首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure and activity of native horseradish peroxidase C (HRP) is stabilized by two bound Ca2+ ions. Earlier studies suggested a critical role of one of the bound Ca2+ ions but with conflicting conclusions concerning their respective importance. In this work we compare the native and totally Ca2+-depleted forms of the enzyme using pH-, pressure-, viscosity- and temperature-dependent UV absorption, CD, H/D exchange-FTIR spectroscopy and by binding the substrate benzohydroxamic acid (BHA). We report that Ca2+-depletion does not change the alpha helical content of the protein, but strongly modifies the tertiary structure and dynamics to yield a homogeneously loosened molten globule-like structure. We relate observed tertiary changes in the heme pocket to changes in the dipole orientation and coordination of a distal water molecule. Deprotonation of distal His42, linked to Asp43, itself coordinated to the distal Ca2+, perturbs a H-bonding network connecting this Ca2+ to the heme crevice that involves the distal water. The measured effects of Ca2+ depletion can be interpreted as supporting a structural role for the distal Ca2+ and for its enhanced significance in finetuning the protein structure to optimize enzyme activity.  相似文献   

2.
Versatile peroxidase (VP) from Bjerkandera adusta, as other class II peroxidases, is inactivated by Ca(2+) depletion. In this work, the spectroscopic characterizations of Ca(2+)-depleted VP at pH 4.5 (optimum for activity) and pH 7.5 are presented. Previous works on other ligninolytic peroxidases, such as lignin peroxidase and manganese peroxidase, have been performed at pH 7.5; nevertheless, at this pH these enzymes are inactive independently of their Ca(2+) content. At pH 7.5, UV-Vis spectra indicate a heme-Fe(3+) transition from 5-coordinated high-spin configuration in native peroxidase to 6-coordinated low-spin state in the inactive Ca(2+)-depleted form. This Fe(3+) hexa-coordination has been proposed as the origin of inactivation. However, our results at pH 4.5 show that Ca(2+)-depleted enzyme has a high spin Fe(3+). EPR measurements on VP confirm the differences in the Fe(3+) spin states at pH 4.5 and at 7.5 for both, native and Ca(2+)-depleted enzymes. In addition, EPR spectra recorded after the addition of H(2)O(2) to Ca(2+)-depleted VP show the formation of compound I with the radical species delocalized on the porphyrin ring. The lack of radical delocalization on an amino acid residue exposed to solvent, W170, as determined in native enzyme at pH 4.5, explains the inability of Ca(2+)-depleted VP to oxidize veratryl alcohol. These observations, in addition to a notorious redox potential decrease, suggest that Ca(2+)-depleted versatile peroxidase is able to form the active intermediate compound I but its long range electron transfer has been disrupted.  相似文献   

3.
4.
Molten globules are partially folded states of proteins which are generally believed to mimic structures formed during the folding process. In order to determine the minimal requirements for the formation of a molten globule state, we have prepared a set of peptide models of the molten globule state of human alpha-lactalbumin (alphaLA). A peptide consisting of residues 1-38 crosslinked, via the native 28-111 disulfide bond, to a peptide corresponding to residues 95-120 forms a partially folded state at pH 2.8 which has all of the characteristics of the molten globule state of alphaLA as judged by near and far UV CD, fluorescence, ANS binding and urea denaturation experiments. The structure of the peptide construct is the same at pH 7.0. Deletion of residues 95-100 from the construct has little effect. Thus, less than half the sequence is required to form a molten globule. Further truncation corresponding to the selective deletion of the A (residues 1-19) or D (residues 101-110) helices or the C-terminal 310 helix (residues 112-120) leads to a significant loss of structure. The loss of structure which results from the deletion of any of these three regions is much greater than that which would be expected based upon the non-cooperative loss of local helical structure. Deletion of residues corresponding to the region of the D helix or C-terminal 310 helix region results in a peptide construct which is largely unfolded and contains no more helical structure than is expected from the sum of the helicity of the two reduced peptides. These experiments have defined the minimum core structure of the alphaLA molten globule state.  相似文献   

