首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generation of oxylipins (oxygenated metabolites of fatty acids) by lipoxygenases may be responsible for the beneficial effects of 20- and 22-carbon n-3 fatty acids on adipose tissue dysfunction in obesity, but the potential actions of oxylipins derived from 18-carbon fatty acids, which are generally at higher levels in the diet, are unknown. We therefore compared the effects of select lipoxygenase-derived oxylipins produced from α-linolenic acid (ALA, C18:3 n-3), linoleic acid (LA, C18:2 n-6), and arachidonic acid (AA, C20:4 n-6) on key adipocyte functions that are altered in obesity. Individual oxylipins were added to the culture medium of differentiating 3T3-L1 preadipocytes for 6 days. Lipid accumulation was subsequently determined by Oil Red O staining, while Western blotting was used to measure levels of proteins associated with lipid metabolism and characteristics of adipocyte functionality. Addition of all oxylipins at 30 nM was sufficient to significantly decrease triglyceride accumulation in lipid droplets, and higher levels completely blocked lipid production. Our results establish that lipoxygenase-derived oxylipins produced from 18-carbon PUFA differentially affect multiple adipocyte processes associated with lipid storage and adipokine production. However, these effects are not due to the oxylipins blocking adipocyte maturation and thus globally suppressing all adipocyte characteristics. Furthermore, these oxylipin species decrease the lipid content of adipocytes regardless from which precursor fatty acid or lipoxygenase they were derived. Consequently, adipocyte characteristics can be altered through the ability of oxylipins to selectively modulate levels of proteins involved in both lipid metabolism and adipokine production.  相似文献   

2.
The oxygenated derivatives of fatty acids, known as oxylipins, are pivotal signaling molecules in animals and terrestrial plants. In animal systems, eicosanoids regulate cell differentiation, immune responses, and homeostasis. In contrast, terrestrial plants use derivatives of C18 and C16 fatty acids as developmental or defense hormones. Marine algae have emerged early in the evolution of eukaryotes as several distinct phyla, independent from the animal and green-plant lineages. The occurrence of oxylipins of the eicosanoid family is well documented in marine red algae, but their biological roles remain an enigma. Here we address the hypothesis that they are involved with the defense mechanisms of the red alga Chondrus crispus. By investigating its association with a green algal endophyte Acrochaete operculata, which becomes invasive in the diploid generation of this red alga, we showed that (1) when challenged by pathogen extracts, the resistant haploid phase of C. crispus produced both C20 and C18 oxylipins, (2) elicitation with pathogen extracts or methyl jasmonate activated the metabolism of C20 and C18 polyunsaturated fatty acids to generate hydroperoxides and cyclopentenones such as prostaglandins and jasmonates, and (3) C20 and C18 hydroperoxides as well as methyl jasmonate did induce shikimate dehydrogenase and Phe ammonialyase activities in C. crispus and conferred an induced resistance to the diploid phase, while inhibitors of fatty acid oxidation reduced the natural resistance of the haploid generation. The dual nature of oxylipin metabolism in this alga suggests that early eukaryotes featured both animal- (eicosanoids) and plant-like (octadecanoids) oxylipins as essential components of innate immunity mechanisms.  相似文献   

3.
Lipid peroxidation is common to all biological systems, appearing in developmentally-regulated processes and as a response to environmental changes. Products derived from lipid peroxidation are collectively named oxylipins. Initial lipid peroxidation may either occur by enzymatic or chemical reactions. An array of alternative reactions further converting lipid hydroperoxides gives rise to a large variety of oxylipin classes, some with reported signaling functions in plants, fungi, algae or animals. The structural diversity of oxylipins is further increased by their occurrence either as esters in complex lipids or as free (non-esterified) fatty acid derivatives. The enzymes involved in oxylipin metabolism are diverse and comprise a multitude of examples with interesting and unusual catalytic properties. This review aims at giving an overview on plant, fungal, algal and bacterial oxylipins and the enzymes responsible for their biosynthesis.  相似文献   

4.
Plant oxylipins comprise a highly diverse and complex class of molecules that are derived from lipid oxidation. The initial oxidation of unsaturated fatty acids may either occur by enzymatic or chemical reactions. A large variety of oxylipin classes are generated by an array of alternative reactions further converting hydroperoxy fatty acids. The structural diversity of oxylipins is further increased by their occurrence either as free fatty acid derivatives or as esters in complex lipids. Lipid peroxidation is common to all biological systems, appearing in developmentally regulated processes and as a response to environmental changes. The oxylipins formed may perform various biological roles; some of them have signaling functions. In order to elucidate the roles of oxylipins in a given biological context, comprehensive analytical assays are available for determining the oxylipin profiles of plant tissues. This review summarizes indirect methods to estimate the general peroxidation state of a sample and more sophisticated techniques for the identification, structure determination and quantification of oxylipins.  相似文献   

