首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The malarial parasite Plasmodium falciparum encodes for an alpha-carbonic anhydrase (CA) enzyme possessing catalytic properties distinct of that of the human host, which was only recently purified. A series of aromatic sulfonamides, most of which were Schiff's bases derived from sulfanilamide/homosulfanilamide/4-aminoethylbenzenesulfonamide and substituted-aromatic aldehydes, or ureido-substituted such sulfonamides, were investigated for in vitro inhibition of the malarial parasite enzyme (pfCA) and the growth of P. falciparum. Several inhibitors with affinity in the micromolar range (K(I)'s in the range of 0.080-1.230 microM) were detected, whereas the most potent such derivatives were the clinically used sulfonamide CA inhibitor acetazolamide, and 4-(3,4-dichlorophenyl-ureidoethyl)-benzenesulfonamide, which showed an inhibition constant of 80 nM against pfCA, being four times more effective an inhibitor as compared to acetazolamide (K(I) of 315 nM). The lipophilic 4-(3,4-dichlorophenylureido-ethyl)-benzenesulfonamide was also an effective in vitro inhibitor for the growth of P. falciparum (IC50 of 2 microM), whereas acetazolamide achieved the same level of inhibition at 20 microM. This is the first study proving that antimalarials possessing a novel mechanism of action can be obtained, by inhibiting a critical enzyme for the life cycle of the parasite. Indeed, by inhibiting pfCA, the synthesis of pyrimidines mediated by carbamoylphosphate synthase is impaired in P. falciparum but not in the human host. Sulfonamide CA inhibitors have the potential for the development of novel antimalarial drugs.  相似文献   

2.
Antiplasmodial and antifungal activities of iridal,a plant triterpenoid   总被引:1,自引:0,他引:1  
Iridal, a triterpenoidic compound extracted from Iris germanica L., was previously shown to have an interesting activity on two cultured human tumor cell lines (A2780 and K562). In the present work, this same product was tested in vitro on Plasmodium falciparum chloroquine-resistant and -sensitive strains, in vivo on P. vinckei, and on some Candida albicans and C. parapsilosis strains too. The IC(50) obtained in vitro on human malaria strain ranged from 1.8 to 26.0 microg/ml and the ED(50) in vivo is about 85 mg/kg/day by intraperitoneal route. The minimal inhibitory concentrations were higher than to 50 microg/ml, whatever the strain of yeast tested. This product presents an antiplasmodial activity similar to that obtained with extracts from the plant Azadirachta indica classically taken as reference in malaria phytomedicine. Conversely iridal shows no important antifungal activity. The specific activity of iridal on human malaria parasite and on tumor cell lines is discussed.  相似文献   

3.
As part of our search for new antimalarial drugs, we have screened for inhibitors of Pfnek-1, a protein kinase of Plasmodium falciparum, in south Pacific marine sponges. On the basis of a preliminary screening, the ethanolic crude extract of a new species of Xestospongia collected in Vanuatu was selected for its promising activity. A bioassay-guided fractionation led us to isolate xestoquinone which inhibits Pfnek-1 with an IC(50) around 1 microM. Among a small panel of plasmodial protein kinases, xestoquinone showed modest protein kinase inhibitory activity toward PfPK5 and no activity toward PfPK7 and PfGSK-3. Xestoquinone showed in vitro antiplasmodial activity against a FCB1 P. falciparum strain with an IC(50) of 3 microM and a weak selectivity index (SI 7). Xestoquinone exhibited a weak in vivo activity at 5mg/kg in Plasmodium berghei NK65 infected mice and was toxic at higher doses.  相似文献   

4.
Plasmodium falciparum thioredoxin reductase (PfTrxR: NADPH+Trx(S)2+H+<-->NADP++Trx(SH)2) is a high Mr flavin-dependent TrxR that reduces thioredoxin (Trx) via a CysXXXXCys pair located penultimately to the C-terminal Gly. In this respect, PfTrxR differs significantly from its human counterpart which bears a Cys-Sec redox pair at the same position. PfTrxR is essentially involved in antioxidant defense and redox regulation of the parasite and has been previously validated by knock-out studies as a potential drug target for malaria chemotherapy. Moreover, human TrxR is present in most cancer cells at levels tenfold higher than in normal cells. Here we report the discovery of a series of potent inhibitors of PfTrxR. The three most promising inhibitors, 3(IC50(PfTrxR)=2 microM and IC50(hTrxR)=50 microM), 7(IC50(PfTrxR)=2 microM and IC50(hTrxR)=140 microM), and 11(IC50(PfTrxR)=0.5 microM and IC50(hTrxR)=4 microM) were selective for the parasite enzyme. Detailed mechanistic characterization of the effects of these compounds on the PfTrxR-catalyzed reaction showed clear uncompetitive inhibition with respect to both substrate and cofactor. For the most specific PfTrxR inhibitor 7, an alkylation mechanism study based on a thiol conjugation model was performed. Furthermore, all three compounds were active in the lower micromolar range on the chloroquine-resistant P. falciparum strain K1 in vitro.  相似文献   

