首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clastogenicity is frequently observed following treatment of mammalian cells with new chemical entities. This clastogenicity, unless proven otherwise, is assumed to result from the imperfect repair of DNA lesions produced from covalent chemical/DNA interaction. However, clastogenicity can also arise via other mechanisms such as non-covalent chemical intercalation into DNA resulting in poisoning of cellular DNA topoisomerase II (topo II) and stabilization of DNA double strand breaks. We have recently reported modifications to the V79 in vitro micronucleus assay which allow an indirect evaluation of both the intercalative and topoisomerase-interactive activities of chemical agents. In the present studies we have used these modified assays to further assess the validity of this approach in an evaluation of a number of intercalating and non-intercalating polycyclic compounds. It is shown that intercalating agents may be catalytic topo II inhibitors (e.g. chloroquine (CHL), tacrine (TAC), 9-aminoacridine (9AA), ethidium bromide (EB)) or topo II poisons (e.g. proflavine (PROF), auramine O (AUR) and curcumin (CURC)). Still other intercalators are shown to lack detectable topo II-interactions, (e.g. imipramine (IMP), quinacrine (QUIN), 2-aminoanthracene (AA), iminostilbene (IMN) and promethazine (PHE)). It is concluded that (1) the clastogenicity of three agents, PROF (a typical DNA intercalating agent), and AUR and CURC (both structurally atypical intercalating agents, with unknown clastogenic mechanisms), may be due to topo II poisoning; (2) other intercalating agents may either act as catalytic topo II inhibitors or exhibit no functional topo II interaction; (3) The use of these cell-based approaches may provide a logical first step in determining if unexpected clastogenicity associated with test article exposure is due to a topo II interaction.  相似文献   

2.
3.
4.
Cadmium (Cd2+) is a highly toxic and carcinogenic metal that is an environmental and occupational hazard. DNA topoisomerase II is an essential nuclear enzyme and its inhibition can result in the formation of genotoxic and recombinogenic DNA double strand breaks. In this study we showed that cadmium chloride strongly inhibited the DNA decatenation activity of human topoisomerase IIα in the low micromolar concentration range and that its inhibitory effects were reduced by glutathione. Because the activity of topoisomerase II is strongly inhibited by thiol-reactive compounds this result suggested that cadmium may be binding to critical topoisomerase II cysteine thiols. Cadmium, however, did not stabilize DNA-topoisomerase II covalent complexes, as measured by the lack of formation of DNA double strand breaks. Hence, it is not likely to be a topoisomerase II poison. Consistent with the idea that cadmium cytotoxicity may be modulated by glutathione levels, buthionine sulfoximine pretreatment to decrease glutathione levels resulted in a greatly increased cadmium-induced cytotoxicity in K562 cells. The results of this study suggest that cadmium may exert some of its cell growth inhibitory, and possibly its toxicity and carcinogenicity, by inhibiting topoisomerase IIα through reaction with critical cysteine thiols.  相似文献   

5.
Various compounds were evaluated for their ability to induce prophage lambda in the Escherichia coli WP2s(lambda) microscreen assay. The inability of a DNA gyrase subunit B inhibitor (novobiocin) to induce prophage indicated that inhibition of the gyrase's ATPase was insufficient to elicit the SOS response. In contrast, poisons of DNA gyrase subunit A (nalidixic acid and oxolinic acid) were the most potent inducers of prophage among the agents examined here. This suggested that inhibition of the ligation function of subunit A, which also has a DNA nicking activity, likely resulted in DNA breaks that were available (as single-stranded DNA) to act as strong SOS-inducing signals, leading to prophage induction. Agents that both intercalated and produced reactive-oxygen species (the mammalian DNA topoisomerase II poisons, adriamycin, ellipticine, and m-AMSA) were the next most potent inducers of prophage. Agents that produced reactive-oxygen species only (hydrogen peroxide and paraquat) were less potent than adriamycin and ellipticine but more potent than m-AMSA. Agents that intercalated but did not generate reactive-oxygen species (actinomycin D) or that did neither (teniposide) were unable to induce prophage, suggesting that intercalation alone may be insufficient to induce prophage. These results illustrate the variety of mechanisms (and the relative effectiveness of these mechanisms) by which agents can induce prophage. Nonetheless, these agents may induce prophage by producing essentially the same type of DNA damage, i.e., DNA strand breaks. The potent genotoxicity of the DNA gyrase subunit A poisons illustrates the genotoxic consequences of perturbing an important DNA-protein complex such as that formed by DNA and DNA topoisomerase.  相似文献   

