首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previously a distinct D1-like dopamine receptor (DAR) that selectively couples to phospholipase C/phosphatidylinositol (PLC/PI) was proposed. However, lack of a selective agonist has limited efforts aimed at characterizing this receptor. We characterized the in vitro and in vivo effects of SKF83959 in regulating PI metabolism. SKF83959 stimulates (EC50, 8 micro m) phosphatidylinositol 4,5-biphosphate hydrolysis in membranes of frontal cortex (FC) but not in membranes from PC12 cells expressing classical D1A DARs. Stimulation of FC PI metabolism was attenuated by the D1 antagonist, SCH23390, indicating that SKF83959 activates a D1-like DAR. The PI-linked DAR is located in hippocampus, cerebellum, striatum and FC. Most significantly, administration of SKF83959 induced accumulations of IP3 in striatum and hippocampus. In contrast to other D1 DAR agonists, SKF83959 did not increase cAMP production in brain or in D1A DAR-expressing PC12 cell membranes. However, SKF83959 inhibited cAMP elevation elicited by the D1A DAR agonist, SKF81297, indicating that the compound is an antagonist of the classical D1A DAR. Lastly, we demonstrated that SKF83959 enhances [35S]guanosine 5'-O-(3-thiotriphosphate) binding to membrane Galphaq and Galphai proteins, suggesting that PI stimulation is mediated by activation of these guanine nucleotide-binding regulatory proteins. Results indicate that SKF83959 is a selective agonist for the PI-linked D1-like DAR, providing a unique tool for investigating the functions of this brain D1 DAR subtype.  相似文献   

2.
Dai R  Ali MK  Lezcano N  Bergson C 《Neuro-Signals》2008,16(2-3):112-123
D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.  相似文献   

3.
4.
3-methyl-6-chloro-7,8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959), a selective agonist for the putative phosphatidylinositol (PI)-linked dopamine receptor (DAR), has been shown to possess potent anti-Parkinson disease effects but produces less dyskinesia and motor fluctuation that are frequently observed in Parkinson disease drug therapies. The present study was designed to detect the neuroprotection of SKF83959 and its potential mechanism for the effect in cultured rat cortical cells. The presence of SKF83959 with a dose range of 0.1-30 micromol/L improved H2O2-reduced cell viability in a dose-dependent manner. The anti-apoptotic action of SKF83959 was partially abolished by pre-application of the D1 antagonist SCH23390 (30 micromol/L) and the PI 3-kinase (PI 3-K) inhibitor LY294002 but not by the MEK1/2 inhibitor PD98059 (30 micromol/L). Moreover, SKF83959 treatment significantly inhibited H2O2-activated glycogen synthase kinase-3beta (GSK-3beta) which was associated with the drug's neuroprotective effect, but this inhibition was attenuated by SCH23390 and a selective PI 3-K inhibitor. Moreover, the application of either SKF83959 or a pharmacological inhibitor of GSK-3beta attenuated the inhibition by H2O2 on the expression of inducible NO synthase and production of NO. This indicates that D1-like receptor, presumably PI-linked D1 receptor, -mediated alteration of PI 3-K/Akt/GSK-3beta pathway is involved in the neuroprotection by SKF83959. In addition, SKF83959 also effectively decreased the level of the lipid peroxidation and increased the activity of GSH-peroxidase altered by H2O2. These results suggest that SKF83959 exerts its neuroprotective effect through both receptor-dependent and independent mechanisms: Inhibition of GSK-3beta and consequently increasing the expression of inducible NO synthase via putative PI-linked DAR; and its anti-oxidative activity which is independent of DAR.  相似文献   

