首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究通过杂交构建肺形侧耳同核异质菌株N1M1、N1M2和同质异核菌株N1M1、N2M1,比较菌丝形态与生长速度、营养成分以及常见的细胞核基因与线粒体基因的表达量,分析线粒体基因对肺形侧耳菌丝的影响,探讨线粒体基因与核基因的相互作用。由菌丝生长情况可知N1M1和N1M2菌丝形态相似,生长速度差异不显著,N1M1和N2M1菌丝形态差异大,生长速度差异极显著,在菌丝形态与生长速度上细胞核基因作用大于线粒体基因。进一步检测菌株中的主要营养成分发现必需氨基酸与总水解氨基酸含量差异显著,菌株N1M2蛋白含量显著高于N1M1,N1M1维生素C含量是N1M2的1.67倍,菌株N2M1多糖和蛋白含量显著高于N1M1,铁和维生素C含量显著低于N1M1。所以细胞核基因、线粒体基因都能影响肺形侧耳营养成分含量。检测同核异质菌株N1M1、N1M2的7个细胞核常见基因的表达情况发现,N1M2菌丝中6个细胞核基因的表达量都显著高于N1M1,这表明肺形侧耳线粒体基因的不同会影响核基因的表达;同质异核菌株N1M1、N2M1的14个线粒体普通编码蛋白基因表达差异显著,这说明线粒体基因的表达量会因核基因的不同有所差异。综上,肺形侧耳线粒体基因和细胞核基因能够相互影响,共同作用于生命活动。  相似文献   

2.
本文对新疆地区土壤中分离得到的17株绿僵菌Metarhizium菌株以东亚飞蝗Locusta migratoria manilensis为供试昆虫进行毒力测定,筛选获得高毒力菌株,并对筛选后的高毒力绿僵菌菌株进行耐短时高温能力、抗紫外线能力和耐干旱能力的测试,分析高毒力绿僵菌菌株的抗逆性,以期获得致病力高且抗逆性好的菌株,为下一步绿僵菌生物农药的开发提供依据。研究发现,M1-17、M1-13、M1-09、M1-16、M1-05五株菌株为对东亚飞蝗高致病力的菌株,平均僵虫率在80.00%~96.67%之间,LT50在2.92~3.65之间。对高温的抗性效果较好的菌株为M1-17和M1-05;对紫外线的抗性效果较好的菌株为M1-17和M1-16;而菌株M1-09、M1-17和M1-16抗旱能力较好。菌株M1-17较其它菌株具有更好的抗逆性,具有很好的开发利用价值。  相似文献   

3.
4.
The normal M2 variant of alpha 1-antitrypsin (alpha 1AT) was cloned from a genomic DNA library of an individual homozygous for this allele. Sequencing of all coding exons of the M2 gene revealed it was identical to the common M1(Val213) gene except for two bases (M1(Val213) CGT Arg101, M2 CAT His101; M1(Val213) GAA Glu376 M2 GAC Asp376). Analysis of the sequence of the M1(Val213) and M2 genes around residue 101 revealed the M1 Arg101----M2 His101 caused a loss of the cutting site for the restriction endonuclease RsaI. Using this enzyme, as well as 19-mer oligonucleotides probes centered at residues 101 and 376, evaluation of genomic DNA from 22 M1 alleles and 14 M2 alleles revealed that residue 101 was Arg in all M1 alleles and His in all M2 alleles, while residue 376 was Glu in all M1 alleles and Asp in all M2 alleles. Despite the differences in sequence at two amino acids, the M1(Val213) and M2 proteins function similarly as assessed by quantification of the association rate constant of each for their natural substrate neutrophil elastase. In the context that there are two mutations separating the M1(Val213) and M2 alleles, it is likely that there is another alpha 1AT variant that was an intermediate in the evolution of these genes.  相似文献   