5.
Plasmodiumfalciparum is responsible for the majority of life-threatening cases of human malaria. The global emergence of drug-resistant malarial parasites necessitates identification and characterization of novel drug targets. Carbonic anhydrase (CA) is present at high levels in human red cells and in P. falciparum. Existence of at least three isozymes of the alpha < class was demonstrated in P. falciparum and a rodent malarial parasite Plasmodium berghei. The major isozyme CA1 was purified and partially characterized from P. falciparum (PfCA1). A search of the malarial genome database yielded an open reading frame similar to the alpha-CAs from various organisms, including human. The primary amino acid sequence of the PfCA1 has 60% identity with a rodent parasite Plasmodium yoelii enzyme (PyCA). The single open reading frames encoded 235 and 252 amino acid proteins for PfCA1 and PyCA, respectively. The highly conserved active site residues were also found among organisms having alpha-CAs. The PfCA1 gene was cloned, sequenced and expressed in Escherichia coli. The purified recombinant PfCA1 enzyme was catalytically active. It was sensitive to acetazolamide and sulfanilamide inhibition. Kinetic properties of the recombinant PfCA1 revealed the authenticity to the wild type enzyme purified from P. falciparum in vitro culture. Furthermore, the PfCA1 inhibitors acetazolamide and sulfanilamide showed good antimalarial effect on the in vitro growth of P. falciparum. Our molecular tools developed for the recombinant enzyme expression will be useful for developing potential antimalarials directed at P. falciparum carbonic anhydrase.  相似文献   

6.
Elongation factor Tu (EF-Tu) is encoded by the tuf gene of the plastid organelle of the malaria parasite Plasmodium falciparum. A range of structurally unrelated inhibitors of this GTP-dependent translation factor was shown to have antimalarial activity in blood cultures. The most active was the cyclic thiazolyl peptide amythiamicin A with an IC50 = 0.01 microM. Demonstrable complexes were formed in vitro between a recombinant version of P. falciparum EF-Tu(pl) and inhibitors that bind to different sites on EF-Tu; these included the antibiotics kirromycin, GE2270A and enacyloxin IIa.  相似文献   

7.
NT-702 (parogrelil hydrochloride, NM-702), 4-bromo-6-[3-(4-chlorophenyl)propoxy]-5-[(pyridin-3-ylmethyl)amino]pyridazin-3(2H)-one hydrochloride, a novel phosphodiesterase (PDE) inhibitor synthesized as a potent vasodilatory and antiplatelet agent, is being developed for the treatment of intermittent claudication (IC) in patients with peripheral arterial disease. We assessed the efficacy of NT-702 in an experimental IC model as compared with cilostazol and additionally investigated the pharmacological property in vitro and ex vivo. NT-702 selectively inhibited PDE3 (IC(50)=0.179 and 0.260 nM for PDE3A and 3B) more potently than cilostazol (IC(50)=231 and 237 nM for PDE3A and 3B) among recombinant human PDE1 to PDE6. NT-702 inhibited in vitro human platelet aggregation induced by various agonists (IC(50)=11 to 67 nM) and phenylephrine-induced rat aortic contraction (IC(50)=24 nM). Corresponding results for cilostazol were 4.1 to 17 microM and 1.0 microM, respectively. NT-702 (3 mg/kg or more) significantly inhibited ex vivo rat platelet aggregation after a single oral dose. For cilostazol, 300 mg/kg was effective. In a rat femoral artery ligation model, NT-702 at 5 and 10 mg/kg repeated oral doses twice a day (BID) for 13 days significantly improved the reduced walking distance while the lowered plantar surface temperature was improved at 2.5 mg/kg and more. Cilostazol also improved the walking distance and surface temperature at 300 mg/kg BID but significant difference was only observed for surface temperature on day 8. These results suggest that NT-702 can be expected to have therapeutic advantage for IC.  相似文献   

