首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Prevalence of avian influenza and host ecology   总被引:2,自引:0,他引:2  
Waterfowl and shorebirds are common reservoirs of the low pathogenic subtypes of avian influenza (LPAI), which are easily transmitted to poultry and become highly pathogenic. As the risk of virus transmission depends on the prevalence of LPAI in host-reservoir systems, there is an urgent need for understanding how host ecology, life history and behaviour can affect virus prevalence in the wild. To test for the most important ecological correlates of LPAI virus prevalence at the interspecific level, we applied a comparative analysis by using quantitative data on 30 bird species. We controlled for similarity among species due to common descent, differences in study effort and for covariance among ecological variables. We found that LPAI prevalence is a species-specific attribute and is a consequence of virus susceptibility, as it was negatively associated with the relative size of the bursa of Fabricius, an estimate of juvenile immune function. Species that migrate long distances have elevated prevalence of LPAI independent of phylogeny and other confounding factors. There was also a positive interspecific relationship between the frequency of surface feeding and virus prevalence, but this was sensitive to phylogenetic relatedness of species. Feeding in marine habitats is apparently associated with lower virus prevalence, but the effect of water salinity is likely to be indirect and affected by phylogeny. Our results imply that virus transmission via surface waters and frequent intra- and interspecific contacts during long migration are the major risk factors of avian influenza in the wild. However, the link between exploitation of surface waters and LPAI prevalence appears to be weaker than previously thought. This is the first interspecific study that provides statistical evidence that host ecology, immunity and phylogeny have important consequence for virus prevalence.  相似文献   

2.
Parasitism has been argued as one of the major costs of breeding sociality in birds. However, there is no clear evidence for an increased parasite pressure associated with the evolutionary transition from solitary to colonial breeding. I used the pairwise comparative method to test whether colonial bird species incur in a greater risk of infection and if they must to face with a greater diversity of blood parasites (Haematozoa), by comparing pairs of congeners that included one solitary and one colonial breeding species. The richness, both in terms of number of species and number of genera, as well as the prevalence of blood parasites resulted higher in colonial species than in their solitary breeding sisters, while controlling for differences in research effort and other potentially confounding effects. These results point towards higher transmission rates of blood parasites among colonial hosts. Given the detrimental effects of blood parasites on their host fitness, the higher risk of infection and the exposition to a more diverse parasite fauna may have imposed an important cost associated to the evolution of avian coloniality. This may help to explain why colonial species have larger immune system organs, as well as to explore differences in other host life history traits potentially shaped by blood parasites.  相似文献   

3.
Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance–decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host–parasite system. We then inferred the biogeographic processes influencing the diversity and distributions of this cosmopolitan group of parasites across South America. We found support for a latitudinal gradient in diversity for avian haemosporidian parasites, potentially mediated through higher avian host diversity towards the equator. Parasite similarity was correlated with climate similarity, geographic distance and host composition. Local diversification in Amazonian lineages followed by dispersal was the most frequent biogeographic events reconstructed for haemosporidian parasites. Combining macroecological patterns and biogeographic processes, our study reveals that haemosporidian parasites are capable of circumventing geographic barriers and dispersing across biomes, although constrained by environmental filtering. The contemporary diversity and distributions of haemosporidian parasites are mainly driven by historical (speciation) and ecological (dispersal) processes, whereas the parasite community assembly is largely governed by host composition and to a lesser extent by environmental conditions.  相似文献   

4.
Decreasing similarity between ecological communities with increasing geographic distance (i.e. distance‐decay) is a common biogeographical observation in free‐living communities, and a slightly less common observation for parasite communities. Ecological networks of interacting species may adhere to a similar pattern of decreasing interaction similarity with increasing geographic distance, especially if species interactions are maintained across space. We extend this further, examining if host–parasite networks – independent of host and parasite species identities – become more structurally dissimilar with increasing geographic distance. Utilizing a global database of helminth parasite occurrence records, we find evidence for distance‐decay relationships in host and parasite communities at both regional and global scales, but fail to detect similar relationships in network structural similarity. Host and parasite community similarity were strongly related, and both decayed rapidly with increasing geographic distance, typically resulting in complete dissimilarity after approximately 2500 km. Our failure to detect a decay in network structural similarity suggests the possibility that different host and parasite species are filling the same functional roles in interaction networks, or that variation in network similarity may be better explained by other geographic variables or aspects of host and parasite ecology.  相似文献   