5.
Dopamine (DA), a neurotransmitter in the nervous system, has been shown to modulate immune function. We have previously reported that five subtypes of DA receptors, including D1R, D2R, D3R, D4R and D5R, are expressed in T lymphocytes and they are involved in regulation of T cells. However, roles of these DA receptor subtypes and their coupled signal-transduction pathway in modulation of natural killer (NK) cells still remain to be clarified. The spleen of mice was harvested and NK cells were isolated and purified by negative selection using magnetic activated cell sorting. After NK cells were incubated with various drugs for 4 h, flow cytometry measured cytotoxicity of NK cells against YAC-1 lymphoma cells. NK cells expressed the five subtypes of DA receptors at mRNA and protein levels. Activation of D1-like receptors (including D1R and D5R) with agonist SKF38393 enhanced NK cell cytotoxicity, but activation of D2-like receptors (including D2R, D3R and D4R) with agonist quinpirole attenuated NK cells. Simultaneously, SKF38393 elevated D1R and D5R expression, cAMP content, and phosphorylated cAMP-response element-binding (CREB) level in NK cells, while quinpirole reduced D3R and D4R expression, cAMP content, and phosphorylated CREB level in NK cells. These effects of SKF38393 were blocked by SCH23390, an antagonist of D1-like receptors, and quinpirole effects were abolished by haloperidol, an antagonist of D2-like receptors. In support these results, H89, an inhibitor of phosphokinase A (PKA), prevented the SKF38393-dependent enhancement of NK cells and forskolin, an activator of adenylyl cyclase (AC), counteracted the quinpirole-dependent suppression of NK cells. These findings show that DA receptor subtypes are involved in modulation of NK cells and suggest that D1-like receptors facilitate NK cells by stimulating D1R/D5R-cAMP-PKA-CREB signaling pathway and D2-like receptors suppress NK cells by inhibiting D3R/D4R-cAMP-PKA-CREB signaling pathway. The results may provide more targets of therapeutic strategy for neuroimmune diseases.  相似文献   

6.
We identified that activation of the Gq-linked dopamine D1-D2 receptor hetero-oligomer generates a PLC-dependent intracellular calcium signal. Confocal FRET between endogenous dopamine D1 and D2 receptors in striatal neurons confirmed a physical interaction between them. Pretreatment with SKF 83959, which selectively activates the D1-D2 receptor heteromer, or SKF 83822, which only activates the D1 receptor homo-oligomer, led to rapid desensitization of the D1-D2 receptor heteromer-mediated calcium signal in both heterologous cells and striatal neurons. This desensitization response was mediated through selective occupancy of the D1 receptor binding pocket. Although SKF 83822 was unable to activate the D1-D2 receptor heteromer, it still permitted desensitization of the calcium signal. This suggested that occupancy of the D1 receptor binding pocket by SKF 83822 resulted in conformational changes sufficient for desensitization without heteromer activation. Bioluminescence resonance energy transfer and co-immunoprecipitation studies indicated an agonist-induced physical association between the D1-D2 receptor heteromeric complex and GRK2. Increased expression of GRK2 led to a decrease in the calcium signal with or without prior exposure to either SKF 83959 or SKF 83822. GRK2 knockdown by siRNA led to an increase in the signal after pretreatment with either agonist. Expression of the catalytically inactive and RGS (regulator of G protein signaling)-mutated GRK2 constructs each led to a partial recovery of the GRK2-attenuated calcium signal. These results indicated that desensitization of the dopamine D1-D2 receptor heteromer-mediated signal can occur by agonist occupancy even without activation and is dually regulated by both the catalytic and RGS domains of GRK2.  相似文献   

7.
Neurotensin modulates dopaminergic transmission in the nigrostriatal system. DARPP-32, a dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa, is phosphorylated on Thr34 by cAMP-dependent protein kinase, resulting in its conversion into a potent inhibitor of protein phosphatase-1 (PP 1). Here, we examined the effect of neurotensin on DARPP-32 Thr34 phosphorylation using mouse neostriatal slices. Neurotensin stimulated DARPP-32 Thr34 phosphorylation by 4-7-fold with a K(0.5) of approximately 50 nM. The effect of neurotensin was antagonized by a combined neurotensin receptor type-1 (NTR1)/type-2 (NTR2) antagonist, SR142948. It was not antagonized by a NTR1 antagonist, SR48692 or by a NTR2 antagonist, levocabastine; neither was it antagonized by the two combined. Pretreatment with TTX or cobalt abolished the effect of neurotensin. The effect of neurotensin was antagonized by a dopamine D1 antagonist, SCH23390, and by ionotropic glutamate receptor antagonists, MK801 and CNQX. These results indicate that neurotensin stimulates the release of dopamine from nigrostriatal presynaptic terminals in an NMDA receptor- and AMPA receptor-dependent manner, leading to the increase in DARPP-32 Thr34 phosphorylation. Neurotensin stimulated the phosphorylation of Ser845 of the AMPA receptor GluR1 subunit in wild-type mice but not in DARPP-32 knockout mice. Thus, neurotensin, by stimulating the release of dopamine, activates the dopamine D1-receptor/cAMP/PKA/DARPP-32/PP 1 cascade.  相似文献   