8.
Hypoestoxide (HE) is a diterpene isolated from Hypoestes rosea (Acanthaceae), a plant indigenous to Nigeria. Previous studies demonstrated that HE exhibited potent anti-inflammatory and anti-cancer activities in well established animal models but weak in vitro activities in both the anti-inflammation and anti-cancer in vitro screening systems. We now report a similar observation in the in vitro and in vivo screening systems for antimalarial activity. The results indicate that while HE exhibits a relatively weak in vitro activity (IC(50) = 10 microM versus 0.11 microM for chloroquine) against different strains of cultured P. falciparum parasites, the dose of HE required to reduce parasitemia by 90% in Plasmodium berghei-infected mice, is much lower than standard antimalaria drugs (SD(90) = 250 microg/kg versus 5mg/kg for chloroquine). Furthermore, lower doses of HE were much more effective than higher doses in inhibiting parasite development. The implications of these findings are discussed.  相似文献   

9.
Plasmodium vivax is an important human pathogen causing malaria in more temperate climates of the world. Similar to Plasmodium falciparum, the causative agent for malaria tropica, drug resistance is beginning to emerge for this parasite species and this hampers adequate treatment of infection. We have used a short-term ex vivo drug assay to monitor activity of OZ277 (RBx-11160), a fully synthetic anti-malarial peroxide, and the diamidine DB75 against P. vivax. For both compounds as well as the anti-malarial reference compounds artesunate, artemether, and chloroquine, the in vitro IC(50) values were determined in one-cycle hypoxanthine incorporation assays. Results from such assays were found to be very similar compared to IC(50) values obtained from one-cycle P. falciparum hypoxanthine assays. We demonstrate the anti-parasite activity of OZ277 and the reference compounds to be faster than that of DB75. These data warrant clinical testing of OZ277 against P. vivax malaria and support recent data on clinical activity against P. vivax for DB75.  相似文献   

10.
Primin (=2-methoxy-6-pentylcyclohexa-2,5-diene-1,4-dione), a natural benzoquinone synthesized in our laboratory, was investigated for its in vitro antiprotozoal, antimycobacterial, and cytotoxic potential. Primin showed very potent activity against Trypanosoma brucei rhodesiense (IC50 0.144 microM) and Leishmania donovani (IC50 0.711 microM), and revealed low cytotoxicity (IC50 15.4 microM) on mammalian cells. Only moderate inhibitory activity was observed against Mycobacterium tuberculosis, Trypanosoma cruzi, and Plasmodium falciparum. When tested for in vivo efficacy in a Trypanosoma b. brucei rodent model, primin failed to cure the infection at 20 mg/kg given intraperitoneally. Primin was too toxic in vivo at a higher concentration (30 mg/kg, injected i.p. route) in mice infected with L. donovani. Taken together, primin can serve as a lead compound for the rational design of more potent and less toxic antiprotozoal agents.  相似文献   

11.
The histones of Plasmodium falciparum represent a potential new target for anti-malarial compounds. A naturally occurring compound, apicidin, has recently been shown to inhibit the in vitro growth of P. falciparum. Apicidin was shown to hyperacetylate histones, suggesting that its mode of action is through histone deacetylase inhibition. We have tested the ability of known histone deacetylase inhibitors, mammalian tumour suppressor compounds, and cytodifferentiating agents to inhibit the in vitro growth of a drug sensitive and resistant strain of P. falciparum. Seven of the tested compounds had microM IC50 values, and trichostatin A, a histone deacetylation inhibitor and cytodifferentiating agent, was active at low nM concentrations. One compound, suberic acid bisdimethylamide, which selectively arrests tumour cells as opposed to normal mammalian cells, had an in vivo cytostatic effect against the acute murine malaria Plasmodium berghei, and one round of treatment with the compound failed to select for resistant mutations. These results suggest a promising role for histone deacetylase inhibitors and cytodifferentiating agents as antimalarial drug candidates.  相似文献   

