首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
E2-EPF ubiquitin carrier protein (UCP) has been shown to be highly expressed in common human cancers and target von Hippel-Lindau (VHL) for proteosomal degradation in cells, thereby stabilizing hypoxia-inducible factor (HIF)-1alpha. Here, we investigated cellular factors that regulate the expression of UCP gene. Promoter deletion assay identified binding sites for early growth response-1 (Egr-1) and serum response factor (SRF) in the UCP promoter. Hepatocyte or epidermal growth factor (EGF), or phorbol 12-myristate 13-acetate induced UCP expression following early induction of Egr-1 expression in HeLa cells. Serum increased mRNA and protein levels of SRF and UCP in the cell. By electrophoretic mobility shift and chromatin immunoprecipitation assays, sequence-specific DNA-binding of Egr-1 and SRF to the UCP promoter was detected in nuclear extracts from HeLa cells treated with EGF and serum, respectively. Overexpression of Egr-1 or SRF increased UCP expression. RNA interference-mediated depletion of endogenous Egr-1 or SRF impaired EGF- or serum-mediated induction of UCP expression, which was required for cancer cell proliferation. Systemic delivery of EGF into mice also increased UCP expression following early induction of Egr-1 expression in mouse liver. The induced UCP expression by the growth factors or serum increased HIF-1alpha protein level under non-hypoxic conditions, suggesting that the Egr-1/SRF-UCP-VHL pathway is in part responsible for the increased HIF-1alpha protein level in vitro and in vivo. Thus, growth factors and serum induce expression of Egr-1 and SRF, respectively, which in turn induces UCP expression that positively regulates cancer cell growth.  相似文献   

6.
7.
8.
Li Z  Wang D  Messing EM  Wu G 《EMBO reports》2005,6(4):373-378
Hypoxia-inducible factor (HIF)-1alpha is a short-lived protein and is ubiquitinated and degraded through the von Hippel-Lindau protein (pVHL)-E3 ubiquitin ligase pathway at normoxia. Deubiquitination, by reversing ubiquitination, has been recognized as an important regulatory step in ubiquitination-related processes. Here, we show that pVHL-interacting deubiquitinating enzyme 2, VDU2, but not VDU1, interacts with HIF-1alpha. VDU2 can specifically deubiquitinate and stabilize HIF-1alpha and, therefore, increase expression of HIF-1alpha targeted genes, such as vascular endothelial growth factor (VEGF). These findings suggest that ubiquitination of HIF-1alpha is a dynamic process and that ubiquitinated HIF-1alpha might be rescued from degradation by VDU2 through deubiquitination. Although pVHL functions as a master control for HIF-1alpha stabilization, as pVHL-E3 ligase mediates the ubiquitination of both HIF-1alpha and VDU2, the balance between the pVHL-mediated ubiquitination and VDU2-mediated deubiquitination of HIF-1alpha provides another level of control for HIF-1alpha stabilization.  相似文献   

9.
10.
The von Hippel-Lindau tumor suppressor protein (pVHL) is the substrate-recognition module of an E3 ubiquitin ligase that targets the alpha subunits of hypoxia-inducible factor (HIF) for degradation in the presence of oxygen. Recognition of HIF by pVHL is linked to enzymatic hydroxylation of conserved prolyl residues in the HIF alpha subunits by members of the EGLN family. Dysregulation of HIF-target genes such as vascular endothelial growth factor and transforming growth factor alpha has been implicated in the pathogenesis of renal cell carcinomas and of hemangioblastomas, both of which frequently lack pVHL function.  相似文献   

11.
12.
Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation   总被引:22,自引:0,他引:22  
Jeong JW  Bae MK  Ahn MY  Kim SH  Sohn TK  Bae MH  Yoo MA  Song EJ  Lee KJ  Kim KW 《Cell》2002,111(5):709-720
Hypoxia-inducible factor 1 (HIF-1) plays a central role in cellular adaptation to changes in oxygen availability. Recently, prolyl hydroxylation was identified as a key regulatory event that targets the HIF-1alpha subunit for proteasomal degradation via the pVHL ubiquitination complex. In this report, we reveal an important function for ARD1 in mammalian cells as a protein acetyltransferase by direct binding to HIF-1alpha to regulate its stability. We present further evidence showing that ARD1-mediated acetylation enhances interaction of HIF-1alpha with pVHL and HIF-1alpha ubiquitination, suggesting that the acetylation of HIF-1alpha by ARD1 is critical to proteasomal degradation. Therefore, we have concluded that the role of ARD1 in the acetylation of HIF-1alpha provides a key regulatory mechanism underlying HIF-1alpha stability.  相似文献   

13.
14.
15.
The von Hippel-Lindau tumor suppressor gene   总被引:15,自引:0,他引:15  
  相似文献   

16.
Oxygen-dependent ubiquitination of the alpha-subunit of hypoxia-inducible factor (HIF-alpha) by the (von Hippel-Lindau protein)-Elongin B/C-Cullin2-Rbx1 (VBC-Cul2) ubiquitin ligase, a member of the cullin-RING ubiquitin ligases (CRLs), plays a central role in controlling oxygen metabolism. Nedd8 conjugation of cullins enhances the ligase activity of CRLs, and the COP9/signalosome (CSN) enhances the degradation of several CRL substrates, although it removes Nedd8 from cullins. Here we demonstrate that CSN increased the efficiency of the VBC-Cul2 complex for recognizing and ubiquitinating substrates by facilitating the dissociation of ubiquitinated substrates from the pVHL subunit of the complex. Moreover CSN enhanced HIF-1alpha degradation by promoting the dissociation of HIF-1alpha from pVHL in cells. The length of the polyubiquitin chain conjugated to the substrate appeared to be involved in CSN-mediated dissociation of the substrate from pVHL. In contrast to other mechanisms underlying CSN-mediated activation of CRLs, the dissociation of ubiquitinated substrates from pVHL did not require the deneddylation activity of CSN, implying that CSN enhances degradation of CRL substrates by multiple mechanisms.  相似文献   

17.
The activity of hypoxia-inducible factor 1 (HIF-1) is primarily determined by stability regulation of its alpha subunit, which is stabilized under hypoxia but degraded during normoxia. Hydroxylation of HIF-1alpha by prolyl hydroxylases (PHDs) recruits the von Hippel-Lindau (pVHL) E3 ubiquitin ligase complex to initiate proteolytic destruction of the alpha subunit. Hypoxic stabilization of HIF-1alpha has been reported to be antagonized by nitric oxide (NO). By using a HIF-1alpha-pVHL binding assay, we show that NO released from DETA-NO restored prolyl hydroxylase activity under hypoxia. Destabilization of HIF-1alpha by DETA-NO was reversed by free radical scavengers such as NAC and Tiron, thus pointing to the involvement of reactive oxygen species (ROS). Therefore, we examined the effects of ROS on HIF-1alpha stabilization. Treatment of cells under hypoxia with low concentrations of the superoxide generator 2,3-dimethoxy-1,4-naphthoquinone lowered HIF-1alpha protein stabilization. In vitro HIF-1alpha-pVHL interaction assays demonstrated that low-level ROS formation increased prolyl hydroxylase activity, an effect antagonized by ROS scavengers. While determining intracellular ROS formation we noticed that reduced ROS production under hypoxia was restored by the addition of DETA-NO. We propose that an increase in ROS formation contributes to HIF-1alpha destabilization by NO donors under hypoxia via modulation of PHD activity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号