5.
Cold stress is among the environmental stressors limiting productivity, yield and quality of agricultural plants. Tolerance to cold stress is associated with the increased unsaturated fatty acids ratio in the plant membranes which are also known to be substrates of octadecanoid pathway for jasmonate and other oxylipins biosynthesis. Accumulation of osmoprotectant, glycine betaine (GB) is well known to be effective in the protecting membranes and mitigating cold stress effects but, the mode of action is poorly understood. We studied the role of GB in cold stress responses of two tomato cultivated varieties; Gerry (cold stress sensitive) and T47657 (moderately cold stress tolerant) and compared the differences in lypoxygenase-13 (TomLOXF) and fatty acid desaturase 7 (FAD7) gene expression profiles and physiological parameters including relative growth rates, relative water content, osmotic potential, photosynthetic efficiency, membrane leakage, lipid peroxidation levels. Our results indicated that GB might have a role in inducing FAD7 and LOX expressions for providing protection against cold stress in tomato plants which could be related to the desaturation process of lipids leading to increased membrane stability and/or induction of other genes related to stress defense mechanisms via octadecanoid pathway or lipid peroxidation products.  相似文献   

6.
Four species of red marine algae (Rhodophyceae), five species of brown marine algae (Pheophyceae) and two species of green marine algae (Chlorophyceae) were examined for the fatty acid composition of the three lipid groups separated by silica gel column chromatography (neutral lipids, glycolipids, phospholipids). The four red algae had high contents of 16:0 and C20-polyunsaturated fatty acids (PUFA), 20:5n-3 ranging from 18 to 49% of the total fatty acid content and 20:4n-6 from 1.4 to 22.5%, these fatty acids were evenly distributed in all lipid groups. The five brown algae had high contents of 18:1n-9, 18:2n-6 and 18:3n-3 but low content of 20:5n-3. No precise trend was detected for the distribution of these fatty acids in the three lipid groups. The two green algae had high contents of 16:0, 18:1n-7 and 18:3n-3 and a very low content of PUFA. They contained also large amounts of 16:4n-3 together with 16:2n-6 and 16:3n-3. While 16:2n-6 was mainly found in phospholipids, 16:4n-3 was mainly distributed in neutral lipids and glycolipids.Porphyra umbilicalis represents the richest source of 20:5n-3 whileUndaria pinnatifida can be selected when a balanced mixture of (n-6) and (n-3) PUFA is required.Author for correspondence  相似文献   

7.
It has been reported that glutamate decreased the intracellular glutathione (GSH) concentration and thereby induced cell death in C6 rat glioma cells. Polyunsaturated fatty acids such as arachidonic acid, gamma-linolenic acid, and linoleic acid enhanced lipid peroxidation promoting 8-hydroxy-2'-deoxyguanosine (8-OH-dG) formation under the glutamate-induced GSH-depletion. The enhancement of lipid peroxidation by polyunsaturated fatty acids was species-dependent. Some antioxidants capable of scavenging oxygen and lipid radicals and some iron or copper scavengers inhibited both the lipid peroxidation and the 8-OH-dG formation, consequently protecting against cell death induced by glutamate-induced GSH depletion. These results suggest that GSH depletion caused by glutamate induces lipid peroxidation and consequently 8-OH-dG formation and that polyunsaturated fatty acids enhance lipid peroxidation associated with mediated 8-OH-dG formation through a chain reaction.  相似文献   