8.
Dopamine agonist-stimulated [35S]GTPgammaS binding to membrane G proteins was studied in select brain regions under experimental conditions that permit the activation of receptor coupling to the G proteins Gi, Gs, or Gq. Agents studied were agonists known to be effective at various dopamine receptor/effector systems and included quinelorane (D2-like/Gi), SKF38393 (D1-like/Gq, D1-like/Gs), SKF85174 (D1-like/Gs), and SKF83959 (D1-like/Gq). Dopamine and SKF38393 significantly stimulated [35S]GTPgammaS binding to normal striatal membranes by 161% and 67% above controls. Deoxycholate, which enhances agonist-induced phospholipase C (PLC) stimulation, markedly enhanced the agonistic effects of dopamine and SKF38393 to 530% and 637% above controls, respectively. The enhancing effects of deoxycholate were reversed if it was washed off the membranes before agonist addition. The thiol-reducing agent, dithiothreitol, completely abolished the effects of SKF38393 and SKF83959, whereas SKF85174 effects were augmented. Agonist responses were concentration-related, and highest efficacies were obtained in the hippocampus, thus paralleling both the brain regional distribution and agonist efficacies previously observed in phosphoinositide hydrolysis assays. These findings suggest that D1-like receptor conformations that mediate agonist stimulation of Gs/adenylylcyclase may be structurally different from those that mediate Gq/PLC activation. Although the exact mechanism of deoxycholate's effect awaits elucidation, the results are consistent with the emerging concept of functional selectivity whereby deoxycholate could create a membrane environment that facilitates the transformation of the receptor from a conformation that activates Gs/adenylylcyclase to one that favors Gq/PLC signaling.  相似文献   

9.
In the striatum, stimulation of dopamine D2 receptors results in attenuation of glutamate responses. This effect is exerted in large part via negative regulation of AMPA glutamate receptors. Phosphorylation of the GluR1 subunit of the AMPA receptor has been proposed to play a critical role in the modulation of glutamate transmission, in striatal medium spiny neurons. Here, we have examined the effects of blockade of dopamine D2-like receptors on the phosphorylation of GluR1 at the cAMP-dependent protein kinase (PKA) site, Ser845, and at the protein kinase C and calcium/calmodulin-dependent protein kinase II site, Ser831. Administration of haloperidol, an antipsychotic drug with dopamine D2 receptor antagonistic properties, increases the phosphorylation of GluR1 at Ser845, without affecting phosphorylation at Ser831. The same effect is observed using eticlopride, a selective dopamine D2 receptor antagonist. In contrast, administration of the dopamine D2-like agonist, quinpirole, decreases GluR1 phosphorylation at Ser845. The increase in Ser845 phosphorylation produced by haloperidol is abolished in dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) knockout mice, or in mice in which the PKA phosphorylation site on DARPP-32 (i.e. Thr34) has been mutated (Thr34-->Ala mutant mice), and requires tonic activation of adenosine A2A receptors. These results demonstrate that dopamine D2 antagonists increase GluR1 phosphorylation at Ser845 by removing the inhibitory tone exerted by dopamine D2 receptors on the PKA/DARPP-32 cascade.  相似文献   