6.
Cleavage of DNA by mammalian DNA topoisomerase II   总被引:46,自引:0,他引:46  
Using the P4 unknotting assay, DNA topoisomerase II has been purified from several mammalian cells. Similar to prokaryotic DNA gyrase, mammalian DNA topoisomerase II can cleave double-stranded DNA and be trapped as a covalent protein-DNA complex. This cleavage reaction requires protein denaturant treatment of the topoisomerase II-DNA complex and is reversible with respect to salt and temperature. The product after reversal of the cleavage reaction remains supertwisted, suggesting that the two ends of the putatively broken DNA are held tightly by the topoisomerase. Alternatively, the enzyme-DNA interaction is noncovalent, and the covalent linking of topoisomerase to DNA is induced by the protein denaturant. Detailed characterization of the cleavage products has revealed that topoisomerase II cuts DNA with a four-base stagger and is covalently linked to the protruding 5'-phosphoryl ends of each broken DNA strand. Calf thymus DNA topoisomerase II cuts SV40 DNA at multiple and specific sites. However, no sequence homology has been found among the cleavage sites as determined by direct nucleotide-sequencing studies.  相似文献   

7.
DNA adducts are mutagenic and clastogenic. Because of their harmful nature, lesions are recognized by many proteins involved in DNA repair. However, mounting evidence suggests that lesions also are recognized by proteins with no obvious role in repair processes. One such protein is topoisomerase II, an essential enzyme that removes knots and tangles from the DNA. Because topoisomerase II generates a protein-linked double-stranded DNA break during its catalytic cycle, it has the potential to fragment the genome. Previous studies indicate that abasic sites and other lesions that distort the double helix stimulate topoisomerase II-mediated DNA cleavage. Therefore, to further explore interactions between DNA lesions and the enzyme, the effects of exocyclic adducts on DNA cleavage mediated by human topoisomerase IIalpha were determined. When located within the four-base overhang of a topoisomerase II cleavage site (at the +2 or +3 position 3' relative to the scissile bond), 3,N(4)-ethenodeoxycytidine, 3,N(4)-etheno-2'-ribocytidine, 1,N(2)-ethenodeoxyguanosine, pyrimido[1,2-a]purin-10(3H)-one deoxyribose (M(1)dG), and 1,N(2)-propanodeoxyguanosine increased DNA scission approximately 5-17-fold. Enhanced cleavage did not result from an increased affinity of topoisomerase IIalpha for adducted DNA or a decreased rate of religation. Therefore, it is concluded that these exocyclic lesions act by accelerating the forward rate of enzyme-mediated DNA scission. Finally, treatment of cultured human cells with 2-chloroacetaldehyde, a reactive metabolite of vinyl chloride that generates etheno adducts, increased cellular levels of DNA cleavage by topoisomerase IIalpha. This finding suggests that type II topoisomerases interact with exocyclic DNA lesions in physiological systems.  相似文献   

8.
Single-strand DNA cleavages by eukaryotic topoisomerase II   总被引:7,自引:0,他引:7  
A new purification method for eukaryotic type II DNA topoisomerase (EC 5.99.1.3) is described, and the avian enzyme has been purified and characterized. An analysis of the cleavage reaction has revealed that topoisomerase II can be trapped as a DNA-enzyme covalent complex containing DNA with double-stranded and single-stranded breaks. The data indicate that DNA cleavage by topoisomerase II proceeds by two asymmetric single-stranded cleavage and resealing steps on opposite strands (separated by 4 bp) with independent probabilities of being trapped upon addition of a protein denaturant. Single-strand cleavages were directly demonstrated at both strong and weak topoisomerase II sites. Thus, a match to the vertebrate topoisomerase II consensus sequence (sequence; see text) (N is any base, and cleavage occurs between -1 and +1) [Spitzner, J.R., & Muller, M.T. (1988) Nucleic Acids Res. 16, 5533-5556)] does not predict whether a cleavage site will be single stranded or double stranded; however, sites cleaved by topoisomerase II that contain two conserved consensus bases (G residue at +2 and T at +4) generally yield double-strand cleavage whereas recognition sites lacking these two consensus elements yield single-strand cleavages. Finally, single-strand cleavages with topoisomerase II do not appear to be an artifact caused by damaged enzyme molecules since topoisomerase II in freshly prepared, crude extracts also shows the property of single-strand cleavages.  相似文献   

