首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Acidic and non-acidic fractions from extracts of fluid from sheep wounds infested with larvae of Cochliomyia hominivorax (Coquerel) were analysed by linked gas chromatography and electroantennography in order to detect electrophysiologically-active compounds that could be potential attractants. Responses to twenty-six electrophysiologically-active compounds were observed and, on the basis of electron impact and chemical ionization mass spectrometry and co-chromatography with authentic compounds, twenty-five of these compounds were characterized. The most abundant compounds identified in the larval wound fluid were straight and methyl-branched aliphatic carboxylic acids, ranging from C2- to C5-carbon chain length. Butanoic acid, for example, was found to be present at approximately 0.45mg/ml. Aliphatic carboxylic acids with longer chain lengths were also observed but in trace amounts. Three aromatic carboxylic acids, benzoic, phenylethanoic and 3-phenylpropanoic acids were also present but only phenylethanoic and 3-phenylpropanoic acids elicited electroantennographic responses. Phenol and indole were by far the most abundant components of the non-acid fraction of the larval wound fluid with all other components, except δ-valerolactam, present at levels of less than 5% that of phenol which was present at a concentration of 0.05 mg/ml.
Electroantennographic studies of straight-chain aliphatic carboxylic acids showed that pentanoic acid elicited the strongest response from C. hominivorax. Similar studies showed that 1-octen-3-ol elicited stronger responses than 3-methylphenol, indole, phenol or dimethyldisulphide. 3-Methylindole, which was not found in the wound fluid, also elicited a strong response.
The potential behavioural significance of these compounds is discussed in relation to that of known attractants of C. hominivorax and other dipteran pests of mammals.  相似文献   

2.
Aims:  Weak acids are widely used by the food industry to prevent spoilage and to inhibit the growth of pathogenic micro-organisms. In this study the inhibitory effects of three commonly used weak acids, acetic acid, benzoic acid and sorbic acid, on the growth of Listeria monocytogenes were investigated.
Methods and Results:  In a chemically defined medium at pH 6·4 benzoic acid had the greatest inhibitory effect (50% inhibition of growth at 4 mmol l−1), while acetate was the least inhibitory (50% inhibition of growth at 50 mmol l−1). Mutants lacking either sigmaB (Δ sigB ) or two of the glutamate decarboxylase systems (Δ gadAB ) were used to investigate the contribution these systems make to weak acid tolerance in L. monocytogenes .
Conclusions:  The stress-inducible sigma factor sigmaB (σB) was not required for protection against acetate and played only a minor role in tolerating benzoate and sorbate. The glutamate decarboxylase system, which plays an important role in tolerating inorganic acids, played no significant role in the ability of L. monocytogenes to tolerate these weak acids, and neither did the presence of glutamate in the growth medium.
Significance and Impact of the Study:  These results suggest that the effectiveness of weak acid preservatives in food will not be compromised by the presence of glutamate, at least under mildly acidic conditions.  相似文献   

3.
Alkaline wet oxidation pre-treatment (water, sodium carbonate, oxygen, high temperature and pressure) of wheat straw was performed as a 2(4-1) fractional factorial design with the process parameters: temperature, reaction time, sodium carbonate and oxygen. Alkaline wet oxidation was an efficient pre-treatment of wheat straw that resulted in solid fractions with high cellulose recovery (96%) and high enzymatic convertibility to glucose (67%). Carbonate and temperature were the most important factors for fractionation of wheat straw by wet oxidation. Optimal conditions were 10 min at 195 degrees C with addition of 12 bar oxygen and 6.5 g l(-1) Na2CO3. At these conditions the hemicellulose fraction from 100 g straw consisted of soluble hemicellulose (16 g), low molecular weight carboxylic acids (11 g), monomeric phenols (0.48 g) and 2-furoic acid (0.01 g). Formic acid and acetic acid constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde. acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according to their chemical structure, e.g. diacids (oxalic and succinic acids), furan aldehydes, phenol aldehydes, phenol ketones and phenol acids. Aromatic aldehyde formation was correlated to severe conditions with high temperatures and low pH. Apart from CO2 and water, carboxylic acids were the main degradation products from hemicellulose and lignin.  相似文献   