10.
Extracellular signal-regulated kinase 1/2 (ERK1/2) is a member of the mitogen-activated protein kinase family. It can mediate cell migration. Classical dopamine receptor-mediated ERK1/2 phosphorylation is widely studied in neurons. Here, we report that ERK1/2 phosphorylation is also modulated by putative phosphatidylinositol-linked D1-like receptors in cultured rat astrocytes. 6-chloro-7,8-dihydroxy-3-methyl-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959), an agonist of the putative phosphatidylinositol-linked D1-like receptors, was found to enhance ERK1/2 phosphorylation, which then promoted the migration of cultured astrocytes. The SKF83959-induced ERK1/2 phosphorylation was found to be Ca2+-independent based on the following observations: i. chelating intracellular Ca2+ did not inhibit ERK1/2 phosphorylation and astrocyte migration; ii. blockage of the release of intracellular Ca2+ from the endoplasmic reticulum by an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor did not attenuate ERK1/2 phosphorylation. However, inhibition of phospholipase C (PLC), the upstream molecule of internal Ca2+ release, disabled SKF83959’s ability to elevate the level of ERK1/2 phosphorylation. Both non-selective protein kinase C (PKC) inhibitor and PKCδ selective inhibitor prevented ERK1/2 phosphorylation increase and astrocyte migration, but PKCα inhibitor did not. This suggests that Ca2+-independent and diacylglycerol-dependent PKCδ acts downstream of putative phosphatidylinositol-linked D1-like receptor activation and mediates SKF83959-induced elevation of ERK1/2 phosphorylation in order to modulate astrocyte migration. In conclusion, our results demonstrate that SKF83959-induced increases in ERK1/2 phosphorylation and astrocyte migration are dependent on PLC-PKCδ signals. This might help us to further understand the functions of the putative phosphatidylinositol-linked D1-like receptors in the nervous system.  相似文献   

11.
D1-selective dopamine receptor agonists inhibit secretagogue-stimulated catecholamine secretion from bovine adrenal chromaffin cells. The purpose of the studies reported here was to use the radiolabeled D1-selective dopamine receptor antagonist, SCH23390, to characterize putative D1-like dopamine receptors responsible for this effect. Characterization of SCH23390 binding sites demonstrated an unusual pharmacological profile inconsistent with classical D1-like receptors. [125I]SCH23390 bound to adrenal medullary membranes was competed for by non-radioactive iodo-SCH23390 (Kd = 490 ± 50 nM), but not by (+)butaclamol. Other classical D1 antagonists had little, if any, effect. Competition with dopamine receptor agonists demonstrated a relative rank order of potency profile characteristic of D1-like dopamine receptors, however, Kis were higher than those found in other tissues. The Kis for competition of [125I]SCH23390 binding by C1-APB and SKF38393 (16 and 118 M, respectively) are nearly identical to the IC50s previously observed for inhibition of secretion (9 and 100 M, respectively). Combined these data suggest that adrenal medullary membranes contain a novel SCH23390 binding site involved in the inhibition of secretion by D1-selective agonists.  相似文献   

12.
Methylphenidate (MPH), a dopamine uptake inhibitor, is the most commonly prescribed drug for the treatment of attention-deficit/hyperactivity disorder (ADHD) in children. We examined the effect of MPH on dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32) phosphorylation at Thr34 (PKA-site) and Thr75 (Cdk5-site) using neostriatal slices from young (14-15- and 21-22-day-old) and adult (6-8-week-old) mice. MPH increased DARPP-32 Thr34 phosphorylation and decreased Thr75 phosphorylation in slices from adult mice. The effect of MPH was blocked by a dopamine D1 antagonist, SCH23390. In slices from young mice, MPH did not affect DARPP-32 phosphorylation. As with MPH, cocaine stimulated DARPP-32 Thr34 phosphorylation in slices from adult, but not from young mice. In contrast, a dopamine D1 agonist, SKF81297, regulated DARPP-32 phosphorylation comparably in slices from young and adult mice, as did methamphetamine, a dopamine releaser. The results suggest that dopamine synthesis and the dopamine transporter are functional at dopaminergic terminals in young mice. In contrast, the lack of effect of MPH in young mice is likely attributable to immature development of the machinery that regulates vesicular dopamine release.  相似文献   