5.
The folding of globular proteins occurs through intermediate states whose characterisation provides information about the mechanism of folding. A major class of intermediate states is the compact 'molten globule', whose characteristics have been studied intensively in those conditions in which it is stable (at acid pH, high temperatures and intermediate concentrations of strong denaturants). In studies involving bovine carbonic anhydrase, human alpha-lact-albumin, bovine beta-lactoglobulin, yeast phosphoglycerate kinase, beta-lactamase from Staphylococcus aureus and recombinant human interleukin 1 beta, we have demonstrated that a transient intermediate which accumulates during refolding is compact and has the properties of the 'molten globule' state. We show that it is formed within 0.1-0.2 s. These proteins belong to different structural types (beta, alpha + beta and alpha/beta), with and without disulphide bridges and they include proteins with quite different times of complete folding (from seconds to decades of minutes). We propose that the formation of the transient molten globule state occurs early on the pathway of folding of all globular proteins.  相似文献   

6.
In animal cells, capacitative calcium entry (CCE) mechanisms become activated specifically in response to depletion of calcium ions (Ca(2+)) from secretory organelles. CCE serves to replenish those organelles and to enhance signaling pathways that respond to elevated free Ca(2+) concentrations in the cytoplasm. The mechanism of CCE regulation is not understood because few of its essential components have been identified. We show here for the first time that the budding yeast Saccharomyces cerevisiae employs a CCE-like mechanism to refill Ca(2+) stores within the secretory pathway. Mutants lacking Pmr1p, a conserved Ca(2+) pump in the secretory pathway, exhibit higher rates of Ca(2+) influx relative to wild-type cells due to the stimulation of a high-affinity Ca(2+) uptake system. Stimulation of this Ca(2+) uptake system was blocked in pmr1 mutants by expression of mammalian SERCA pumps. The high-affinity Ca(2+) uptake system was also stimulated in wild-type cells overexpressing vacuolar Ca(2+) transporters that competed with Pmr1p for substrate. A screen for yeast mutants specifically defective in the high-affinity Ca(2+) uptake system revealed two genes, CCH1 and MID1, previously implicated in Ca(2+) influx in response to mating pheromones. Cch1p and Mid1p were localized to the plasma membrane, coimmunoprecipitated from solubilized membranes, and shown to function together within a single pathway that ensures that adequate levels of Ca(2+) are supplied to Pmr1p to sustain secretion and growth. Expression of Cch1p and Mid1p was not affected in pmr1 mutants. The evidence supports the hypothesis that yeast maintains a homeostatic mechanism related to CCE in mammalian cells. The homology between Cch1p and the catalytic subunit of voltage-gated Ca(2+) channels raises the possibility that in some circumstances CCE in animal cells may involve homologs of Cch1p and a conserved regulatory mechanism.  相似文献   

7.
A molten globule-like state of hen egg-white lysozyme has been characterized in 25% aqueous hexafluoroacetone hydrate (HFA) by CD, fluorescence, NMR, and H/D exchange experiments. The far UV CD spectra of lysozyme in 25% HFA supports retention of native-like secondary structure while the loss of near UV CD bands are indicative of the overall collapse of the tertiary structure. The intermediate state in 25% HFA exhibits an enhanced affinity towards the hydrophobic dye, ANS, and a native-like tryptophan fluorescence quenching. 1-D NMR spectra indicates loss of native-like tertiary fold as evident from the absence of ring current-shifted 1H resonances. CD, fluorescence, and NMR suggest that the transition from the native state to a molten globule state in 25% HFA is a cooperative process. A second structural transition from this compact molten globule-like state to an "open" helical state is observed at higher concentrations of HFA (> or = 50%). This transition is characterized by a dramatic loss of ANS binding with a concomitant increase in far UV CD bands. The thermal unfolding of the molten globule state in 25% HFA is sharply cooperative, indicating a predominant role of side-chain-side-chain interactions in the stability of the partially folded state. H/D exchange experiments yield higher protection factors for many of the backbone amide protons from the four alpha-helices along with the C-terminal 3(10) helix, whereas little or no protection is observed for most of the amide protons from the triple-stranded antiparallel beta-sheet domain. This equilibrium molten globule-like state of lysozyme in 25% HFA is remarkably similar to the molten globule state observed for alpha-lactalbumin and also with the molten globule state transiently observed in the kinetic refolding experiments of hen lysozyme. These results suggest that HFA may prove generally useful as a structure modifier in proteins.  相似文献   