5.
探究了JNK通路对M2巨噬细胞极化及M2介导的促肿瘤效应的影响。构建单核细胞THP1来源M2 巨噬细胞模型(THP1-M2),将细胞分为3组: 用PMA 诱导的未活化巨噬细胞组(M0),用PMA、IL-4处理及阴性干扰(DMSO)的M2型巨噬细胞组(M2),用特异性抑制剂阻断JNK通路的M2 型巨噬细胞组(M2-JNKI)。实时荧光定量PCR检测M2 表型marker基因的表达;免疫蛋白印迹法检测M2 表型marker蛋白水平;细胞划痕试验检测巨噬细胞迁移能力;流式细胞数检测786O及OSRC2凋亡。结果与THP1-M2组相比,阻断JNK通路的M2组M2表型marker表达明显下降,同时其细胞迁移能力也呈下降趋势。且阻断JNK通路后,M2巨噬细胞抑制肾癌细胞凋亡的能力减弱。结果表明,抑制JNK通路后,M2巨噬细胞极化状态受损,其促肿瘤效应可转变为抗肿瘤效应。  相似文献   

6.
The reactions of pyrene-labeled actin with myosin subfragment 1 (S1) and S1-ligand complexes at low ionic strength are described by the schemes [formula: see text] where M refers to a myosin head; A is actin; L is ligand; the asterisk refers to a high fluorescence state of actin; and K1 and K3 are association constants. K1 is reduced approximately 10-fold for M.ADP or M.pyrophosphate versus M alone. The rate constant of the isomerization step (k2) is 150-200 s-1 for A*M, A*M.ADP, and A*M-pyrophosphate (20 degrees C). The interaction between the ligand the actin binding sites reduces K2 from 2,000 for A*M to 50-100 for A*M.ADP and to approximately unity for A*M-pyrophosphate. The A*M.ADP state is equated with the AM'.ADP state of Sleep and Hutton (Sleep, J., A., and Hutton, R. L. (1980) Biochemistry 19, 1276-1283).  相似文献   

7.
Following myocardial infarction, tissue repair is mediated by the recruitment of monocytes and their subsequent differentiation into macrophages. Recent findings have revealed the dynamic changes in the presence of polarized macrophages with pro‐inflammatory (M1) and anti‐inflammatory (M2) properties during the early (acute) and late (chronic) stages of cardiac ischemia. Mesenchymal stem cells (MSCs) delivered into the injured myocardium as reparative cells are subjected to the effects of polarized macrophages and the inflammatory milieu. The present study investigated how cytokines and polarized macrophages associated with pro‐inflammatory (M1) and anti‐inflammatory (M2) responses affect the survival of MSCs. Human MSCs were studied using an in vitro platform with individual and combined M1 and M2 cytokines: IL‐1β, IL‐6, TNF‐α, and IFN‐γ (for M1), and IL‐10, TGF‐β1, TGF‐β3, and VEGF (for M2). In addition, polarization molecules (M1: LPS and IFN‐γ; M2: IL‐4 and IL‐13) and common chemokines (SDF‐1 and MCP‐1) found during inflammation were also studied. Indirect and direct co‐cultures were conducted using M1 and M2 polarized human THP‐1 monocytes. M2 macrophages and their associated cytokines supported the growth of hMSCs, while M1 macrophages and their associated cytokines inhibited the growth of hMSCs in vitro under certain conditions. These data imply that an anti‐inflammatory (M2) environment is more accommodating to the therapeutic hMSCs than a pro‐inflammatory (M1) environment at specific concentrations. J. Cell. Biochem. 114: 220–229, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Using double immunofluorescence experiments, we described the expression of the leech Hox genes, Lox1 and Lox2 by central neurons that stained for either serotonin or the leech-specific neuronal marker, Laz1-1. The goal is to determine whether the segmental boundaries of Lox1 and Lox2 expression in identified neurons coincide with segmental and regional differences in the differentiation of these cells. A number of neurons described here have been previously identified. The anteromedial serotonergic neurons are restricted to rostral ganglion 1 (R1) to midbody ganglion 3 (M3), but only express Lox1 in M2 and M3. The posteromedial serotonergic neurons which are situated in all segments as bilateral pairs early in development, but later become unpaired starting at M3, expressed Lox1 only in M2 and M3, and Lox2 in M8 to M21, in all paired and unpaired stages. The Retzius neurons, which stain for serotonin, express Lox2 in M7 to M21 where they exhibit different morphologies from their segmental homologs of the sex ganglia in M5 and M6. The Laz1-1 immunoreactive (Laz1-1+) heart accessory-like neurons express Lox1 in M4 and Lox2 in M7 to M17, but not in their segmental homologs of the heart accessory (HA) neurons located exclusively in M5 and M6. Also, Laz1-1+ neurons, which we named Lz3 expressed Lox1 in M4 to M8 where they are unpaired, but express Lox2 in M9 to M16 where they are bilaterally paired. Other Laz1-1 cells show more restricted and isolated Lox1 and Lox2 expression patterns. These results suggest a role of Lox1 and/or Lox2 in defining the anteroposterior boundaries of segmentally iterated neurons.  相似文献   

