首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigations of back muscle fatigue are important for understanding the role of muscle strain in the development of low back pain. The aim of this contribution is to review the two main techniques used for in vivo investigations of metabolic and electrophysiological changes, namely magnetic resonance phosphorous spectroscopy ((31)P MRS) and surface electromyography (SEMG), and to report some of our recent results on simultaneous measurements using these techniques during isometric back-muscle contraction in volunteers. Since it appears that electrophysiological and metabolic factors are simultaneously involved in the processes of fatigue and muscle recovery during load application, simultaneous acquisition of complete information is quite promising for obtaining new insights into the metabolic origin of electrophysiological changes or vice versa. Performing these measurements simultaneously, however, is more intricate owing to the occurrence of signal artifacts caused by mutual signal interferences of both techniques. Besides these mutual disturbances, further experimental difficulties are related to spatial limitations within the bore of clinical whole-body high-field magnetic resonance (MR) systems (1.5 T) and the sensitivity of MR measurements to motion-induced artifacts. Our own experimental results are presented, and problems that occur using both techniques simultaneously, as well as possibilities to resolve them, are discussed. The results shed light on the interrelation of electrophysiological and metabolic changes during fatigue of the back muscle while performing an exercise.  相似文献   

2.
Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD), essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS). Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR) and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI). This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric disorders, in individual human subjects.  相似文献   

3.
Nitric oxide (NO) and NO synthases (NOSs) are crucial factors in many pathophysiological processes such as inflammation, vascular/neurological function, and many types of cancer. Noninvasive imaging of NO or NOS can provide new insights in understanding these diseases and facilitate the development of novel therapeutic strategies. In this review, we will summarize the current state-of-the-art multimodality imaging in detecting NO and NOSs, including optical (fluorescence, chemiluminescence, and bioluminescence), electron paramagnetic resonance (EPR), magnetic resonance (MR), and positron emission tomography (PET). With continued effort over the last several years, these noninvasive imaging techniques can now reveal the biodistribution of NO or NOS in living subjects with high fidelity which will greatly facilitate scientists/clinicians in the development of new drugs and/or patient management. Lastly, we will also discuss future directions/applications of NO/NOS imaging. Successful development of novel NO/NOS imaging agents with optimal in vivo stability and desirable pharmacokinetics for clinical translation will enable the maximum benefit in patient management.  相似文献   

4.
Alzheimer's disease is a progressive neurodegenerative disorder characterised by the gradual onset of dementia. The pathological hallmarks of the disease are beta-amyloid (Abeta) plaques, neurofibrillary tangles, synaptic loss and reactive gliosis. The current therapeutic effort is directed towards developing drugs that reduce Abeta burden or toxicity by inhibiting secretase cleavage, Abeta aggregation, Abeta toxicity, Abeta metal interactions or by promoting Abeta clearance. A number of clinical trials are currently in progress based on these different therapeutic strategies and they should indicate which, if any, of these approaches will be efficacious. Current diagnosis of Alzheimer's disease is made by clinical, neuropsychologic and neuroimaging assessments. Routine structural neuroimaging evaluation with computed tomography and magnetic resonance imaging is based on non-specific features such as atrophy, a late feature in the progression of the disease, hence the crucial importance of developing new approaches for early and specific recognition at the prodromal stages of Alzheimer's disease. Functional neuroimaging techniques such as functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and single photon emission computed tomography, possibly in conjunction with other related Abeta biomarkers in plasma and CSF, could prove to be valuable in the differential diagnosis of Alzheimer's disease, as well as in assessing prognosis. With the advent of new therapeutic strategies there is increasing interest in the development of magnetic resonance imaging contrast agents and positron emission tomography and single photon emission computed tomography radioligands that will permit the assessment of Abeta burden in vivo.  相似文献   

5.
6.
The primary structure of the oligosaccharide moiety of a glycosphingolipid can be elucidated by employing high-field proton nuclear magnetic resonance (NMR) spectroscopy. Information with respect to the composition and configuration of its sugar residues, and the sequence and linkage sites of the oligosaccharide chain can be obtained by employing a variety of one- and two-dimensional techniques. The latter include both scalar and dipolar correlated two-dimensional NMR spectroscopy. These techniques are also useful in establishing the solution conformation (secondary structure) of the oligosaccharide moiety. Examples in utilizing these techniques in elucidating the primary and secondary structures of glycolipids are presented.  相似文献   