8.
An apoplastic isoperoxidase from zucchini (APRX) was shown to bind strongly to polygalacturonic acid in their Ca(2)+-induced conformation. By homology modeling, we were able to identify a motif of four clustered arginines (positions 117, 262, 268, and 271) that could be responsible for this binding. To verify the role of these arginine residues in the binding process, we prepared three mutants of APRX (M1, R117S; M2, R262Q/R268S; and M3, R262Q/R268S/R271Q). APRX and the three mutants were expressed as recombinant glycoproteins by the baculovirus-insect cell system. This procedure yielded four active enzymes with similar molecular masses that were tested for their ability to bind Ca(2)+-pectate. Recombinant wild-type APRX exhibited an affinity for the pectic structure comparable to that of the native plant isoperoxidase. The mutations impaired binding depending on the number of arginine residues that were replaced. M1 and M2 showed intermediate affinities, whereas M3 did not bind at all. This was demonstrated using an in vitro binding test and on cell walls of hypocotyl cross-sections. It can be concluded that APRX bears a Ca(2)+-pectate binding site formed by four clustered arginines. This site could ensure that APRX is properly positioned in cell walls, using unesterified domains of pectins as a scaffold.  相似文献   

9.
Horseradish peroxidase has been shown to catalyze the oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) and benzyl alcohol to the respective aldehydes in the presence of reduced glutathione, MnCl2, and an organic acid metal chelator such as lactate. The oxidation is most likely the result of hydrogen abstraction from the benzylic carbon of the substrate alcohol leading to eventual disproportionation to the aldehyde product. An aromatic cation radical intermediate, as would be formed during the oxidation of veratryl alcohol in the lignin peroxidase-H2O2 system, is not formed during the horseradish peroxidase-catalyzed reaction. In addition to glutathione, dithiothreitol, L-cysteine, and beta-mercaptoethanol are capable of promoting veratryl alcohol oxidation. Non-thiol reductants, such as ascorbate or dihydroxyfumarate (known substrates of horseradish peroxidase), do not support oxidation of veratryl alcohol. Spectral evidence indicates that horseradish peroxidase compound II is formed during the oxidation reaction. Furthermore, electron spin resonance studies indicate that glutathione is oxidized to the thiyl radical. However, in the absence of Mn2+, the thiyl radical is unable to promote the oxidation of veratryl alcohol. In addition, Mn3+ is unable to promote the oxidation of veratryl alcohol in the absence of glutathione. These results suggest that the ultimate oxidant of veratryl alcohol is a Mn(3+)-GSH or Mn(2+)-GS. complex (where GS. is the glutathiyl radical).  相似文献   

10.
Nakamura S  Seki Y  Katoh E  Kidokoro S 《Biochemistry》2011,50(15):3116-3126
To understand the stabilization, folding, and functional mechanisms of proteins, it is very important to understand the structural and thermodynamic properties of the molten globule state. In this study, the global structure of the acid molten globule state, which we call MG1, of horse cytochrome c at low pH and high salt concentrations was evaluated by solution X-ray scattering (SXS), dynamic light scattering, and circular dichroism measurements. MG1 was globular and slightly (3%) larger than the native state, N. Calorimetric methods, such as differential scanning calorimetry and isothermal acid-titration calorimetry, were used to evaluate the thermodynamic parameters in the transitions of N to MG1 and MG1 to denatured state D of horse cytochrome c. The heat capacity change, ΔC(p), in the N-to-MG1 transition was determined to be 2.56 kJ K(-1) mol(-1), indicating the increase in the level of hydration in the MG1 state. Moreover, the intermediate state on the thermal N-to-D transition of horse cytochrome c at pH 4 under low-salt conditions showed the same structural and thermodynamic properties of the MG1 state in both SXS and calorimetric measurements. The Gibbs free energy changes (ΔG) for the N-to-MG1 and N-to-D transitions at 15 °C were 10.9 and 42.2 kJ mol(-1), respectively.  相似文献   