13.
Although multiple roles of dopamine through D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptors are initiated primarily through stimulation or inhibition of adenylyl cyclase via Gs/olf or Gi/o, respectively, there have been many reports indicating diverse signaling mechanisms that involve alternative G protein coupling. In this study, dopamine-induced Gαq activation in rat brain membranes was investigated. Agonist-induced Gαq activation was assessed by increase in guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding to Gαq determined by [35S]GTPγS binding/immunoprecipitation assay in rat brain membranes. Dopamine-stimulated Gαq functionality was highest in cortex as compared to hippocampus or striatum. In cerebral cortical membranes, this effect was mimicked by benzazepine derivatives with agonist properties at dopamine D1-like receptors, that is, SKF83959, SKF83822, R(+)-SKF81297, R(+)-SKF38393, and SKF82958, but not by the compounds with dopamine D2-like receptor agonist properties except for aripiprazole. Against expectation, stimulatory effects were also induced by SKF83566, R(+)-SCH23390, and pergolide. The pharmacological profiling by using a series of antagonists indicated that dopamine-induced response was mediated through dopamine D1-like receptor, which was distinct from the receptor involved in 5-HT-induced response (5-HT2A receptor). Conversely, the responses induced by SKF83566, R(+)-SCH23390, and pergolide were most likely mediated by 5-HT2A receptor, but not by dopamine D1-like receptor. Caution should be paid when interpreting the experimental data, especially in behavioral pharmacological research, in which SKF83566 or R(+)-SCH23390 is used as a standard selective dopamine D1-like receptor antagonist. Also, possible clinical implications of the agonistic effects of pergolide on 5-HT2A receptor has been mentioned.  相似文献   

14.
Identification of D1-like dopamine receptors on human blood platelets   总被引:1,自引:0,他引:1  
Dopamine is able to inhibit the epinephrine-induced aggregation of human blood platelets, but the mechanism of action has not been elucidated. In this study we report that membranes from human blood platelets possess high affinity, saturable and stereoselective binding sites for the D1 dopamine receptor antagonist (3H) SCH 23390. (3H) SCH 23390 appeared to label a single class of binding sites with a Bmax of 18.6 +/- 1.6 fmol/mg protein and a KD of 0.8 nM. The potencies of different dopaminergic antagonists and agonists in displacing (3H) SCH 23390 from blood platelet membranes were similar to those obtained for striatal membranes. Unlike the classically defined D1 receptors, e.g. those in striatum, the D1 receptor sites on platelets appeared not to be coupled to the adenylate cyclase system, hence the term "D1-like". The D1 agonist SKF 38393 was more potent than dopamine in inhibiting platelet aggregation induced by epinephrine, and the effects of dopamine and SKF 38393 were prevented by SCH 23390. These results suggest that the inhibitory action of dopamine on the epinephrine-induced platelet aggregation is mediated through these D1-like receptors.  相似文献   

15.
Although our recent report demonstrates the essential involvement of up-regulation of a regulator of intracellular Ca(2+) concentration, type 1 inositol 1,4,5-trisphosphate receptors (IP(3) Rs-1), mediated via dopamine D1-like receptor (D1DR) stimulation in the cocaine-induced psychological dependence, the exact mechanisms of regulation of IP(3) R-1 expression by D1DRs have not yet been clarified. This study attempted to clarify these mechanisms using mouse cerebral cortical neurons. An agonist for phosphatidylinositide-linked D1DRs, SKF83959, induced dose- and time-dependently IP(3) R-1 protein up-regulation following its mRNA increase without cAMP production. U73122 (a phospholipase C inhibitor), BAPTA-AM (an intracellular calcium chelating reagent), W7 (a calmodulin inhibitor), KN-93 (a calmodulin-dependent protein kinases inhibitor), and FK506 (a calcineurin inhibitor), significantly inhibited the SKF83959-induced IP(3) R-1 up-regulation. Furthermore, immunohistochemical examinations showed that SKF83959 increased expression of both cFos and cJun in nucleus as well as enhanced translocation of both calcineurin and NFATc4 complex to nucleus from cytoplasm. In addition, SKF83959 directly recruited binding of both AP-1 and NFATc4 to IP(3) R-1 promoter region. These results indicate that D1DR activation induces IP(3) R-1 up-regulation via increased translocation of AP-1 as well as NFATc4 in Gαq protein-coupled calcium signaling transduction pathway.  相似文献   