12.
CGS 8515 inhibited 5-hydroxyeicosatetraenoic acid (5-HETE) and leukotriene B4 synthesis in guinea pig leukocytes (IC50 = 0.1 microM). The compound did not appreciably affect cyclooxygenase (sheep seminal vesicles), 12-lipoxygenase (human platelets), 15-lipoxygenase (human leukocytes) and thromboxane synthetase (human platelets) at concentrations up to 100 microM. CGS 8515 inhibited A23187-induced formation of leukotriene products in whole blood (IC50 values of 0.8 and 4 microM, respectively, for human and rat) and in isolated rat lung (IC50 less than 1 microM) in vitro. The selectivity of the compound as a 5-lipoxygenase inhibitor was confirmed in rat whole blood by the 20-70-fold separation of inhibitory effects on the formation of leukotriene from prostaglandin products. Ex vivo and in vivo studies with rats showed that CGS 8515, at an oral dose of 2-50 mg/kg, significantly inhibited A23187-induced production of leukotrienes in whole blood and in the lung. The effect persisted for at least 6 h in the ex vivo whole blood model. CGS 8515, at oral doses as low as 5 mg/kg, significantly suppressed exudate volume and leukocyte migration in the carrageenan-induced pleurisy and sponge models in the rat. Inhibitory effects of the compound on inflammatory responses and leukotriene production in leukocytes and target organs are important parameters suggestive of its therapeutic potential in asthma, psoriasis and inflammatory conditions.  相似文献   

13.
Iron chelators for the treatment of malaria have proven therapeutic activity in vitro and in vivo in both humans and mice, but their clinical use is limited by the unsuitable absorption and pharmacokinetic properties of the few available iron chelators. FBS0701, (S)3"-(HO)-desazadesferrithiocin-polyether [DADFT-PE], is an oral iron chelator currently in Phase 2 human studies for the treatment of transfusional iron overload. The drug has very favorable absorption and pharmacokinetic properties allowing for once-daily use to deplete circulating free iron with human plasma concentrations in the high μM range. Here we show that FBS0701 has inhibition concentration 50% (IC(50)) of 6 μM for Plasmodium falciparum in contrast to the IC(50) for deferiprone and deferoxamine at 15 and 30 μM respectively. In combination, FBS0701 interfered with artemisinin parasite inhibition and was additive with chloroquine or quinine parasite inhibition. FBS0701 killed early stage P. falciparum gametocytes. In the P. berghei Thompson suppression test, a single dose of 100 mg/kg reduced day three parasitemia and prolonged survival, but did not cure mice. Treatment with a single oral dose of 100 mg/kg one day after infection with 10 million lethal P. yoelii 17XL cured all the mice. Pretreatment of mice with a single oral dose of FBS0701 seven days or one day before resulted in the cure of some mice. Plasma exposures and other pharmacokinetics parameters in mice of the 100 mg/kg dose are similar to a 3 mg/kg dose in humans. In conclusion, FBS0701 demonstrates a single oral dose cure of the lethal P. yoelii model. Significantly, this effect persists after the chelator has cleared from plasma. FBS0701 was demonstrated to remove labile iron from erythrocytes as well as enter erythrocytes to chelate iron. FBS0701 may find clinically utility as monotherapy, a malarial prophylactic or, more likely, in combination with other antimalarials.  相似文献   

14.
The discovery and SAR of a new series of substituted 8-arylquinoline PDE4 inhibitors are herein described. This work has led to the identification of several compounds with excellent in vitro and in vivo profiles, including a good therapeutic window of emesis to efficacy in several animal models. Typical optimized compounds from this series are potent inhibitors of PDE4 (IC(50)<1nM) and also of LPS-induced TNF-alpha release in human whole blood (IC(50)<0.5microM). The same compounds are potent inhibitors of ovalbumin-induced bronchoconstriction in conscious guinea pigs (EC(50)<0.1mg/kg ip) but require a dose of about 10mg/kg po in the squirrel monkey to produce an emetic response. From this series of compounds, 23a (L-454,560) was identified as an optimized compound.  相似文献   

15.
The antimalarial activity of the O-acylated bruceolide derivative, 3,15-di-O-acetylbruceolide, was evaluated against Plasmodium berghei in vivo. The concentration of 3,15-di-O-acetylbruceolide required for 50% suppression (ED50) of P. berghei in mice was 0.46 +/- 0.06 mg/kg/day, whereas bruceolide was only half as effective as 3,15-di-O-acetylbruceolide. Two antimalarial drugs used clinically, chloroquine and artemisinin, demonstrated only low activity corresponding to 1/4 and 1/12 of the ED50 value of 3,15-di-O-acetylbruceolide, respectively. These results may be helpful in the design of better chemotherapeutic bruceolides against falciparum malaria.  相似文献   