9.
The cytotoxic and differentiating effects of 10-hydroxycamptothecin (HCPT) in the human promyelocytic leukemia cell line HL-60 were examined. By trypan blue dye exclusion, a 24-h exposure of the cells to 0.1 microM of the drug was found to be cytotoxic. Exposure of the cells to lower concentrations (0.001-0.01 microM) for 3 days reduced cell proliferation and induced cell differentiation. As determined by Wright-Giemsa staining, approximately 25% of promyelocytic cells became metamyelocytes, banded and segmented neutrophils. Electron microscopy demonstrated alterations in the ultrastructure of HCPT-induced HL-60 cells that included the formation of lobulated nuclei and the accumulation of large vesicles and small myelin bodies as well as glycogen-like particles in the cell periphery. Qualitatively similar results were obtained in a subline of HL-60 that is resistant to 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA); however, the rate and extent of induced nitroblue tetrazolium-positive cells by HCPT and several other agents were greater in the resistant cell line. Under conditions that induced cell differentiation, HCPT sharply inhibited [3H]thymidine incorporation into DNA and increased the rate of protein synthesis without an effect on the rate of RNA synthesis. The measurement of DNA topoisomerase I activity in nuclear extracts from both HCPT- and DMSO-treated cells demonstrated that the enzyme was decreased in mature cells compared to nondifferentiated controls. The data suggest that progressive reduction of DNA topoisomerase I activity may be associated with cell differentiation, but whether HCPT-induced differentiation is mediated by inhibition of the enzyme is inconclusive.  相似文献   

10.
Although cobalt is an essential trace element for humans, the metal is genotoxic and mutagenic at higher concentrations. Treatment of cells with cobalt generates DNA strand breaks and covalent protein-DNA complexes. However, the basis for these effects is not well understood. Since the toxic events induced by cobalt resemble those of topoisomerase II poisons, the effect of the metal on human topoisomerase IIalpha was examined. The level of enzyme-mediated DNA scission increased 6-13-fold when cobalt(II) replaced magnesium(II) in cleavage reactions. Cobalt(II) stimulated cleavage at all DNA sites observed in the presence of magnesium(II), and the enzyme cut DNA at several "cobalt-specific" sites. The increased level of DNA cleavage in the presence of cobalt(II) was partially due to a decrease in the rate of enzyme-mediated religation. Topoisomerase IIalpha retained many of its catalytic properties in reactions that included cobalt(II), including sensitivity to the anticancer drug etoposide and the ability to relax and decatenate DNA. Finally, cobalt(II) stimulated topoisomerase IIalpha-mediated DNA cleavage in the presence of magnesium(II) in purified systems and in human MCF-7 cells. These findings demonstrate that cobalt(II) is a topoisomerase II poison in vitro and in cultured cells and suggest that at least some of the genotoxic effects of the metal are mediated through topoisomerase IIalpha.  相似文献   

11.
A DNA consensus sequence for topoisomerase II cleavage sites was derived previously based on a statistical analysis of the nucleotide sequences around 16 sites that can be efficiently cleaved by Drosophila topoisomerase II (Sander, M., and Hsieh, T. (1985) Nucleic Acids Res. 13, 1057-1072). A synthetic 21-mer DNA sequence containing this cleavage consensus sequence was cloned into a plasmid vector, and DNA topoisomerase II can cleave this sequence at the position predicted by the cleavage consensus sequence. DNase I footprint analysis showed that topoisomerase II can protect a region of approximately 25 nucleotides in both strands of the duplex DNA, with the cleavage site located near the center of the protected region. Similar correlation between the DNase I footprints and strong topoisomerase II cleavage sites has been observed in the intergenic region of the divergent HSP70 genes. This analysis therefore suggests that the strong DNA cleavage sites of Drosophila topoisomerase II likely correspond to specific DNA-binding sites of this enzyme. Furthermore, the extent of DNA contacts made by this enzyme suggests that eucaryotic topoisomerase II, in contrast to bacterial DNA bacterial DNA gyrase, cannot form a complex with extensive DNA wrapping around the enzyme. The absence of DNA wrapping is probably the mechanistic basis for the lack of DNA supercoiling action for eucaryotic topoisomerase II.  相似文献   