16.
A body of evidence supports the idea that the mesolimbic dopamine (DA) system modulates the natural increase in responsiveness female rats show toward offspring (biological or foster) at birth. In the absence of the full hormonal changes associated with pregnancy and birth, female rats do not show immediate responsiveness toward foster offspring. Activation of the mesolimbic DA system can produce an immediate onset of maternal behavior in these females. For example, female rats that are hysterectomized and ovariectomized on day 15 of pregnancy (15HO) and presented with pups 48 hours later normally show maternal behavior after 2-3 days of pup exposure, but will show maternal behavior on day 0 of testing after microinjection of the DA D1 receptor agonist, SKF 38393, into the nucleus accumbens (NA) at the time of pup presentation. DA D1 receptor stimulation is known to activate cAMP intracellular signaling cascades via its stimulation of adenylyl cyclase (AC). However, some DA D1 receptors are also linked to phospholipase C (PLC) and are capable of activating phosphatidylinositol signaling cascades. SKF 38393 stimulates both types of D1 receptors. Here we provide evidence that the facilitatory effects of DA D1 receptor stimulation in the NA on maternal behavior are mediated by AC-linked DA D1 receptors. By examining the effects of intra-NA application of SKF 83822, a drug which selectively binds DA D1-AC receptors, or SKF 83959, a drug which selectively activates D1-PLC-linked receptors, we find that only SKF 83822 facilitates maternal behavior onset.  相似文献   

17.
Trafficking of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors is an important determinant of synaptic strength. Our prior work suggests that D1 dopamine (DA) receptors regulate AMPA receptor trafficking. This is a possible mechanism by which amphetamine and cocaine, which indirectly stimulate D1 receptors, may alter synaptic strength in addiction-related neuronal circuits. Post-natal rat nucleus accumbens (NAc) cultures were used to study the role of protein kinase A (PKA) in D1 receptor regulation of the surface expression of the AMPA receptor subunit GluR1. Using an immunocytochemical assay that selectively detects newly externalized GluR1, we found that the rate of GluR1 externalization is enhanced by the D1 agonist SKF 81297 (100 nm-1 microm). This was blocked by a D1 receptor antagonist (SCH 23390; 10 microm) and by two different cell-permeable PKA inhibitors, KT5720 (2 and 10 microm) and RpcAMPS (10 microm). Conversely, the PKA activator SpcAMPS increased the rate of GluR1 externalization in a concentration-dependent manner. A maximally effective concentration of SpcAMPS (10 microm) occluded the effect of SKF 81297 (1 microm) on GluR1 externalization. Using similar cultures, we showed previously that D1 receptor stimulation increases GluR1 phosphorylation at the PKA site. Together, our findings suggest that PKA phosphorylation of GluR1 is required for GluR1 externalization in response to D1 receptor stimulation.  相似文献   

18.
Dopamine receptor activation regulates cyclic AMP levels and is critically involved in modulating neurotransmission in the striatum. Others have shown that alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptor-mediated current is potentiated by cyclic AMP-dependent protein kinase (PKA) activation. We made whole-cell patch clamp recordings from cultured striatal neurons and tested whether D1-type dopamine receptor activation affected AMPA receptor-mediated currents. After a 5-min exposure to the D1 agonist SKF 81297 (1 microM), kainate-evoked current amplitude was enhanced in approximately 75% of cells to 121+/-2.5% of that recorded prior to addition of drug. This response was inhibited by the D1 antagonist SCH 23390 and mimicked by activators of PKA. Moreover, by western blot analysis using an antibody specific for the phosphorylated PKA site Ser845 of GluR1, we observed a marked increase in phosphorylated GluR1 following a 10-min exposure of striatal neurons to 1 microM SKF 81297. Our data demonstrate that activation of D1-type dopamine receptors on striatal neurons promotes phosphorylation of AMPA receptors by PKA as well as potentiation of current amplitude. These results elucidate one mechanism by which dopamine can modulate neurotransmission in the striatum.  相似文献   