9.
We have characterized native and activated forms of rabbit alpha1M and compared them to rabbit and human alpha2M. Similar to human alpha2M, rabbit alpha1M is a tetramer associated via disulfide bonds and non-covalent interactions that exhibits autolysis into two fragments when heated. Like human alpha2M, rabbit alpha1M is cleaved by trypsin at one site; however, rabbit alpha1M shares characteristics with rabbit alpha2M that are different from the properties of human alpha2M. Amine or trypsin treatment of rabbit alpha-macroglobulins does not result in a significant conformational change or cleavage of four thiolester bonds. Full thiolester cleavage is only observed for rabbit alpha1M after exposure to both trypsin and a small amine. Additionally, amine-treated rabbit alpha-macroglobulins retain trypsin inhibitory potential and do not fully shield bound proteinases. Methylamine and trypsin treatment of rabbit alpha1M results in two dissimilar conformations that display differing exposure of the receptor-recognition site. While ammonia- and methylamine-modified rabbit alpha1M bind to macrophages with similar affinity to that of human alpha2M, trypsin-treated rabbit alpha1M exhibits dramatically lower affinity. This suggests that rabbit alpha1M may not play the same proteinase-inhibiting physiological role as human alpha2M.  相似文献   

10.
The abilities of human peripheral blood mononuclear-phagocyte (M phi) subpopulations and of interleukin 1 (IL 1) to support human B cell colony formation in semisolid cultures stimulated by staph protein A were analyzed. Human M phi subsets enriched for complement receptors (CR) effectively functioned as accessory cells supporting colony growth, whereas the responses obtained with CR-depleted M phi were 4.6-fold less. In experiments analyzing IL 1 production, CR-enriched M phi secreted four to 12 fold greater amounts of basal and stimulated IL 1 than CR-depleted M phi. Also, the addition of IL 1 to CR-depleted M phi resulted in a fourfold increase of colony numbers. The responses of cultures containing CR-depleted M phi plus IL 1, however, remained 30% less than those observed for cultures supplemented with CR-enriched M phi. Other studies showed that IL 1 was unable to substitute for M phi; the responses of cultures containing IL 1 and B cells were reduced 10-fold compared to cultures supplemented with autologous M phi. These findings indicate that human M phi subsets exist that differ in their ability to function as accessory cells. Although IL 1 can collaborate with certain M phi subsets to restore their accessory cell function, it cannot replace intact M phi. Thus, it is possible that other monokines or lymphokines play a role in M phi accessory cell function.  相似文献   

11.
Oxidative stress has been implicated in impairing muscarinic acetylcholine receptor (mAChR) signaling activity. It remains unclear, however, whether alterations in the cell surface distribution of mAChRs following oxidative stress contribute to the diminished mAChR signaling activity. We report here that M1 and M2 mAChRs, stably expressed in Chinese hamster ovary cells, undergo sequestration following transient hypoxic-induced oxidative stress (2% O2). Sequestration of M1 and M2 mAChRs following transient hypoxia was associated with an increase in phosphorylation of these receptors. Over-expression of a catalytically inactive G protein-coupled receptor kinase 2 (GRK2 K220R) blocked the increased phosphorylation and sequestration of the M2, but not M1, mAChRs following transient hypoxia. Hypoxia induced phosphorylation and sequestration of the M1 mAChR was, however, blocked by over-expression of a catalytically inactive casein kinase 1 alpha (CK1alpha K46R). These results are the first demonstration that M1 and M2 mAChRs undergo sequestration following transient hypoxia. The data suggest that increased phosphorylation of M1 and M2 mAChRs underlies the mechanism responsible for sequestration of these receptors following transient hypoxia. We report here that distinct pathways involving CK1alpha and GRK2 mediated sequestration of M1 and M2 mAChRs following transient hypoxic-induced oxidative stress.  相似文献   