7.
We evaluated the accuracy of the needle tip representation by different imaging techniques for the guidance of facet infiltrations. For visualisation of the lumbar facet joints we used a high-field magnetic resonance tomograph (MRT) with a 2.0 Tesla field and 3.5 mm slice thickness, an open low-field magnetic resonance tomography (MRT) with an 0.064 Tesla field and 9 mm slice thickness, and IMATRON electron beam computed tomograph (EBCT) with a slice thickness of 6 mm, and a mobile C-arm fluoroscope. The study was performed on 4 human cadaveric lumber spine preparations, each of which had 8 facet joints. Under imaging control, special injection needles were placed as close as possible to the facet joint space. Following placement of he needle, all specimens were scanned with the electron beam tomograph using a slice thickness of 1.5 mm. The thin-slice study served as the gold standard. The distance between the tip of the needle and the facet joint was measured in all the images. Comparison of the different modalities with the gold standard revealed the following results: 1) median values of the absolute differences were 1.25 mm for high-field MRI, 1.35 mm for 6 mm EBCT, 2.05 mm for low-field MRI, and 2.30 mm for X-ray fluoroscopy. 2) While there was no statistically significant difference in the accuracy of tip localization between high-field MRI and 6" EBCT (p = 0.293), both systems were more precise than low-field MRI (p = 0.04) and X-ray fluoroscopy (p = 0.009). When choosing the best imaging technique, such additional factors as radiation, costs and time, must also be considered. Provided necessary radiological precautions are taken, and assuming careful pre-interventional planning, CT. EBCT and X-ray fluoroscopy are currently more effective than the expensive, time-consuming and costly magnetic resonance tomography.  相似文献   

8.
K Cheng  R A Waggoner  K Tanaka 《Neuron》2001,32(2):359-374
We mapped ocular dominance columns (ODCs) in normal human subjects using high-field (4 T) functional magnetic resonance imaging (fMRI) with a segmented echo planar imaging technique and an in-plane resolution of 0.47 x 0.47 mm(2). The differential responses to left or right eye stimulation could be reliably resolved in anatomically well-defined sections of V1. The orientation and width ( approximately 1 mm) of mapped ODC stripes conformed to those previously revealed in postmortem brains stained with cytochrome oxidase. In addition, we showed that mapped ODC patterns could be largely reproduced in different experiments conducted within the same experimental session or over different sessions. Our results demonstrate that high-field fMRI can be used for studying the functions of human brains at columnar spatial resolution.  相似文献   

9.
Brain imaging tools in neurosciences   总被引:3,自引:1,他引:2  
In this chapter brain imaging tools in neurosciences are presented. These include a brief overview on single-photon emission tomography (SPET) and a detailed focus on positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). In addition, a critical discussion on the advantages and disadvantages of the three diagnostic systems is added.Furthermore, this article describes the image analysis tools from visual analysis over region-of-interest technique up to statistical parametric mapping, co-registration methods, and network analysis. It also compares the newly developed combined PET/CT scanner approach with established image fusion software approaches.There is rapid change: Better scanner qualities, new software packages and scanner concepts are on the road paved for an amply bright future in neurosciences.  相似文献   

10.
Magnetic resonance imaging is a noninvasive, volume rendering diagnostic technique that uses lanthanide complexes to enhance proton relaxation. Magnetic resonance imaging is not limited by light scattering as optical microscopic techniques are, and allows imaging of whole animals. Clinical contrast agents are nonspecific and report solely on anatomy, whereas contrast agents that can be activated can be tailored to report on the physiological status or metabolic activity of biological systems. These new classes of magnetic resonance contrast agents represent a substantial leap in the type of information that can be derived from imaging experiments, and are the focus of this review.  相似文献   