16.
The human renin infused rat model (HRIRM) was used as an in vivo small-animal model for evaluating the efficacy of a collection of inhibitors of human renin. The intravenous infusion of recombinant human renin (2.4 microg x kg(-1) x min(-1)) in the ganglion-blocked, nephrectomized rat produced a mean blood pressor response of 47+/-3 mm Hg (1 mm Hg = 133.3 Pa), which was reduced by captopril, enalkiren, and losartan in a dose-dependent manner following oral administration, with ED50 values of 0.3+/-0.1, 2.5+/-0.9, and 5.2+/-1.6 mg/kg, respectively. A series of peptidomimetic P2-P3 butanediamide renin inhibitors inhibited purified recombinant human renin in vitro in a concentration-dependent manner, with IC50 values ranging from 0.4 to 20 nM at pH 6.0, with a higher range of IC50 values (0.8-80 nM) observed at pH 7.4. Following i.v. administration of renin inhibitors, the pressor response to infused human renin in the HRIRM was inhibited in a dose-dependent manner, with ED50 values ranging from 4 to 600 microg/kg. The in vivo inhibition of human renin following i.v. administration in the rat correlated significantly better with the in vitro inhibition of human renin at pH 7.4 (r = 0.8) compared with pH 6.0 (r = 0.5). Oral administration of renin inhibitors also resulted in a dose-dependent inhibition of the pressor response to infused human renin, with ED50 values ranging from 0.4 to 6.0 mg/kg and the identification of six renin inhibitors with an oral potency of <1 mg/kg. The ED50 of renin inhibitors for inhibition of angiotensin I formation in vivo was highly correlated (r = 0.9) with the ED50 for inhibition of the pressor response. These results demonstrate the high potency, dose dependence, and availability following oral administration of the butanediamide series of renin inhibitors.  相似文献   

17.
The dissemination of mutant and resistant strains of Plasmodium falciparum makes a considerable contribution to the spread of drug-resistant malaria. Populations around harbours and airports could be particularly exposed to Plasmodium isolates introduced with imported cases of malaria. The use of chloroquine as well as the use of and sulfadoxine/pyrimethamine is currently an effective method for treating uncomplicated cases of malaria in Madagascar. As part of a monitoring programme, in vitro methods were used to assess the sensitivity of P. falciparum isolates in two coastal towns in Madagascar: Mahajanga on the west coast and Toamasina on the east coast. All of the isolates from both sites were sensitive to amodiaquine, quinine, pyrimethamine and cycloguanil. All of the isolates from Mahajanga were sensitive to chloroquine (n = 25; mean IC50 = 22.6 nM, 95% confidence interval: 16.8-28.7 nM), whereas three of the isolates from Toamasina were resistant to chloroquine (n = 18; mean IC50 = 66.3 nM; 95% confidence interval: 42.6-90 nM). The frequency of the Pfcrt Thr-76 and the dhfr Asn-108 mutations was estimated by PCR/RFLP. The 43 P. falciparum isolates examined, including the three in vitro chloroquine-resistant isolates from Toamasina were all wild-type (Lys-76). Phenotyping and genotyping studies suggested that the prevalence of chloroquine- and pyrimethamine-resistant isolates and of mutant strains of P. falciparum is very low. These results showed that in vitro test and genotyping of resistance markers approaches could be successfully used to monitor the emergence of drug-resistant malaria and to try to alleviate the lack of medical teams able to carry out in vivo test. The possible hazard/risk associated with imported cases of malaria is discussed.  相似文献   

18.
A platelet aggregation inhibitory protein, bitistatin, was isolated from the venom of the puff adder Bitis arietans. This protein is a single-chain peptide containing 83 amino acids and 7 disulfide bonds. Bitistatin contains the sequence arginine-glycine-aspartic acid and shows considerable homology to two previously described snake venom platelet aggregation inhibitors, trigramin and echistatin. Bitistatin inhibited human and canine platelet aggregation initiated by 10 microM ADP in vitro with IC50 values of 237 +/- 13 and 28 +/- 3 nM, respectively. In order to assess the antithrombotic potential of bitistatin, a canine model of platelet-dependent coronary thrombus formation was utilized. Injection of bitistatin at 10-100 micrograms/kg (0.7-7 nmol/kg, intravenously (i.v.] resulted in dose-dependent inhibition of both platelet aggregation ex vivo and platelet-dependent cyclical flow reductions. The effective dose to inhibit cyclical flow reductions was 30 micrograms/kg, i.v. A higher dose of bitistatin (100 micrograms/kg, i.v.) inhibited cyclical flow reductions for 160 +/- 29 min as well as attenuated ex vivo platelet aggregation. Bitistatin at 100 micrograms/kg, i.v. prolonged the bleeding time 4 x normal at 15 min post-administration but returned to normal at 3 h. Thus, in a canine model of in vivo platelet aggregation, bitistatin is an effective antiplatelet agent to inhibit periodic cyclical flow reductions. Bitistatin also exhibits reversible effects of ex vivo platelet aggregation as well as on bleeding time.  相似文献   

