor of both liver (Ki, 1 X 10(-4) M) and muscle (Ki, 1 X 10(-5) M) fructose bisphosphatase. This inhibition was reversed by the presence of EDTA. Ca2+ appears to be a competitive inhibitor with regard to Mg2+. There is, however, a positive homeotropic interaction among Mg2+ sites of both enzymes in the presence of Ca2+.  相似文献   

13.
The effect of Ca2+ or Mg2+ on cytochrome b5 reduction by porcine liver microsomes was examined using trypsin-solubilized cytochrome b5 as a substrate. The reduction of exogenous cytochrome b5 by microsomes was low at 1.2 microM cytochrome b5 (3.9 or 2.7 nmol/min/mg protein, respectively, with NADH or NADPH). The addition of CaCl2 greatly enhanced either NADH-dependent or NADPH-dependent cytochrome b5 reduction. At 2 mM CaCl2, the reduction rate was increased to 23- or 18-fold of control, respectively with NADH or NADPH. The concentration for half-maximal effect (EC50) was 0.5 or 0.6 mM in the NADH or NADPH systems, respectively. MgCl2 also stimulated cytochrome b5 reduction with a EC50 value of 1.0 mM in the NADH system or 0.6 mM in the NADPH system. The comparison with the result with KCl indicated that the activation by CaCl2 or MgCl2 is caused mainly by their divalent cation moiety. The Km value for cytochrome b5 was decreased and the Vmax was increased by calcium with either the NADH- or the NADPH-dependent system. NADH-ferricyanide reductase activity was not affected by calcium, but NADPH-ferricyanide reductase activity was stimulated as well as NADPH-cytochrome c reductase activity. In the presence of Triton X-100, divalent cations were inhibitory in NADH-dependent cytochrome b5 reduction, and in contrast, stimulative in NADPH-dependent reaction. These findings suggest that the activation of cytochrome b5 reduction by divalent cations in the NADH system is mainly due to an increasing accessibility of the substrate, and in the NADPH system, in addition to this, a direct effect of divalent cations on NADPH-cytochrome P450 reductase is also involved.  相似文献   

14.
Polynucleotide kinase (EC 2.7.1.78) has been purified from rat testes, and an approximately 2000-fold purification was obtained. The purified enzyme had an Mr of 38000 +/- 3800. The enzyme phosphorylated micrococcal nuclease-treated calf thymus DNA and (dT)10 while 5'-HO-tRNA was a very poor substrate. A certain degree of specificity towards purine-containing 5'-HO-nucleotides was observed. The polynucleotide kinase had an absolute requirement for a divalent cation. Both Mg2+ and Mn2+ could be used, but 10 mM MgCl2 gave optimal activity. The monovalent cations Na+, K+ and NH4+ all stimulated enzyme activity, and the optimal concentration was 0.1 M. The enzyme was inhibited by inorganic phosphate, pyrophosphate and sulphate. A 50% inhibition was obtained with 20, 0.3 and 2 mM, respectively. At 2 mM MgCl2, 1 mM spermine enhanced the enzyme activity 3-times. The apparent KATP was estimated to be 36 microM and KHO-DNA was found to be 2 microM.  相似文献   

15.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

16.
17.
The 5'-phosphomonoesterase activity of 5'-nucleotidase (EC 3.1.3.5) and alkaline phosphatase (EC 3.1.3.5) participates in the catabolism of purine ribonucleotides to uric acid in humans. Initial velocity studies of 5'-nucleotidase suggest a sequential mechanism of interaction between AMP nad MgCl2, with a Km of 14 and 3 muM, respectively. With product inhibition studies the apparent Ki's for adenosine, inosine, cytidine, and inorganic phosphate were 0.4, 3.0, 5.0, and 42 mM, respectively. A large number of nucleoside mono-, di-, and tri-phosphate compounds were inhibitors of the enzyme. Allopurinol ribonucleotide, ADP, or ATP were competitive inhititors when AMP was the substrate, with a Ki slope of 120 muM. The phosphomonoesterase activity of human placental microsomal alkaline phosphatase had a pH optimum of 10.0 and had only 18% of maximum activity at pH 7.4. Substrates and inhibitors included almost any phosphorylated compound. The Km for AMP was 0.4 mM and the apparent Ki for Pi was 0.6 mM. Activity was increased only 19% by 5 mM MgCl2. These observations suggest that 5'-nucleotidase and alkaline phosphatase may be inhibited by ATP and Pi, respectively, under normal intracellular conditions, and that AMP may be preferentially hydrolyzed by 5'-nucleotidase.  相似文献   