12.
The effect of ICRF-193, a noncleavable-complex-forming topoisomerase II inhibitor, on simian virus 40 (SV40) DNA and SV40 chromosome replication was examined by using an in vitro replication system composed of HeLa cell extracts and SV40 T antigen. Unlike the topoisomerase inhibitors VP-16 and camptothecin, ICRF-193 had little effect on DNA chain elongation during SV40 DNA replication, but high-molecular-weight DNAs instead of segregated monomer DNAs accumulated as major products. Analysis of the high-molecular-weight DNAs by two-dimensional gel electrophoresis revealed that they consisted of catenated dimers and late Cairns-type DNAs. Incubation of the replicated DNA with topoisomerase II resulted in conversion of the catenated dimers to monomer DNAs. These results indicate that ICRF-193 induces accumulation of catenated dimers and late Cairns-type DNAs by blocking the decatenating and relaxing activities of topoisomerase II in the late stage of SV40 DNA replication. In contrast, DNA replication of SV40 chromosomes was severely blocked by ICRF-193 at the late stage, and no catenated dimers were synthesized. These results are consistent with the finding that topoisomerase II is required for unwinding of the final duplex DNA in the late stage of SV40 chromosome replication in vitro.  相似文献   

13.
Pattern of recognition of DNA by mammalian DNA topoisomerase II   总被引:1,自引:0,他引:1  
The antitumor drug VP-16 stabilizes the topoisomerase II-DNA covalent complexes formed in an intermediate step of the isomerization reaction. The location of the sites of formation of these complexes and their relative strength were studied in vitro using pBR322. Sequences alignment of the regions containing the 24 detectable sites allows to identify GCGCGC-(N) alpha-TGAC with 9 less than or equal to alpha less than or equal to 25 as the DNA sequence recognized by topoisomerase II to form a cleavable complex. Changes in the last two nucleotides of the sequence determine weaker complexes.  相似文献   

14.
The DNA cleavage reaction of topoisomerase II is central to the catalytic activity of the enzyme and is the target for a number of important anticancer drugs. Unfortunately, efforts to characterize this fundamental reaction have been limited by the low levels of DNA breaks normally generated by the enzyme. Recently, however, a type II topoisomerase with an extraordinarily high intrinsic DNA cleavage activity was isolated from Chlorella virus PBCV-1. To further our understanding of this enzyme, the present study characterized the site-specific DNA cleavage reaction of PBCV-1 topoisomerase II. Results indicate that the viral enzyme cleaves DNA at a limited number of sites. The DNA cleavage site utilization of PBCV-1 topoisomerase II is remarkably similar to that of human topoisomerase IIalpha, but the viral enzyme cleaves these sites to a far greater extent. Finally, PBCV-1 topoisomerase II displays a modest sensitivity to anticancer drugs and DNA damage in a site-specific manner. These findings suggest that PBCV-1 topoisomerase II represents a unique model with which to dissect the DNA cleavage reaction of eukaryotic type II topoisomerases.  相似文献   

15.
Asami Y  Jia DW  Tatebayashi K  Yamagata K  Tanokura M  Ikeda H 《Gene》2002,291(1-2):251-257
Etoposide and teniposide, derivatives of podophyllotoxin, are inhibitors of DNA topoisomerase II and are potent anticancer agents. An adverse effect linked to the use of these drugs is the development of acute myeloid leukemia, a disorder usually associated with chromosomal translocation. To examine podophyllotoxin-induced DNA rearrangement, we developed an assay system to measure illegitimate recombination in Saccharomyces cerevisiae chromosomes. This approach uses juxtaposed CAN1-CYH2 negative selection markers that are introduced into the LEU2 locus, which is located on chromosome III, in a yeast strain carrying the mutated can1 and cyh2 genes. Upon formation of a deletion over the active CAN1-CYH2 genes, a cell becomes resistant to both canavanine and cycloheximide. To introduce drugs into the cell, we used a yeast strain carrying an ISE2 mutation, thereby making the cell drug-permeable. Here we show that treatment of cells with etoposide (VP-16) increases the rate of illegitimate recombination in yeast, indicating that VP-16 stimulates DNA topoisomerase-mediated illegitimate recombination. Structural analysis of the resulting recombinants indicate that most are formed by deletion mutations on chromosome III, which take place between short homologous regions of DNA. We propose a model for illegitimate recombination, in which VP-16 facilitates formation of a cleavable complex between DNA topoisomerase II and DNA, thus promoting DNA double-strand breakage with the resulting DNA ends joined by a non-homologous mechanism.  相似文献   