5.
The development of molecular genetic screening techniques for avian blood parasites has revealed many novel aspects of their ecology, including greatly elevated diversity and complex host-parasite relationships. Many previous studies of malaria in birds have treated single study populations as spatially homogeneous with respect to the likelihood of transmission of malaria to hosts, and we have very little idea whether any spatial heterogeneity influences different malaria lineages similarly. Here, we report an analysis of variation in the prevalence and cytochrome b lineage distribution of avian malaria infection with respect to environmental and host factors, and their interactions, in a single blue tit (Cyanistes caeruleus) population. Of 11 Plasmodium and Haemoproteus cytochrome b lineages found in 997 breeding individuals, the three most numerous (pSGS1, pTURDUS1 and pBT7) were considered separately, in addition to analyses of all avian malaria lineages pooled. Our analyses revealed marked spatial differences in the prevalence and distribution of these lineages, with local prevalence of malaria within the population ranging from over 60% to less than 10%. In addition, we found several more complex patterns of prevalence with respect to local landscape features, host state, parasite genotype, and their interactions. We discuss the implications of such heterogeneity in parasite infection at a local scale for the study of the ecology and evolution of infectious diseases in natural populations. The increased resolution afforded by the combination of molecular genetic and geographical information systems (GIS) tools has the potential to provide many insights into the epidemiology, evolution and ecology of these parasites in the future.  相似文献   

6.
Environmental factors strongly influence the ecology and evolution of vector‐borne infectious diseases. However, our understanding of the influence of climatic variation on host–parasite interactions in tropical systems is rudimentary. We studied five species of birds and their haemosporidian parasites (Plasmodium and Haemoproteus) at 16 sampling sites to understand how environmental heterogeneity influences patterns of parasite prevalence, distribution, and diversity across a marked gradient in water availability in northern South America. We used molecular methods to screen for parasite infections and to identify parasite lineages. To characterize spatial heterogeneity in water availability, we used weather‐station and remotely sensed climate data. We estimated parasite prevalence while accounting for spatial autocorrelation, and used a model selection approach to determine the effect of variables related to water availability and host species on prevalence. The prevalence, distribution, and lineage diversity of haemosporidian parasites varied among localities and host species, but we found no support for the hypothesis that the prevalence and diversity of parasites increase with increasing water availability. Host species and host × climate interactions had stronger effects on infection prevalence, and parasite lineages were strongly associated with particular host species. Because climatic variables had little effect on the overall prevalence and lineage diversity of haemosporidian parasites across study sites, our results suggest that independent host–parasite dynamics may influence patterns in parasitism in environmentally heterogeneous landscapes.  相似文献   

7.
Although avian malarial parasites are globally distributed, the factors that affect the geographical distribution and local prevalence of different parasite lineages across host populations or species are still poorly understood. Based on the intense screening of avian malarial parasites in nine European blue tit populations, we studied whether distribution ranges as well as local adaptation, host specialization and phylogenetic relationships can determine the observed prevalences within populations. We found that prevalence differed consistently between parasite lineages and host populations, indicating that the transmission success of parasites is lineage specific but is partly shaped by locality-specific effects. We also found that the lineage-specific estimate of prevalence was related to the distribution range of parasites: lineages found in more host populations were generally more prevalent within these populations. Additionally, parasites with high prevalence that were also widely distributed among blue tit populations were also found to infect more host species. These findings suggest that parasites reaching high local prevalence can also realize wide distribution at a global scale that can have further consequences for host specialization. Although phylogenetic relationships among parasites did not predict prevalence, we detected a close match between a tree based on the geographic distance of the host populations and the parasite phylogenetic tree, implying that neighbouring host populations shared a related parasite fauna.  相似文献   