11.
Negative-contrast magnetic resonance imaging (MRI) methods utilizing magnetic susceptibility contrast agents have become one of the most widely used approaches in cellular imaging research. However, visualizing and tracking super-paramagnetic iron oxide nanoparticle (SPIO)-labeled cells on the basis of negative-contrast can limit specificity and sensitivity. Therefore, there has been a strong motivation to explore MRI methods for cellular imaging with either positive or dual contrast (both positive and negative) for identifying labeled cells; these methods offer the potential to improve significantly the sensitivity and specificity of MRI-based cell-tracking approaches. In this review, current state-of-the-art positive- and dual-contrast MRI techniques and contrast agents are described specifically for applications involving in vivo cellular tracking and imaging.  相似文献   

12.
Wang YX 《Laboratory animals》2008,42(3):246-264
Recent technical developments in high-field magnetic resonance (MR) scanners, improvement in radio frequency coil design and gradient performance along with the development of efficient pulse sequences and new methods of enhancing contrast have made high-quality imaging of animal arthritis models feasible. MR can provide high-resolution structural information about the osteoarthritic changes in animal models, and also information about the biophysical properties of cartilage. This paper reviews the MR techniques available for animal knee imaging, and the various MR-derived readouts of knee osteoarthritis in animal models. Pitfalls in interpreting animal joint anatomy and joint composition are highlighted.  相似文献   

13.
In the era of genomics and proteomics, metabolomics offers a unique way to probe the underlying biochemistry of malignant transformations. In the context of oncological metabolomics, the study of the global variation of metabolites involved in the development and progression of cancers, few existing techniques offer as much potential to discover biomarkers as nuclear magnetic resonance techniques. The most fundamental magnetic resonance methodologies with regard to human prostate cancer are magnetic resonance spectroscopy and magnetic resonance spectroscopic imaging. Recent in vivo explorations have examined crucial metabolites that may indicate cancerous lesions and have the potential to direct treatment; while ex vivo studies of prostatic fluids and tissues have defined novel diagnostic parameters and indicated that magnetic resonance methodologies will be paramount in future prostate cancer management.  相似文献   

14.
Micro-imaging based on nuclear magnetic resonance offers the possibility to map metabolites in plant tissues non-invasively. Major metabolites such as sucrose and amino acids can be observed with high spatial resolution. Stable isotope tracers, such as (13)C-labelled metabolites can be used to measure the in vivo conversion rates in a metabolic network. This review summarizes the different nuclear magnetic resonance micro-imaging techniques that are available to obtain spatially resolved information on metabolites in plants. A short general introduction into NMR imaging techniques is provided. Particular emphasis is given to the difficulties encountered when NMR micro-imaging is applied to plant systems.  相似文献   

15.
Electron paramagnetic resonance imaging (EPRI) can be used to noninvasively and quantitatively obtain three-dimensional maps of tumor pO?. The paramagnetic tracer triarylmethyl (TAM), a substituted trityl radical moiety, is not toxic to animals and provides narrow isotropic spectra, which is ideal for in vivo EPR imaging experiments. From the oxygen-induced spectral broadening of TAM, pO? maps can be derived using EPRI. The instrumentation consists of an EPRI spectrometer and 7T magnetic resonance imaging (MRI) system both operating at a common radiofrequency of 300 MHz. Anatomic images obtained by MRI can be overlaid with pO? maps obtained from EPRI. With imaging times of less than 3 min, it was possible to monitor the dynamics of oxygen changes in tumor and distinguish chronically hypoxic regions from acutely hypoxic regions. In this article, the principles of pO? imaging with EPR and some relevant examples of tumor imaging are reviewed.  相似文献   

16.
17.
Functional mapping in the human brain using high magnetic fields.   总被引:4,自引:0,他引:4  
An avidly pursued new dimension in magnetic resonance imaging (MRI) research is the acquisition of physiological and biochemical information non-invasively using the nuclear spins of the water molecules in the human body. In this trial, a recent and unique accomplishment was the introduction of the ability to map human brain function non-invasively. Today, functional images with subcentimetre resolution of the entire human brain can be generated in single subjects and in data acquisition times of several minutes using 1.5 tesla (T) MRI scanners that are often used in hospitals for clinical purposes. However, there have been accomplishments beyond this type of imaging using significantly higher magnetic fields such as 4 T. Efforts for developing high magnetic field human brain imaging and functional mapping using MRI (fMRI) were undertaken at about the same time. It has been demonstrated that high magnetic fields result in improved contrast and, more importantly, in elevated sensitivity to capillary level changes coupled to neuronal activity in the blood oxygenation level dependent (BOLD) contrast mechanism used in fMRI. These advantages have been used to generate, for example, high resolution functional maps of ocular dominance columns, retinotopy within the small lateral geniculate nucleus, true single-trial fMRI and early negative signal changes in the temporal evolution of the BOLD signal. So far these have not been duplicated or have been observed as significantly weaker effects at much lower field strengths. Some of these high-field advantages and accomplishments are reviewed in this paper.  相似文献   