16.
The DNA ligation reaction of topoisomerase II is essential for genomic integrity. However, it has been impossible to examine many fundamental aspects of this reaction because ligation assays historically required the enzyme to cleave a DNA substrate before sealing the nucleic acid break. Recently, a cleavage-independent DNA ligation assay was developed for human topoisomerase IIalpha [Bromberg, K. D., Hendricks, C., Burgin, A. B., and Osheroff, N. (2002) J. Biol. Chem. 277, 31201-31206]. This assay overcomes the requirement for DNA cleavage by monitoring the ability of the enzyme to ligate a nicked oligonucleotide in which the 5'-terminal phosphate at the nick has been activated by covalent attachment to the tyrosine mimic, p-nitrophenol. The cleavage-independent ligation assay was used to more fully characterize the DNA ligation activity of human topoisomerase IIalpha. Results suggest that the active site tyrosine contributes little to the catalysis of DNA ligation beyond its primary role as an activating/leaving group. Although arginine 804 (the residue immediately N-terminal to the active site tyrosine) has been proposed to help anchor the 5'-DNA terminus during cleavage, conversion of this residue to alanine had only a modest effect on DNA ligation. Thus, it appears that arginine 804 does not play an essential role in DNA strand joining. In contrast, disruption of base pairing at the 5'-DNA terminus abrogated DNA ligation in the absence of a covalent enzyme-DNA bond. Therefore, it is proposed that base pairing represents a secondary mechanism for aligning the 5'-DNA termini for ligation. Finally, the human enzyme appears to ligate the two scissile bonds of a cleavage site in a nonconcerted fashion.  相似文献   

17.
We examined the effects of 12 terpene compounds derived from the roots of Euphorbia kansui on the proliferative activity of Xenopus embryo cells. Eight of these compounds showed significant inhibition of cellular proliferation even at low concentrations, while four of them needed to be present at higher concentrations to inhibit cellular proliferation. In order to define the mechanism of inhibition of cellular proliferation by these compounds, the effects of diterpene compounds on the activity of topoisomerase II were measured. Most of the diterpene compounds that inhibited cellular proliferation also inhibited topoisomerase II activity.  相似文献   

18.
D S Ray  J C Hines    M Anderson 《Nucleic acids research》1992,20(13):3353-3356
The mitochondrial DNA of the trypanosomatid Crithidia fasciculata consists of thousands of copies of a 2.5 kb minicircle and a small number of 37kb maxicircles catenated into a single enormous network. Treatment of C. fasciculata with the type II DNA topoisomerase inhibitor VP16 produces cleavable complexes of a type II DNA topiosomerase with both minicircles and maxicircles. A combined Southern and Western blot analysis of the cleaved DNA species released from the network by SDS treatment has identified topollmt, the kinetoplast-associated topisomerase, in covalent complexes with linear forms of minicircle and maxicircle DNAs. These results directly implicate topollmt in the topological reactions required for the duplication of the kinetoplast network.  相似文献   

19.
Summary Illegitimate recombination dependent on T4 DNA topoisomerase in a cell-free system has recently been described. In that work, recombinants between two phage DNA molecules were produced by the topoisomerase alone, without an Escherichia coli extract. In this paper, it is shown that recombination between phage and circular plasmid DNA molecules can also be detected in the presence or absence of an E. coli extract but at frequencies two or three orders of magnitude lower than that observed in the phage-phage cross. The frequency is probably lower because multiple recombination is required in the case of the phage-plasmid cross.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号