8.
Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.  相似文献   

9.
Lipids played a determinant role in the evolution of the brain. It is postulated that the morphological and functional diversity among neural cells of the human central nervous system (CNS) is projected and achieved through the expression of particular lipid profiles. The present study was designed to evaluate the differential vulnerability to oxidative stress mediated by lipids through a cross-regional comparative approach. To this end, we compared 12 different regions of CNS of healthy adult subjects, and the fatty acid profile and vulnerability to lipid peroxidation, were determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), respectively. In addition, different components involved in PUFA biosynthesis, as well as adaptive defense mechanisms against lipid peroxidation, were also measured by western blot and immunohistochemistry, respectively. We found that: i) four fatty acids (18.1n-9, 22:6n-3, 20:1n-9, and 18:0) are significant discriminators among CNS regions; ii) these differential fatty acid profiles generate a differential selective neural vulnerability (expressed by the peroxidizability index); iii) the cross-regional differences for the fatty acid profiles follow a caudal-cranial gradient which is directly related to changes in the biosynthesis pathways which can be ascribed to neuronal cells; and iv) the higher the peroxidizability index for a given human brain region, the lower concentration of the protein damage markers, likely supported by the presence of adaptive antioxidant mechanisms. In conclusion, our results suggest that there is a region-specific vulnerability to lipid peroxidation and offer evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the human central nervous system.  相似文献   

10.
11.
Eighty years ago, Burr and Burr, introduced for the first time the concept of essential fatty acids. Now is very well known that requirements for polyunsaturated fatty acids PUFAs can not be met by de novo metabolic processes within mammalian tissues. Animals are absolutely dependent on plants for providing the two major precursors of the n-6 and n-3 fatty acids, C18:2n-6; linoleic and C18:3n-3; α-linolenic acids. In animal tissues these precursors are transformed to fatty acids containing three to six double bonds. During the last four decades the interest in polyunsaturated fatty acids has augmented manifolds, and the number of published studies is rising each year. The current impetus for this interest has been mainly the observation that PUFAs and their metabolites have several physiological roles including: energy provision, membrane structure, cell signaling and regulation of gene expression. In addition the observation that PUFAs are targets of lipid peroxidation opens a new important area of investigation. Melatonin, the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. In addition the two key pineal biochemical functions, lipoxygenation and melatonin synthesis may be synergistically regulated by the status of n-3 essential fatty acids. At the retina level, free radicals may preferentially react with the membrane polyunsaturated fatty acids leading to the release of lipoperoxide radicals. These lipoperoxides can induce oxidative stress linked to membrane lysis, damage to neuronal membranes may be related to alteration of visual function.  相似文献   

12.
Protein carbonylation is the covalent modification of proteins by α,β-unsaturated aldehydes produced by nonenzymatic lipid peroxidation of polyunsaturated fatty acids. The most widely studied aldehyde product of lipid peroxidation, trans-4-hydroxy-2-nonenal (4-HNE), is associated with obesity-induced metabolic dysfunction and has demonstrated reactivity toward key proteins involved in cellular function. However, 4-HNE is only one of many lipid peroxidation products and the lipid aldehyde profile in adipose tissue has not been characterized. To further understand the role of oxidative stress in obesity-induced metabolic dysfunction, a novel LC–MS/MS method was developed to evaluate aldehyde products of lipid peroxidation and applied to the analysis of adipose tissue. 4-HNE and trans-4-oxo-2-nonenal (4-ONE) were the most abundant aldehydes present in adipose tissue. In high fat-fed C57Bl/6J and ob/ob mice the levels of lipid peroxidation products were increased 5- to 11-fold in epididymal adipose, unchanged in brown adipose, but decreased in subcutaneous adipose tissue. Epididymal adipose tissue of high fat-fed mice also exhibited increased levels of proteins modified by 4-HNE and 4-ONE, whereas subcutaneous adipose tissue levels of these modifications were decreased. High fat feeding of C57Bl/6J mice resulted in decreased expression of a number of genes linked to antioxidant biology selectively in epididymal adipose tissue. Moreover, TNFα treatment of 3T3-L1 adipocytes resulted in decreased expression of GSTA4, GPx4, and Prdx3 while upregulating the expression of SOD2. These results suggest that inflammatory cytokines selectively downregulate antioxidant gene expression in visceral adipose tissue, resulting in elevated lipid aldehydes and increased protein carbonylation.  相似文献   

13.
The effect of Ni2+ on fungal growth, cellular fatty acid profile and lipid peroxidation was studied (with an emphasis on the kinetics of these processes) in the strain of filamentous fungus Curvularia lunata. In the cultures supplemented with 0.2 and 0.6 mM Ni2+ the lag phase was extended and the specific growth rate decreased, however, the maximum yield of biomass at the stationary phase reached, respectively, 97 and 27% of the control. The treatment with Ni2+ changed the proportion of 18 C atom fatty acids, with the most significant decrease in the content of linoleic acid (18:2) followed by a rise in the degree of fatty acid saturation. In the mycelia exposed to Ni2+ the levels of TBARS (lipid peroxidation products) increased and ranged between 156 and 823% over the control. The presented data reveal that the oxidative stress resulting, among others, in membrane lipid peroxidation is involved in the mechanisms of the nickel toxicity towards C. lunata and suggest that this fungus exhibits an ability to cope, to some extent, with the increased level of lipid peroxides.  相似文献   