11.
Ca(2+)-induced inactivation of L-type Ca(2+) is differentially mediated by two C-terminal motifs of the alpha(1C) subunit, L (1572-1587) and K (1599-1651) implicated for calmodulin binding. We found that motif L is composed of a highly selective Ca(2+) sensor and an adjacent Ca(2+)-independent tethering site for calmodulin. The Ca(2+) sensor contributes to higher Ca(2+) sensitivity of the motif L complex with calmodulin. Since only combined mutation of both sites removes Ca(2+)-dependent current decay, the two-site modulation by Ca(2+) and calmodulin may underlie Ca(2+)-induced inactivation of the channel.  相似文献   

12.
During oocyte maturation, eggs acquire the ability to generate specialized Ca(2+) signals in response to sperm entry. Such Ca(2+) signals are crucial for egg activation and the initiation of embryonic development. We examined the regulation during Xenopus oocyte maturation of store-operated Ca(2+) entry (SOCE), an important Ca(2+) influx pathway in oocytes and other nonexcitable cells. We have previously shown that SOCE inactivates during Xenopus oocyte meiosis. SOCE inactivation may be important in preventing premature egg activation. In this study, we investigated the correlation between SOCE inactivation and the Mos-mitogen-activated protein kinase (MAPK)-maturation-promoting factor (MPF) kinase cascade, which drives Xenopus oocyte maturation. SOCE inactivation at germinal vesicle breakdown coincides with an increase in the levels of MAPK and MPF. By differentially inducing Mos, MAPK, and MPF, we demonstrate that the activation of MPF is necessary for SOCE inactivation during oocyte maturation. In contrast, sustained high levels of Mos kinase and the MAPK cascade have no effect on SOCE activation. We further show that preactivated SOCE is not inactivated by MPF, suggesting that MPF does not block Ca(2+) influx through SOCE channels, but rather inhibits coupling between store depletion and SOCE activation.  相似文献   

13.
Shah K  Penel C  Gagnon J  Dunand C 《Phytochemistry》2004,65(3):307-312
A protein fraction was obtained from Arabidopsis (Arabidopsis thaliana, L.) leaf extract by affinity chromatography through a Ca(2+)-pectate/polyacrylamide gel. Further purification by preparative isoelectric focusing and SDS PAGE allowed the separation of a peroxidase that was identified as being peroxidase AtPrx34 (AtprxCb, accession number X71794) by N-terminal amino acid microsequencing. AtPrx34 belongs to a group of five Arabidopsis sequences encoding putative pectin-binding peroxidases. An expression study showed that it is expressed in root, stem, flower and leaf. It was produced by Escherichia coli and tested for its ability to bind to Ca(2+)-pectate. The identity of the amino acids involved in the interaction between the peroxidase and the Ca(2+)-pectate structure is discussed.  相似文献   