8.
Despite their ubiquity, in most cases little is known about the impact of eukaryotic parasites on their mammalian hosts. Comparative approaches provide a powerful method to investigate the impact of parasites on host ecology and evolution, though two issues are critical for such efforts: controlling for variation in methods of identifying parasites and incorporating heterogeneity in sampling effort across host species. To address these issues, there is a need for standardized methods to catalogue eukaryotic parasite diversity across broad phylogenetic host ranges. We demonstrate the feasibility of a metabarcoding approach for describing parasite communities by analysing faecal samples from 11 nonhuman primate species representing divergent lineages of the primate phylogeny and the full range of sampling effort (i.e. from no parasites reported in the literature to the best‐studied primates). We detected a number of parasite families and regardless of prior sampling effort, metabarcoding of only ten faecal samples identified parasite families previously undescribed in each host (x? = 8.5 new families per species). We found more overlap between parasite families detected with metabarcoding and published literature when more research effort—measured as the number of publications—had been conducted on the host species' parasites. More closely related primates and those from the same continent had more similar parasite communities, highlighting the biological relevance of sampling even a small number of hosts. Collectively, results demonstrate that metabarcoding methods are sensitive and powerful enough to standardize studies of eukaryotic parasite communities across host species, providing essential new tools for macroecological studies of parasitism.  相似文献   

9.
Aim Exotic species may serve as vectors for the introduction of parasites from their native range and may also become infected by parasites already present in invaded areas, but the total number of parasites infecting such exotic species in their invaded areas is typically less than that in their native range. We tested whether the diversity of parasites associated with exotic species in the native and invaded areas is related to the epizootic impact these parasites cause. Location Global. Methods We examined the diversity and epizootic impact of 384 parasite taxa associated with 22 exotic freshwater invertebrate species. The epizootic impact of each parasite was rated based on whether it had been documented to cause a major pathological impact on a large proportion of an infected host population (other than the invader under consideration). Results The total number of parasites associated with an exotic host in its native range was about twice that of all parasites associated with it in its entire invaded range. This was mainly because of the loss in the invaded areas of low impact parasites, whereas the average number of high impact parasites per host in these areas did not differ statistically from that in the native range. Main conclusions Our study suggests similar levels of adverse impact of parasites of exotic species in both their native and invaded areas. In addition to the introduction of highly pathogenic exotic parasites, other mechanisms that may be involved include (1) acquisition by the invaders of new high impact parasites in the invaded ranges, (2) high abundance of the invaders in their new ranges and (3) susceptibility of novel hosts to exotic parasites because of the ‘naive host syndrome’.  相似文献   

10.
Parasite communities tend to be dissimilar in hosts that are geographically, phylogenetically, ecologically and developmentally distant from one another. The decay of community similarity is a powerful and increasingly common method of studying parasite beta diversity, but most studies have examined only a single type of distance. Here, we evaluate distances based on the phylogeny, ecology, spatial proximity and size of hosts, as predictors of the similarity of parasite communities in individual hosts, host populations and host species. We surveyed parasites in six species of fish collected simultaneously from six localities in the St. Lawrence River, Canada, and species in a common group of larval parasites were discriminated using DNA sequences from barcode region of cytochrome c oxidase I. Distances based on the habitat use patterns of host species were good predictors of short‐term, ecological similarity of parasite communities, such as that operating at the scale of the individual host. The genetic distance between host species was associated with almost all types of similarity at all scales, particularly qualitative and phylogenetic similarity of parasite communities at the level of populations and meta‐populations of hosts. The trophic level, diet, spatial proximity and size of hosts were poor predictors of parasite community similarity. The increased taxonomic resolution provided by molecular data increased the explanatory power of regression models, and different factors were implicated when parasite species were distinguished with DNA barcodes than when larval parasites were lumped into morphospecies, as is commonly practiced.  相似文献   

11.
To control swimmer’s itch in northern Michigan inland lakes, USA, one species of bird, the common merganser (Mergus merganser), has been relocated from several lakes since 2015. Relocation efforts are driven by a desire to reduce the prevalence of the swimmer’s itch-causing parasite Trichobilharzia stagnicolae. The intention of this state-sponsored control effort was to interrupt the life cycle of T. stagnicolae and reduce parasite egg contribution into the environment from summer resident mergansers such that infections of the intermediate snail host Stagnicola emarginata declined. Reduced snail infection prevalence was expected to substantially reduce the abundance of the swimmer’s itch-causing cercarial stage of the parasite in water. With no official programme in place to assess the success of this relocation effort, we sought to study the effectiveness and impact of the removal of a single definitive host from a location with high definitive host and parasite diversity. This was assessed through a comprehensive, lake-wide monitoring study measuring longitudinal changes in the abundance of three species of avian schistosome cercariae in four inland Michigan lakes. Environmental measurements were also taken at these lakes to understand how they can affect swimmer’s itch incidence. This study demonstrates that the diversity of avian schistosomes at the study lakes would likely make targeting a single species of swimmer’s itch-causing parasite meaningless from a swimmer’s itch control perspective. Our data also suggest that removing the common merganser is not an effective control strategy for the T. stagnicolae parasite, likely due to contributions of the parasite made by non-resident birds, possibly migrants, in the autumn and spring. It appears likely that only minimal contact time between the definitive host and the lake ecosystem is required to contribute sufficient parasite numbers to maintain a thriving population of parasite species with high host specificity.  相似文献   