14.
Various physiological imbalances lead to reactive oxygen species (ROS) overproduction and/or increases in lipoxygenase (LOX) activities, both events ending in lipid peroxidation of polyunsaturated fatty acids (PUFAs). Besides the quantification of such a process, the development of tools is necessary in order to allow the identification of the primary cause of its development and localization. A biochemical method assessing 9 LOX, 13 LOX and ROS-mediated peroxidation of membrane-bound and free PUFAs has been improved. The assay is based on the analysis of hydroxy fatty acids derived from PUFA hydroperoxides by both the straight and chiral phase high-performance liquid chromatography. Besides the upstream products of peroxidation of the 18:2 and 18:3 PUFAs, products coming from the 16:3 were characterized and their steady-state level quantified. Moreover, the observation that the relative amounts of the ROS-mediated peroxidation isomers of 18:3 were constant in leaves allowed us to circumvent the chiral analyses for the discrimination and quantification of 9 LOX, 13 LOX and ROS-mediated processes in routine experiments. The methodology has been successfully applied to decipher lipid peroxidation in Arabidopsis leaves submitted to biotic and abiotic stresses. We provide evidence of the relative timing of enzymatic and non-enzymatic lipid peroxidation processes. The 13 LOX pathway is activated early whatever the nature of the stress, leading to the peroxidation of chloroplast lipids. Under cadmium stress, the 9 LOX pathway added to the 13 LOX one. ROS-mediated peroxidation was mainly driven by light and always appeared as a late process.  相似文献   

15.
The degree of plasma membrane fatty acid unsaturation and the copper sensitivity of Saccharomyces cerevisiae are closely correlated. Our objective was to determine whether these effects could be accounted for by differential metal induction of lipid peroxidation. S. cerevisiae S150-2B was enriched with the polyunsaturated fatty acids (PUFAs) linoleate (18:2) and linolenate (18:3) by growth in 18:2- or 18:3-supplemented medium. Potassium efflux and colony count data indicated that sensitivity to both copper (redox active) and cadmium (redox inactive) was increased in 18:2-supplemented cells and particularly in 18:3-supplemented cells. Copper- and cadmium-induced lipid peroxidation was rapid and associated with a decline in plasma membrane lipid order, detected by fluorescence depolarization measurements with the membrane probe trimethylammonium diphenylhexatriene. Levels of thiobarbituric acid-reactive substances (lipid peroxidation products) were up to twofold higher in 18:2-supplemented cells than in unsupplemented cells following metal addition, although this difference was reduced with prolonged incubation up to 3 h. Conjugated-diene levels in metal-exposed cells also increased with both the concentration of copper or cadmium and the degree of cellular fatty acid unsaturation; maximal levels were evident in 18:3-supplemented cells. The results demonstrate heavy metal-induced lipid peroxidation in a microorganism for the first time and indicate that the metal sensitivity of PUFA-enriched S. cerevisiae may be attributable to elevated levels of lipid peroxidation in these cells.  相似文献   

16.
Formation of oxylipins by CYP74 enzymes   总被引:5,自引:0,他引:5  
Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes. Products are hydroperoxy polyunsaturated fatty acids and metabolites derived there from collectively named oxylipins. They may either originate from chemical oxidation or are synthesized by the action of various enzymes, such as lipoxygenases. Cloning of many lipoxygenases and other key enzymes metabolizing oxylipins revealed new insights on oxylipin functions, new reactions and the first hints on enzyme mechanisms. These aspects are reviewed with respect to metabolism of fatty acid hydroperoxides by an atypical P450 subfamily: the CYP74. Up to now this protein family contains three different enzyme activities: (i) allene oxide synthase leading to the formation of unstable allene oxides which react to ketol and cyclopentenone fatty acids, (ii) hydroperoxide lyase producing hemiacetals decomposing to aldehydes and ω-oxo fatty acids and (iii) divinyl ether synthase which forms divinyl ethers. Signalling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among their numerous products.  相似文献   