19.
Cyclosporine triggers suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and exposure of phosphatidylserine at the erythrocyte surface. The present study explored whether cyclosporine influences eryptosis of Plasmodium infected erythrocytes, development of parasitemia and thus the course of the disease. Annexin V binding was utilized to depict phosphatidylserine exposure and forward scatter in FACS analysis to estimate erythrocyte volume. In vitro infection of human erythrocytes with Plasmodium falciparum increased annexin binding and decreased forward scatter, effects potentiated by cyclosporine (> or = 0.01 microM). Cyclosporine (> or = 0.001 microM) significantly decreased intraerythrocytic DNA/RNA content and in vitro parasitemia (> or = 0.01 microM). Administration of cyclosporine (5 mg/kg b.w.) subcutaneously significantly decreased the parasitemia (from 47% to 27% of circulating erythrocytes 20 days after infection) and increased the survival of P. berghei infected mice (from 0% to 94% 30 days after infection). In conclusion, cyclosporine augments eryptosis, decreases parasitemia and enhances host survival during malaria.  相似文献   

20.
Monoamine oxidase isoform B (MAO-B) is involved in Parkinson's disease (PD) induced by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin (MPTP) in human and non-human-primate. MAO-B inhibitors, such as L-deprenyl have shown to prevent against MPTP-toxicity in different species, and it has been used in Parkinson therapy, however, the fact that it is metabolized to (-)-methamphetamine and (-)-amphetamine highlights the need to find out new MAO-B inhibitors without a structural amphetaminic moiety. In this context we herein report, for the first time, anywhere a novel non-amphetamine-like MAO-B inhibitor, PF 9601N, N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine. This attenuates the MPTP-induced striatal dopamine depletion in young-adult and adult-old C57/BL mice, using different schedules of administration, and which behave "ex vivo" as a slightly more potent and selective MAO-B inhibitor than L-deprenyl, assayed for comparative purposes in the same experimental conditions. The MAO-B ID(50) values were calculated from the total MAO-B activity measured against [14C] phenylethylamine (22 microM) as substrate, at each inhibitor concentration. The MAO-B ID(50) values resulted to be 381 and 577 nmol/kg for PF 9601N and L-deprenyl, respectively. The intraperitoneally (i.p.) co-administration to young-adult C57/BL6 mice of MPTP (30 mg/kg), with different concentrations of PF 9601N or L-deprenyl (29.5-0.357 micromol/kg) showed a dose-dependent protective effect against striatal dopamine depletion, measuring the dopamine contents and its metabolites by HPLC. The ED(50) value proved to be 3.07 micromol/kg without any significant differences between either MAO-B inhibitor. Nevertheless, lower doses of PF 9601N (1.5 micromol/kg) were necessary to get almost total protection, without any change in the DOPAC and HVA content, when administered 2 h before MPTP (30 mg/kg), whereas partial protection (45%) against dopamine depletion was observed in the case of L-deprenyl. In both cases, MAO-B inhibition was a necessary condition in order to observe the protective effect. When adult-old (8-10 months) C57/BL6 mice were used, MPTP (25 mg/kg) administration induced 25 days later, an irreversible dopamine depletion. In these conditions, chronic administration with 0.15 micromol/kg of PF 9601N, before the toxin, every 24 h for 10 days, rendered almost total protection of dopamine depletion, whereas L-deprenyl yielded only 50% protection of the dopamine content, assayed in the same conditions. It is worth remarking, that in both cases MAO-B was not affected. From these results, it can be concluded that PF 9601N attenuates MPTP neurotoxicity "in vivo" better than L-deprenyl through different mechanisms, with special relevance to the protective effect, independent of MAO-B inhibition, observed in the irreversibly MPTP-lesioned adult-old mice. Therefore, this novel non-amphetamine MAO-B inhibitor could be potentially effective in PD therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号