12.
Parasites with low host specificity (e.g. infecting a large diversity of host species) are of special interest in disease ecology, as they are likely more capable of circumventing ecological or evolutionary barriers to infect new hosts than are specialist parasites. Yet for many parasites, host specificity is not fixed and can vary in response to environmental conditions. Using data on host associations for avian malaria parasites (Apicomplexa: Haemosporida), we develop a hierarchical model that quantifies this environmental dependency by partitioning host specificity variation into region‐ and parasite‐level effects. Parasites were generally phylogenetic host specialists, infecting phylogenetically clustered subsets of available avian hosts. However, the magnitude of this specialisation varied biogeographically, with parasites exhibiting higher host specificity in regions with more pronounced rainfall seasonality and wetter dry seasons. Recognising the environmental dependency of parasite specialisation can provide useful leverage for improving predictions of infection risk in response to global climate change.  相似文献   

13.
Although extensive data exist on avian influenza in wild birds in North America, limited information is available from elsewhere, including Europe. Here, molecular diagnostic tools were employed for high-throughput surveillance of migratory birds, as an alternative to classical labor-intensive methods of virus isolation in eggs. This study included 36,809 samples from 323 bird species belonging to 18 orders, of which only 25 species of three orders were positive for influenza A virus. Information on species, locations, and timing is provided for all samples tested. Seven previously unknown host species for avian influenza virus were identified: barnacle goose, bean goose, brent goose, pink-footed goose, bewick's swan, common gull, and guillemot. Dabbling ducks were more frequently infected than other ducks and Anseriformes; this distinction was probably related to bird behavior rather than population sizes. Waders did not appear to play a role in the epidemiology of avian influenza in Europe, in contrast to the Americas. The high virus prevalence in ducks in Europe in spring as compared with North America could explain the differences in virus-host ecology between these continents. Most influenza A virus subtypes were detected in ducks, but H13 and H16 subtypes were detected primarily in gulls. Viruses of subtype H6 were more promiscuous in host range than other subtypes. Temporal and spatial variation in influenza virus prevalence in wild birds was observed, with influenza A virus prevalence varying by sampling location; this is probably related to migration patterns from northeast to southwest and a higher prevalence farther north along the flyways. We discuss the ecology and epidemiology of avian influenza A virus in wild birds in relation to host ecology and compare our results with published studies. These data are useful for designing new surveillance programs and are particularly relevant due to increased interest in avian influenza in wild birds.  相似文献   

14.
Do threatened hosts have fewer parasites? A comparative study in primates   总被引:3,自引:1,他引:2  
1. Parasites and infectious diseases have become a major concern in conservation biology, in part because they can trigger or accelerate species or population declines. Focusing on primates as a well-studied host clade, we tested whether the species richness and prevalence of parasites differed between threatened and non-threatened host species. 2. We collated data on 386 species of parasites (including viruses, bacteria, protozoa, helminths and arthropods) reported to infect wild populations of 36 threatened and 81 non-threatened primate species. Analyses controlled for uneven sampling effort and host phylogeny. 3. Results showed that total parasite species richness was lower among threatened primates, supporting the prediction that small, isolated host populations harbour fewer parasite species. This trend was consistent across three major parasite groups found in primates (helminths, protozoa and viruses). Counter to our predictions, patterns of parasite species richness were independent of parasite transmission mode and the degree of host specificity. 4. We also examined the prevalence of selected parasite genera among primate sister-taxa that differed in their ranked threat categories, but found no significant differences in prevalence between threatened and non-threatened hosts. 5. This study is the first to demonstrate differences in parasite richness relative to host threat status. Results indicate that human activities and host characteristics that increase the extinction risk of wild animal species may lead simultaneously to the loss of parasites. Lower average parasite richness in threatened host taxa also points to the need for a better understanding of the cascading effects of host biodiversity loss for affiliated parasite species.  相似文献   