4.
It has been shown that Listeria monocytogenes produces acetoin from glucose under aerobic conditions. A defined medium with glucose as the sole carbon source was used in an aerobic shake flask culture to reliably produce acetoin. Acetoin, the reactive compound in the Voges-Proskauer test, was assayable in the medium and was used to quantify the metabolic response when inhibitors were added to the medium. Inhibitors such as lactic, acetic, propionic and benzoic acids were used to demonstrate the utility of acetoin production as an indicator of metabolic disruption. With increasing levels of inhibitor, the metabolic and growth responses were measured by acetoin production and optical density change, respectively. Both measurements decreased in a similar manner with increasing inhibitor concentrations. The data also showed the apparent mode of action of the inhibitors. A bacteriostatic effect was observed for the protonated organic acids, acetic (4 mmol l(-1)) and propionic (4 mmol l(-1)), whereas protonated lactic (4 mmol l(-1)) and benzoic (0.16 mmol l(-1)) acids gave an irreversible (apparent bacteriocidal) effect. Lactic, acetic, and propionic acids showed stimulation of metabolic activity at low concentrations, but benzoic did not. Acetoin production is a novel method for quantifying and assessing the mode of action of inhibitors against L. monocytogenes. This system can be used to screen inhibitors for applications in food safety.  相似文献   

5.
An automatically controlled, glucose-fed, anaerobic digester was deliberately inhibited by addition of phenol. To overcome the phenol inhibition the feed dilution rate was lowered in such a way that the methane yield from glucose was kept the same as that under normal conditions. The concentrations of acetic and butyric acids remained below 100 mg/l, however, propionic acid accumulated to 2,750 mg/l. Phenol apparently inhibited all tropic groups of organisms and it was shown that the propionic acid was formed from the metabolism of phenol. From the nature of the operating strategy, it was deduced that the digester continued to convert all the glucose that was supplied to methane showing that propionic acid accumulation did not inhibit conversion of glucose to methane. Therefore, propionic acid accumulation may be an effect and not a cause of inhibition of the anaerobic digestion process.  相似文献   

6.
Summary The anaerobic degradation of phenol under denitrifying conditions by a bacterial consortium was studied both in batch and continuous cultures. Anaerobic degradation was dependent on NOf3 p– and concentrations up to 4 mm phenol were degraded within 2–5 days. During continuous growth in a fermenter, steady states could be maintained at eight dilution rates (D) corresponding to residence times between 12.5 and 50 h. Culture wash-out occurred at D=0.084 h–1. The kinetic parameters obtained for anaerobic degradation of phenol under denitrifying conditions by the consortium were: maximam specific growth rate = 0.091 h–1; saturation constant = 4.91 mg phenol/l; true growth yield = 0.57 mg dry wt/mg phenol; maintenance coefficient = 0.013 mg phenol/mg dry wt per hour. The Haldane model inhibition constant was estimated from batch culture data giving a value of 101 mg/l. The requirement of CO2 for the anaerobic degradation of phenol with NOf3 p– indicates that phenol carboxylation to 4-hydroxybenzoate was the first step of phenol degradation by this culture. 4-Hydroxybenzoate, proposed as an intermediate of phenol carboxylation under these conditions, was detected only in continuous cultures at very low growth rates (D=0.02 h–1), but was never detected as a free intermediary metabolite either in batch or in continuous cultures. Correspondence to: N. Khoury  相似文献   

7.
It has been shown that Listeria monocytogenes produces acetoin from glucose under aerobic conditions. A defined medium with glucose as the sole carbon source was used in an aerobic shake flask culture to reliably produce acetoin. Acetoin, the reactive compound in the Voges–Proskauer test, was assayable in the medium and was used to quantify the metabolic response when inhibitors were added to the medium. Inhibitors such as lactic, acetic, propionic and benzoic acids were used to demonstrate the utility of acetoin production as an indicator of metabolic disruption. With increasing levels of inhibitor, the metabolic and growth responses were measured by acetoin production and optical density change, respectively. Both measurements decreased in a similar manner with increasing inhibitor concentrations. The data also showed the apparent mode of action of the inhibitors. A bacteriostatic effect was observed for the protonated organic acids, acetic (4 mmol l−1) and propionic (4 mmol l−1), whereas protonated lactic (4 mmol l−1) and benzoic (0·16 mmol l−1) acids gave an irreversible (apparent bacteriocidal) effect. Lactic, acetic, and propionic acids showed stimulation of metabolic activity at low concentrations, but benzoic did not. Acetoin production is a novel method for quantifying and assessing the mode of action of inhibitors against L. monocytogenes . This system can be used to screen inhibitors for applications in food safety.  相似文献   

8.
A metabolite of the anxiolytic, anticonvulsant, and soporific drug phenazepam, 3-oxyphenazepam (3-OPh), possesses strong anxiolytic action. In the present work, 3-OPh and its acetic, benzoic, nicotinic, hemisuccinic, hemiglutaric, and valproic esters were synthesized, and their interaction with benzodiazepine receptors of the rat central nervous system was investigated. The structure of the compounds is found to correlate with their affinity to benzodiazepine receptors (inhibition constants characterizing specific binding of3H-diazepam with the P fraction of synaptic membranes in the rat brain), as well as with their anxiolytic activities. The affinities of dicarbonic acid monoesters (hemisuccinate and, especially, hemiglutarate) and valproate were found to be lower than those of monocarbonic acid esters and 3-OPh itself. High pharmacological activity of 3-OPh hemisuccinate is hypothesized to be determined by its role as a 3-OPh precursor (the latter is a product of hemisuccinate hydrolysis).Neirofiziologiya/Neurophysiology, Vol. 26, No. 4, pp. 262–265, July–August, 1994.  相似文献   