14.
Mammalian spermatozoa require extracellular Ca2+, some of which must be internalized, to undergo complete capacitation. At a critical threshold, a rise in intracellular Ca2+ will trigger acrosomal exocytosis. We used chlortetracycline (CTC) fluorescence patterns to assess changes in the capacitation state of mouse spermatozoa after incubation under various conditions that would affect their intracellular Ca2+ concentrations. Under standard conditions with 1.80 mmol CaCl2l-1 known to support capacitation within 120 min and subsequent fertilization in vitro, a rise in the number of capacitated, acrosome-intact cells (B pattern) was observed over the first 60 min, followed by a decline. A detectable increase in capacitated, acrosome-reacted cells (AR pattern) coincided with the maximum of B pattern cells and a continued rise was observed over the following 60 min. With incubation in 3.60 mmol Ca2+l-1, the rise in AR cells began at 30 min, suggesting that this treatment accelerates capacitation. Introduction of ionophore A23187 at 15 min to cells in standard Ca2+ produced a similar but even more rapid response, with a maximum in B pattern cells and a noticeable rise in AR cells within 10 min. Thus ionophore-treated cells proceed through capacitation, but do so very quickly. However, ionophore in the presence of 90 mumol Ca2+l-1 could promote transition from the uncapacitated F pattern to the capacitated B pattern, but could not trigger acrosomal exocytosis, indicating that the latter requires high extracellular Ca2+. After preincubation in Ca(2+)-deficient medium, most cells exhibited the uncapacitated F pattern and the introduction of millimolar Ca2+ altered this distribution only slowly, over a period of 50 min. In contrast, preincubation in 90 mumol Ca2+l-1 resulted in a minority of F pattern cells and, within 10 min of millimolar Ca2+ introduction, a significant increase in AR cells was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The molten globule state of equine lysozyme is more stable than that of alpha-lactalbumin and is stabilized by non-specific hydrophobic interactions and native-like hydrophobic interactions. We constructed a chimeric protein which is produced by replacing the flexible loop (residues 105-110) in human alpha-lactalbumin with the helix D (residues 109-114) in equine lysozyme to investigate the possible role of the helix D for the high stability and native-like packing interaction in the molten globule state of equine lysozyme. The stability of the molten globule state formed by the chimeric protein to guanidine hydrochloride-induced unfolding is the same as that of equine lysozyme and is substantially greater than that of human alpha-lactalbumin, although only six residues come from equine lysozyme. Our results also suggest that the non-native interaction in the molten globule state of alpha-lactalbumin changes to the native-like packing interaction due to helix substitution. The solvent-accessibility of the Trp residues in the molten globule state of the chimeric protein is similar to that in the molten globule state of equine lysozyme in which packing interaction around the Trp residues in the native state is partially preserved. Therefore, the helix D in equine lysozyme is one of the contributing factors to the high stability and native-like packing interaction in the molten globule state of equine lysozyme. Our results indicate that the native-like packing interaction can stabilize the rudimentary intermediate which is stabilized by the non-specific hydrophobic interactions.  相似文献   

16.
Depletion of agonist-sensitive Ca2+ stores results in activation of capacitative Ca2+ entry (CCE) in endothelial cells. The proportion of Ca2+ stores contributing to the regulation of CCE is unknown. In fura-2/am loaded single endothelial cells freshly isolated from bovine left circumflex coronary arteries, we investigated whether a resting period in a Ca(2+)-free environment results in emptying of bradykinin-sensitive Ca2+ stores (BsS) and activation of CCE. In a Ca(2+)-free environment, depletion of BsS occurred in a time-dependent manner (59% after 10 min in Ca(2+)-free solution). This effect was prevented by inhibition of the Na(+)-Ca2+ exchange but not by a blockade of ryanodine-sensitive Ca2+ release (RsCR). In contrast to BsS, mitochondrial Ca2+ content remained unchanged in the Ca(2+)-free environment. Remarkably, activity of CCE (monitored as Mn2+ influx) did not increase after depletion of BsS in the Ca(2+)-free environment. In contrast to Mn2+ influx, the effect of re-addition of Ca2+ to elevate bulk Ca2+ concentration ([Ca2+]b) decreased with the time the cells rested in Ca(2+)-free buffer. This decrease was prevented by an inhibition of RsCR. In low Na+ conditions the effect of Ca2+ on [Ca2+]b was reduced while it did not change the time the cells rested in Ca(2+)-free solution. After a 2 min period in low Na+ conditions, ryanodine-induced Ca2+ extrusion was markedly diminished. Inhibition of RsCR re-established the effect of Ca2+ on [Ca2+]b in low Na+ conditions. Collapsing subplasmalemmal Ca2+ stores with nocodazole, increased the effect of Ca2+ on [Ca2+]b. In nocodazole-treated cells, the effect of Ca2+ on [Ca2+]b was not reduced in Ca(2+)-free environment. These data indicate that activation of CCE is not associated with the agonist-sensitive Ca2+ pools that deplete rapidly in a Ca(2+)-free environment. Subplasmalemmal ryanodine-sensitive Ca2+ stores (RsS) are emptied in Ca(2+)-free/low Na+ solution and re-sequester Ca2+ which enters the cells prior an increase in [Ca2+]b occurs. Thus, in endothelial cells there are differences in the functions of various subplasmalemmal Ca2+ stores (i.e. BsS and RsS), which include either activation of CCE or regulation of subplasmalemmal Ca2+.  相似文献   