18.
Considerable progress has been made in adapting existing and developing new technologies to enable increasingly detailed phenotypic information to be obtained in embryonic and newborn mice. Sophisticated methods for imaging mouse embryos and newborns are available and include ultrasound and magnetic resonance imaging (MRI) for in vivo imaging, and MRI, vascular corrosion casts, micro-computed tomography, and optical projection tomography (OPT) for postmortem imaging. In addition, Doppler and M-mode ultrasound are useful noninvasive tools to monitor cardiac and vascular hemodynamics in vivo in embryos and newborns. The developmental stage of the animals being phenotyped is an important consideration when selecting the appropriate technique for anesthesia or euthanasia and for labeling animals in longitudinal studies. Study design also needs to control for possible differences between inter- and intralitter variability, and for possible long-term developmental effects caused by anesthesia and/or procedures. Noninvasive or minimally invasive intravenous or intracardiac injections or blood sampling, and arterial pressure and electrocardiography (ECG) measurements are feasible in newborns. Whereas microinjection techniques are available for embryos as young as 6.5 days of gestation, further advances are required to enable minimally invasive fluid or tissue samples, or blood pressure or ECG measurements, to be obtained from mouse embryos in utero. The growing repertoire of techniques available for phenotyping mouse embryos and newborns promises to accelerate knowledge gained from studies using genetically engineered mice to understand molecular regulation of morphogenesis and the etiology of congenital diseases.  相似文献   

19.
Airway remodeling is an important pathophysiological mechanism in a variety of chronic airway diseases. Historically investigators have had to use invasive techniques such as histological examination of excised tissue to study airway wall structure. The last several years has seen a proliferation of relatively noninvasive techniques to assess the airway branching pattern, wall thickness, and more recently, airway wall tissue components. These methods include computed tomography, magnetic resonance imaging, and optical coherence tomography. These new imaging technologies have become popular because to understand the physiology of lung disease it is important we understand the underlying anatomy. However, these new approaches are not standardized or available in all centers so a review of their validity and clinical utility is appropriate. This review documents how investigators are working hard to correct for inconsistencies between techniques so that they become more accepted and utilized in clinical settings. These new imaging techniques are very likely to play a frontline role in the study of lung disease and will, hopefully, allow clinicians and investigators to better understand disease pathogenesis and to design and assess new therapeutic interventions.  相似文献   

20.
In vivo imaging of molecular events in small animals has great potential to impact basic science and drug development. For this reason, several imaging technologies have been adapted to small animal research, including X-ray, magnetic resonance, and radioisotope imaging. Despite this plethora of visualization techniques, fluorescence imaging is emerging as an important alternative because of its operational simplicity, safety, and cost-effectiveness. Fluorescence imaging has recently become particularly interesting because of advances in fluorescent probe technology, including targeted fluorochromes as well as fluorescent "switches" sensitive to specific biochemical events. While past biological investigations using fluorescence have focused on microscopic examination of ex vivo, in vitro, or intravital specimens, techniques for macroscopic fluorescence imaging are now emerging for in vivo molecular imaging applications. This review illuminates fluorescence imaging technologies that hold promise for small animal imaging. In particular we focus on planar illumination techniques, also known as Fluorescence Reflectance Imaging (FRI), and discuss its performance and current use. We then discuss fluorescence molecular tomography (FMT), an evolving technique for quantitative three-dimensional imaging of fluorescence in vivo. This technique offers the promise of non-invasively quantifying and visualizing specific molecular activity in living subjects in three dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号