18.
Free radical scavenging effects of the cellular protein extracts from two strains of Deinococcus radiodurans and Escherichia coli against O2-, H2O2 and *OH were investigated by chemiluminescence (CL) methods. The cellular protein extracts of D. radiodurans R1 and KD8301 showed higher scavenging effects on O2- than that of E. coli. D. radiodurans R1 and KD8301 also strongly scavenged H2O2 with an EC50 (50% effective concentration) of 0.12 and 0.2 mg/mL, respectively, compared to that of E. coli (EC50 = 3.56 mg/mL). The two strains of D. radiodurans were effective in scavenging *OH generated by the Fenton reaction, with EC50 of 0.059 and 0.1 mg/mL, respectively, compared to that of E. coli (EC50 > 1 mg/mL). Results from the chemiluminescence assay of *OH-induced DNA damage and the plasmid pUC18 DNA double-strand break (DSB) model in vitro showed that D. radiodurans had remarkably inhibitory effect on the *OH-induced oxidative damage of DNA. The scavenging effects of D. radiodurans on reactive oxygen species (ROS) played an important role in the response to oxidation stress and preventing against DNA oxidative damage, and may be attributed to intracellular scavenging proteins, including superoxide dismutase (SOD) and catalase.  相似文献   

19.
EC3, a heterodimeric disintegrin (Mr = 14,762) isolated from Echis carinatus venom is a potent antagonist of alpha4 integrins. Two subunits called EC3A and EC3B were isolated from reduced and alkylated EC3 by reverse-phase high performance liquid chromatography. Each subunit contained 67 residues, including 10 cysteines, and displayed a high degree of homology to each other and to other disintegrins. EC3 inhibited adhesion of cells expressing alpha4beta1 and alpha4beta7 integrins to natural ligands vascular cell adhesion molecule 1 (VCAM-1) and mucosal addressin cell adhesion molecule 1 (MadCAM-1) with IC50 = 6-30 nM, adhesion of K562 cells (alpha5beta1) to fibronectin with IC50 = 150 nM, and adhesion of alphaIIbbeta3 Chinese hamster ovary cells to fibrinogen with IC50 = 500 nM; it did not inhibit adhesion of alphavbeta3 Chinese hamster ovary cells to vitronectin. Ethylpyridylethylated EC3B inhibited adhesion of Jurkat cells to immobilized VCAM-1 (IC50 = 6 microM), whereas EC3A was inactive in this system. The MLDG motif appeared to be essential for activity of EC3B. Linear MLDG peptide inhibited the adhesion of Jurkat to VCAM-1 in a dose-dependent manner (IC50 = 4 mM), whereas RGDS peptide was not active at the same concentration. MLDG partially inhibited adhesion of K562 cells to fibronectin (5-10 mM) in contrast to RGDS peptide (IC50 = 3 mM), inhibiting completely at 10 mM.  相似文献   

20.
The experimental conditions under which protoplasts of Staphylococcus aureus strain MS353 (pCp) are converted to the coccal or L-form were investigated. Protoplasts prepared by treating coccal MS353 (pCp) strain with Lysostaphin formed various types of colonies (coccal form, L-form and mixed types) in about 50% yield when they were plated on reversion (R) medium consisting of 2% brain heart infusion, 0.5M sodium succinate, 0.01% bovine serum albumin, 20 mM MgCl2 and 0.6% agar. The L-form type colonies with a typical fried-egg appearance that developed on the R medium at an early stage gradually reverted to the coccal form through a mixed type stage in which a high density area first appeared in the periphery of the colony and then spread throughout the colony. The use of modified R medium without MgCl2 or R medium in which 0.5M sodium succinate as an osmotic stabilizer was replaced by 7.5% NaCl resulted in marked delay in the appearance of reverted cells. R medium without bovine serum albumin yielded atypical L-form type colonies, which contained masses of coccal cells with very irregular margins. On the other hand, R medium without MgCl2 but with penicillin G supported development of L-form type colonies at high rate (13-15%) from the inoculated protoplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号