17.
Calerythrin, a four-EF-hand calcium-binding protein from Saccharopolyspora erythraea, exists in an equilibrium between ordered and less ordered states with slow exchange kinetics when deprived of Ca(2+) and at low temperatures, as observed by NMR. As the temperature is raised, signal dispersion in NMR spectra reduces, and intensity of near-UV CD bands decreases. Yet far-UV CD spectra indicate only a small decrease in the amount of secondary structure, and SAXS data show that no significant change occurs in the overall size and shape of the protein. Thus, at elevated temperatures, the equilibrium is shifted toward a state with characteristics of a molten globule. The fully structured state is reached by Ca(2+)-titration. Calcium first binds cooperatively to the C-terminal sites 3 and 4 and then to the N-terminal site 1, which is paired with an atypical, nonbinding site 2. EF-hand 2 still folds together with the C-terminal half of the protein, as deduced from the order of appearance of backbone amide cross peaks in the NMR spectra of partially Ca(2+)-saturated states.  相似文献   

18.
We investigated whether the endoplasmic reticulum (ER) is a functionally connected Ca(2+) store or is composed of separate subunits by monitoring movements of Ca(2+) and small fluorescent probes in the ER lumen of pancreatic acinar cells, using confocal microscopy, local bleaching and uncaging. We observed rapid movements and equilibration of Ca(2+) and the probes. The bulk of the ER at the base was not connected to the granules in the apical part, but diffusion into small apical ER extensions occurred. The connectivity of the ER Ca(2+) store was robust, since even supramaximal acetylcholine (ACh) stimulation for 30 min did not result in functional fragmentation. ACh could elicit a uniform decrease in the ER Ca(2+) concentration throughout the cell, but repetitive cytosolic Ca(2+) spikes, induced by a low ACh concentration, hardly reduced the ER Ca(2+) level. We conclude that the ER is a functionally continuous unit, which enables efficient Ca(2+) liberation. Ca(2+) released from the apical ER terminals is quickly replenished from the bulk of the rough ER at the base.  相似文献   

19.
Agonist-induced contraction of airway smooth muscle (ASM) can be triggered by an elevation in the intracellular Ca(2+) concentration, primarily through the release of Ca(2+) from the sarcoplasmic reticulum (SR). The refilling of the SR is integral for subsequent contractions. It has been suggested that Ca(2+) entry via store-operated cation (SOC) and receptor-operated cation channels may facilitate refilling of the SR. Indeed, depletion of the SR activates substantial inward SOC currents in ASM that are composed of both Ca(2+) and Na(+). Accumulation of Na(+) within the cell may regulate Ca(2+) handling in ASM by forcing the Na(+)/Ca(2+) exchanger (NCX) into the reverse mode, leading to the influx of Ca(2+) from the extracellular domain. Since depletion of the SR activates substantial inward Na(+) current, it is conceivable that the reverse mode of the NCX may contribute to the intracellular Ca(2+) pool from which the SR is refilled. Indeed, successive contractions of bovine ASM, evoked by various agonists (ACh, histamine, 5-HT, caffeine) were significantly reduced upon removal of extracellular Na(+); whereas contractions evoked by KCl were unchanged by Na(+) depletion. Ouabain, a selective inhibitor of the Na(+)/K(+) pump, had no effect on the reductions observed under normal and zero-Na(+) conditions. KB-R7943, a selective inhibitor of the reverse mode of the NCX, significantly reduced successive contractions induced by all agonists without altering KCl responses. Furthermore, KB-R7943 abolished successive caffeine-induced Ca(2+) transients in single ASM cells. Together, these data suggest a role for the reverse mode of the NCX in refilling the SR in ASM following Ca(2+) mobilization.  相似文献   

20.
The denaturation of beta-trypsin induced by urea was investigated by fluorescence and circular dichroism. A transient denatured state was found at 2 M urea in both intrinsic fluorescence spectrum and bis-(8-anilino-1-naphtalene sulfonate) (bis-ANS) binding. In addition, the absence of tertiary contacts and presence of secondary structure for this state, are consistent with an intermediate equilibrium state having features of molten globule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号