19.
We examined the role of endogenous dopamine (DA) in regulating the number of intrinsic tyrosine hydroxylase-positive (TH+) striatal neurons using mice at postnatal day (PND) 4 to 8, a period that corresponds to the developmental peak in the number of these neurons. We adopted the strategy of depleting endogenous DA by a 2-day treatment with α-methyl-p-tyrosine (αMpT, 150 mg/kg, i.p.). This treatment markedly increased the number of striatal TH+ neurons, assessed by stereological counting, and the increase was highly correlated to the extent of DA loss. Interestingly, TH+ neurons were found closer to the clusters of DA fibers after DA depletion, indicating that the concentration gradient of extracellular DA critically regulates the distribution of striatal TH+ neurons. A single i.p. injection of the D1 receptor antagonist, SCH23390 (0.1 mg/kg), the D2/D3 receptor antagonist, raclopride (0.1 mg/kg), or the D4 receptor antagonist, L-745,870 (5 mg/kg) in mice at PND4 also increased the number of TH+ neurons after 4 days. Treatment with the D1-like receptor agonist SKF38393 (10 mg/kg) or with the D2-like receptor agonist, quinpirole (1 mg/kg) did not change the number of TH+ neurons. At least the effects of SCH23390 were prevented by a combined treatment with SKF38393. Immunohistochemical analysis indicated that striatal TH+ neurons expressed D2 and D4 receptors, but not D1 receptors. Moreover, treatment with the α4β2 receptor antagonist dihydro-β-erythroidine (DHβE) (3.2 mg/kg) also increased the number of TH+ neurons. The evidence that DHβE mimicked the action of SCH23390 in increasing the number of TH+ neurons supports the hypothesis that activation of D1 receptors controls the number of striatal TH+ neurons by enhancing the release of acetylcholine. These data demonstrate for the first time that endogenous DA negatively regulates the number of striatal TH+ neurons by direct and indirect mechanisms mediated by multiple DA receptor subtypes.  相似文献   

20.
Previous studies have revealed that activation of rat striatal D(1) dopamine receptors stimulates both adenylyl cyclase and phospholipase C via G(s) and G(q), respectively. The differential distribution of these systems in brain supports the existence of distinct receptor systems. The present communication extends the study by examining other brain regions: hippocampus, amygdala, and frontal cortex. In membrane preparations of these brain regions, selective stimulation of D(1) dopamine receptors increases the hydrolysis of phosphatidylinositol/phosphatidylinositol 4,5-biphosphate. In these brain regions, D(1) dopamine receptors couple differentially to multiple Galpha protein subunits. Antisera against Galpha(q) blocks dopamine-stimulated PIP(2) hydrolysis in hippocampal and in striatal membranes. The binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(i) was enhanced in all brain regions. Dopamine also increased the binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(q) in these brain regions: hippocampus = amygdala > frontal cortex. However, dopamine-stimulated binding of [(35)S]GTPgammaS to Galphas only in the frontal cortex and striatum. This differential coupling profile in the brain regions was not related to a differential regional distribution of the Galpha proteins. Dopamine induced increases in GTPgammaS binding to Galpha(s) and Galpha(q) was blocked by the D(1) antagonist SCH23390 but not by D(2) receptor antagonist l-sulpiride, suggesting that D(1) dopamine receptors couple to both Galpha(s) and Galpha(q) proteins. Co-immunoprecipitation of Galpha proteins with receptor-binding sites indicate that in the frontal cortex, D(1) dopamine-binding sites are associated with both Galpha(s) and Galpha(q) and, in hippocampus or amygdala, D(1) dopamine receptors couple solely to Galpha(q). The results indicate that in addition to the D(1)/G(s)/adenylyl cyclase system, brain D(1)-like dopamine receptor sites activate phospholipase C through Galpha(q) protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号