12.
The present study evaluated four chimeric synthetic peptides incorporating immunodominant sequences from HTLV-1 virus. Monomeric peptides M1, M2, and M3 represent sequences from core (p19) and envelope (gp46) of the virus. The peptide M1 is a p19 (105-124) sequence, the peptide M2 is a gp46 (190-207) sequence, and the peptide M3 is a gp 46 sequence with substitution of proline at position 192 by serine. Those peptides were arranged in such a way that permits one to obtain different combinations of chimeric peptides (M1-M2, M2-M1, M1-M3, and M3-M1). Two glycine residues were used as arm spacers for separating the two sequences. The antigenicity of these peptides was evaluated in an ultramicroenzyme-linked immunosorbent assay (UMELISA) using sera of human T cell leukemia virus type I (HTLV-I)-infected individuals (n = 24), while specificity was evaluated with anti-HTLV-II-positive samples (n = 11) and healthy blood donors (n = 25). The results were compared to plates coated with monomeric peptides M1, M2, and M3. The chimeric peptide orientation (M1-M2) and the proline at position 192 of the gp46 peptide showed higher sensitivity.  相似文献   

13.
《MABS-AUSTIN》2013,5(5):853-862
Macrophages are key players in controlling the immune response that can adapt to microenvironmental signals. This results in distinct polarization states (classical M1 or alternative M2), that play a differential role in immune regulation. In general, the M1 contribute to onset of inflammation, whereas the M2 orchestrate resolution and repair, whereby failure to switch from predominantly M1 to M2 reinforces a pro-inflammatory environment and chronic inflammation. Here, we show selective elimination of M1 macrophages in vitro by a range of CD64-targeted immunotoxins, including H22(scFv)-ETA'. After re-polarization of already polarized macrophages, still only M1 polarization showed sensitivity toward CD64-directed immunotoxins. The selectivity for M1 was found linked to reduced endosomal protease activity in M1 macrophages as demonstrated by inhibition of endosomal proteases. Using the H22(scFv)-ETA' in a transgenic mouse model for chronic cutaneous inflammation, the M1 specificity was confirmed in vivo and a beneficial effect on inflammation demonstrated. Also ex vivo on skin biopsies from atopic dermatitis and diabetes type II patients with chronically-inflamed skin, a clear M1 specific effect was found. This indicates the potential relevance for human application. Our data show that targeting M1 macrophages through CD64 can be instrumental in developing novel intervention strategies for chronic inflammatory conditions.  相似文献   

14.
Tumor-bearing host (TBH) macrophages (M phi) exhibit immune dysfunction that is concomitant with phenotypic changes. We examined M phi subpopulations by changes in the expression of surface antigens Mac-1, -2, -3, and Ia on normal and TBH peritoneal and splenic M phi. M phi were double-labeled and analyzed by flow cytometry to observe multiple expression of surface antigens. Tumor growth alters the multiple expression of these M phi markers. Peritoneal and splenic M phi had different Mac+ and Mac+Ia+ population percentages. In TBH, peritoneal M phi had decreased percentages of Mac-1+2+, Mac-1+3+, Mac-2+3+, and Mac+Ia+ M phi. This decrease correlated with functional changes in TBH M phi. In contrast, there was an increase in Mac-2-Ia- TBH peritoneal M phi. Previously undiscovered Mac-1+2-3- and Mac-1-2-3+ populations were found. In contrast to peritoneal M phi, there was an increase in the percentage of Mac-1+2+, Mac-1+3+, and Mac-2+3+ splenic TBH M phi but, like peritoneal M phi, there was a decrease in the percentage of Mac+Ia+ M phi. Also, TBH splenic M phi showed a smaller but more uniform antigen density than normal host splenic M phi. Tumor growth modulated phenotypic alterations in peritoneal and splenic M phi subpopulations. Combined with earlier functional studies of M phi subpopulations, these data suggested a relationship between changes in M phi phenotype and tumor-induced dysfunction of M phi-modulated immune activity.  相似文献   