15.
Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.  相似文献   

16.
Parasite establishment in host communities   总被引:6,自引:3,他引:3  
Many pathogens and parasites attack multiple host species, so their ability to invade a host community can depend on host community composition. We present a graphical isocline framework for studying disease establishment in systems with two host species, based on treating host species as resources. The isocline approach provides a natural generalization to multi‐host systems of two related concepts in disease ecology – the basic reproductive rate of a parasite, and threshold host density. Qualitative isocline shape characterizes the threshold community configurations that permit parasite establishment. In general, isocline shape reflects the relative forces of inter‐ and intraspecific transmission of shared parasites. We discuss the qualitative implications of parasite isocline shape for issues of mounting concern in conservation ecology.  相似文献   

17.
18.
The community of host species that a parasite infects is often explained by functional traits and phylogeny, predicting that closely related hosts or those with particular traits share more parasites with other hosts. Previous research has examined parasite community similarity by regressing pairwise parasite community dissimilarity between two host species against host phylogenetic distance. However, pairwise approaches cannot target specific host species responsible for disproportionate levels of parasite sharing. To better identify why some host species contribute differentially to parasite diversity patterns, we represent parasite sharing using ecological networks consisting of host species connected by instances of shared parasitism. These networks can help identify host species and traits associated with high levels of parasite sharing that may subsequently identify important hosts for parasite maintenance and transmission within communities. We used global‐scale parasite sharing networks of ungulates, carnivores, and primates to determine if host importance – encapsulated by the network measures degree, closeness, betweenness, and eigenvector centrality – was predictable based on host traits. Our findings suggest that host centrality in parasite sharing networks is a function of host population density and range size, with range size reflecting both species geographic range and the home range of those species. In the full network, host taxonomic family became an important predictor of centrality, suggesting a role for evolutionary relationships between host and parasite species. More broadly, these findings show that trait data predict key properties of ecological networks, thus highlighting a role for species traits in understanding network assembly, stability, and structure.  相似文献   

19.
Parasite-mediated selection on major histocompatibility complex (MHC) genes has mainly been explored at the intraspecific level, although many molecular studies have revealed trans-species polymorphism. Interspecific patterns of MHC diversity might reveal factors responsible for the long-term evolution of MHC polymorphism. We hypothesize that host taxa harbouring high parasite diversity should exhibit high levels of MHC genetic diversity. We test this assumption using data on rodent species and their helminth parasites compiled from the literature. Controlling for similarity due to common descent, we present evidence indicating that high helminth species richness in rodent species is associated with increased MHC class II polymorphism. Our results are consistent with the idea that parasites sharing a long-term coevolutionary history with their hosts are the agents of selection explaining MHC polymorphism.  相似文献   

20.
The establishment of baseline data on parasites from wild primates is essential to understand how changes in habitat or climatic disturbances will impact parasite–host relationships. In nature, multiparasitic infections of primates usually fluctuate temporally and seasonally, implying that the acquisition of reliable data must occur over time. Individual parasite infection data from two wild populations of New World primates, the saddleback (Leontocebus weddelli) and emperor (Saguinus imperator) tamarin, were collected over 3 years to establish baseline levels of helminth prevalence and parasite species richness (PSR). Secondarily, we explored variation in parasite prevalence across age and sex classes, test nonrandom associations of parasite co‐occurrence, and assess the relationship between group size and PSR. From 288 fecal samples across 105 individuals (71 saddleback and 34 emperor tamarins), 10 parasite taxa were identified by light microscopy following centrifugation and ethyl‐acetate sedimentation. Of these taxa, none were host‐specific, Dicrocoeliidae and Cestoda prevalences differed between host species, Prosthenorchis and Strongylida were the most prevalent. Host age was positively associated with Prosthenorchis ova and filariform larva, but negatively with cestode and the Rhabditoidea ova. We detected no differences between expected and observed levels of co‐infection, nor between group size and parasite species richness over 30 group‐years. Logistic models of individual infection status did not identify a sex bias; however, age and species predicted the presence of four and three parasite taxa, respectively, with saddleback tamarins exhibiting higher PSR. Now that we have reliable baseline data for future monitoring of these populations, next steps involve the molecular characterization of these parasites, and exploration of linkages with health parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号