17.
The marine red alga Pyropia haitanensis (Protoflorideophyceae, Bangiaceae) has a nonvascular and multicellular structure and emerged earlier in evolution than other cultivatable red algae. It has been reported that lipid mediators from both the eicosanoid and octadecanoid pathways are involved in the innate immunity of other marine algae. But the defense strategies of P. haitanensis are not clearly understood. Here, we investigated the lipid defense of P. haitanensis elicited by agaro-oligosaccharides. The results indicate that the resistance of P. haitanensis was elicited and hydrogen peroxide was released by agaro-oligosaccharides. In P. haitanensis, C20 fatty acids are the essential fatty acids. Phospholipase A2 was activated, and the free fatty acids decreased 3 h after treatment with agaro-oligosaccharides. Gas chromatography–mass spectrometry analyses revealed that the contents of volatile organic compounds increased after treatment for 3 h, which indicated that these free fatty acids were metabolized to volatile organic compounds. In conclusion, the lipid metabolic defense pathway of P. haitanensis was mainly via the C20 metabolism pathway. The C20 fatty acid was rapidly metabolized to volatile organic compounds, but not oxidized to oxylipins in response to agaro-oligosaccharides.  相似文献   

18.
Saturated fatty acids are less vulnerable to lipid peroxidation than their unsaturated counterparts. In this investigation, individual fatty acids of the C(16), C(18) and (20) families were subjected to the thiobarbituric (TBA) assay. These fatty acids were chosen based on their degree of saturation and configuration of double bonds. Interestingly, an assay threshold was reached where increasing the fatty acid concentration resulted in no additional decrease in the TBARS concentrations. Therefore, the linear range of TBARS inhibition was determined for fatty acids in the C(16) and C(20) families. The rate of TBARS inhibition was greater for the saturated than for unsaturated fatty acids, as measured from the slope of the linear range. These findings demonstrate the need to standardize the TBARS assay using multiple fatty acid concentrations when using this assay for measuring in vitro lipid peroxidation.  相似文献   

19.
Lipid peroxidation is generally thought to be a major mechanism of cell injury in aerobic organisms subjected to oxidative stress. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. However, birds have special adaptations for preventing membrane damage caused by reactive oxygen species. This study examines fatty acid profiles and susceptibility to lipid peroxidation in liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae). The saturated fatty acids in these organelles represent approximately 40-50% of total fatty acids whereas the polyunsaturated fatty acid composition was highly distinctive, characterized by almost equal amounts of 18:2 n-6; 20:4 n-6 and 22:6 n-3 in liver mitochondria, and a higher proportion of 18:2 n-6 compared to 20:4 n-6 and 22:6 n-3 in heart mitochondria. The concentration of total unsaturated fatty acids of liver and heart mitochondria was approximately 50% and 60%, respectively, with a prevalence of oleic acid C18:1 n9. The rate C20:4 n6/C18:2 n6 and the unsaturation index was similar in liver and heart mitochondria; 104.33 +/- 6.73 and 100.09 +/- 3.07, respectively. Light emission originating from these organelles showed no statistically significant differences and the polyunsaturated fatty acid profiles did not change during the lipid peroxidation process.  相似文献   

20.
Lipid metabolism and environmental effects on this process havebeen studied in the marine brown algae Fucus vesiculosus andAscophyllum nodosum. These algae showed very similar patternsof lipid metabolism during 24 h incubations. Labelling from[1-14C]acetate showed the major labelled lipids to be the ß-alanineether lipid and the neutral lipid fraction in both algae. Ofthe glycolipids, only sulphoquinovosyldiacylglycerol was welllabelled and the phosphoglycerides were all poorly labelled.The major labelled fatty acids were palmitate and oleate, againin both algae, although Fucus vesiculosus also showed significantlabelling of stearate and behenate. Although the amount of fattyacid labelling increased with time, the proportion of labelin palmitate and oleate remained approximately constant. Verylong chain fatty acids (arachidic, behenic) were increasinglylabelled with time. Lowered incubation temperatures decreased labelling of the saturatedfatty acids. Cu2+ increased the proportion of oleate labelledin both algae, and of linoleate in Fucus vesiculosus. This cationdecreased the percentage labelling of stearate and myristatein Ascophyllum nodosum. Lipid metabolism in Ascophyllum nodosumwas more sensitive to raised Cu2+ levels than in Fucus vesiculosus Key words: Acyl lipid metabolism, Fucus vesiculosus, temperature effects, Ascophyllum nodosum, copper pollution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号