15.
The globular domain of type IV collagen from bovine glomerular basement membrane was solubilized by collagenase digestion. Components of this domain include several monomer-size and structurally related dimer-size polypeptides. The monomer-size polypeptides were resolved into three fractions (M1, M2, and M3) with slightly different mobilities upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (nonreduced Mr = 24,500-28,300). Chemical and immunochemical studies indicate that each is a distinct component. M2 is reactive with antibodies from patients with Goodpasture syndrome. The molecular weight by sedimentation equilibrium was 32,000 for M2 and 28,000 for M1. The dimers were characterized as two classes, D1 and D2. D1 consists of two sets of nonreactive components (D1a-d and D1a,c) whereas D2 contains one set of four components (D2a-d), each of which is reactive with Goodpasture sera. Chemical and immunochemical studies indicate that a monomer-dimer relationship exists between M1 and D1 and between M2 and D2. The origin of M3 remains undetermined. Rabbit antibodies to type IV collagen alpha chains react with M1 and M2, and antibodies to M1 and M2 react with type IV collagen alpha chains, which provides additional evidence for the localization of the Goodpasture antigen to one of the chains of type IV collagen.  相似文献   

16.
17.
Novel, selective M2 muscarinic antagonists, which replace the metabolically labile styrenyl moiety of the prototypical M2 antagonist 1 with an ether linkage, were synthesized. A detailed SAR study in this class of compounds has yielded highly active compounds that showed M2 Ki values of < 1.0 nM and >100-fold selectivity against M1, M3, and M5 receptors.  相似文献   

18.
Rat micro class glutathione transferases M1-1 and M2-2 are homodimers that share a 78% sequence identity but display differences in stability. M1-1 is more stable at the secondary and tertiary structural levels, whereas its quaternary structure is less stable. Each subunit in these proteins consists of two structurally distinct domains with intersubunit contacts occurring between domain 1 of one subunit and domain 2 of the other subunit. The chimeric subunit variants M(12), which has domain 1 of M1 and domain 2 of M2, and its complement M(21), were used to investigate the conformational stability of the chimeric homodimers M(12)-(12) and M(21)-(21) to determine the contribution of each domain toward stability. Exchanging entire domains between class micro GSTs is accommodated by the GST fold. Urea-induced equilibrium unfolding data indicate that whereas the class micro equilibrium unfolding mechanism (i.e., N(2) <--> 2I <--> 2U) is not altered, domain exchanges impact significantly on the conformational stability of the native dimers and monomeric folding intermediates. Data for the wild-type and chimeric proteins indicate that the order of stability for the native dimer (N(2)) is M2-2 > M(12)-(12) M1-1 approximately M(21)-(21), and that the order of stability of the monomeric intermediate (I) is M1 > M2 approximately M(12) > M(21). Interactions involving Arg 77, which is topologically conserved in GSTs, appear to play an important role in the stability of both the native dimeric and folding monomeric structures.  相似文献   

19.
20.
Mammalian ribonucleotide reductase consists of two non-identical subunits, proteins M1 and M2. We have produced and characterized rat polyclonal and monoclonal antibodies directed against protein M2 of mouse ribonucleotide reductase. Using these antibodies for immunocytochemical studies, an exclusively cytoplasmic localization of protein M2 was demonstrated both in cultured parent and hydroxyurea-resistant, M2-over-producing mouse TA3 cells, and in cells from various mouse tissues. These data, together with the previously demonstrated cytoplasmic localization of the M1 subunit, clearly show that ribonucleotide reductase is a cytoplasmic enzyme. Combining the anti-M2 antibodies with a monoclonal anti-M1 antibody allowed for double-labelling immunofluorescence studies of the two subunits in individual cells. Only approximately 50% of the cells in a logarithmically growing culture contained immunodetectable protein M2, while the M1-specific staining was present in all cells. The M2 staining correlates well with the proportion of cells in the S-phase of the cell cycle. In tissues, only actively dividing cells stained with either antibody and there were always fewer cells stained with the M2-antibodies than with the M1-antibody. Our data therefore present independent evidence for the earlier proposed model of a differential regulation during the cell cycle of the M1 and M2 subunits of ribonucleotide reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号