9.
The effects of acetic acid fumigation, ethanol fumigation, and steam heat treatment on growth of Botrytis cinerea in vitro were investigated. The effect of steam heat treatments in combination with modified atmosphere packaging (MAP) on Botrytis decay development on 'Hayward' kiwifruit was also studied. The fungus was grown in Petri dishes on potato dextrose agar. Ethanol fumigation with 100  μ l/l for 3 or 6 min, or 200  μ l/l for 6 min enhanced the growth of B. cinerea . The effect of acetic acid on growth of B. cinerea was time and dosage-dependent. Fumigation with 1  μ l/l for 6 min, 2  μ l/l for 3 min, and 4  μ l/l for 3 min promoted radial growth of the fungus when compared to the growth of the untreated control. Fumigation with 2  μ l/l for 6 min delayed the growth of the fungus for the first 6 days, while fumigation with 6  μ l/l for 3 min delayed the growth of the fungus after the sixth day. Fumigation with 4 or 6  μ l/l acetic acid for 6 min, and 8  μ l/l acetic acid for 3 or 6 min resulted in complete inhibition of fungal growth. Steam heat treatment at 45°C for 6 min, and at 48, 51, and 54°C for 3 or 6 min completely inhibited fungal growth in vitro . Furthermore, steam treatments at 47, 50, and 53°C for 3 or 6 min completely inhibited decay at the stem end of kiwifruit kept at 10°C in MAP for 12 days. However, none of the steam treatments inhibited decay in wounds on the surface of the fruit kept in MAP.  相似文献   

10.
Summary An aerobic mixed culture removing phenol was developed and maintained with a biomass of 2900mg/l–3400 mg/l in a fed-batch reactor by feeding phenol 500 mg/l/day. The mixed culture (AS) consisted of two non-phenol bacteria and eight phenol degraders, of which 4 gram-negative rods and 4 gram-positive rods, that could remove about 96% of the fed phenol in 12 hours at 30°C±3°C. This paper also reports the stability of the consortium with respect to its constitution and phenol degradation.  相似文献   

11.
The comparative toxicity of lactic acid, acetic acid, and benzoic acid to tilapia (Oreochromis mossambicus), cladoceran crustacea (Moina micrura), and oligochaete worm (Branchiura sowerbyi) were determined using static bioassay tests. Worms were found most sensitive to all the acids whereas the cladoceran was found most resistant to lactic acid and the fish most resistant to acetic acid and benzoic acid. The 96h LC50 values of lactic acid, acetic acid, and benzoic acid, were, respectively, 257.73, 272.87, and 276.74 mg L?1 for O. mossambicus; 329.12, 163.72, and 71.65 mg L?1 for M. micrura and 50.82, 14.90, and 39.47 mg L?1 for B. sowerbyi. Tilapia lost appetite at sub-lethal concentrations as low as 2.18 mg L?1 lactic acid, 1.26 mg L?1 acetic acid, and 13.84 mg L? 1 of benzoic acid. Growth and reproduction of the fish were affected following 90-day chronic exposure to sub-lethal concentrations of the acids. Minimum effective concentration of the acids that significantly reduced food conversion efficiency (FCE), percent increase of weight, specific growth rate, yield and fecundity of the fish were 2.18, 1.47, and 3.95 mg · L?1 of lactic acid, acetic acid, and benzoic acid, respectively. Effects of acetic acid and benzoic acid on FCE, weight increase, and yield were not significantly different from each other whereas lactic acid produced different effects from acetic acid as well as benzoic acid. Mean values of dissolved oxygen, primary productivity, and plankton populations of the test medium significantly reduced from control at 16.94 mg L?1 lactic acid, 16.79 mg L?1 acetic acid, and 13.84 mg L?1 benzoic acid.  相似文献   

12.
A repellent-gradient tube assay for negative chemotaxis inSpirochaeta aurantia was developed and used to demonstrate that acids, alcohols, and sulfide were effective chemorepellents. The threshold concentrations (the lowest concentration of a repellent that elicited a detectable response) for benzoic acid, salicylic acid, and butyric acid were 3×10–5 M. For acetic acid, propionic acid,p-aminobenzoic acid, propanol, butanol, and sulfide, threshold concentrations were 10–3 to 10–4 M. For formic acid, glyoxylic acid, glycolic acid, lactic acid, malonic acid, succinic acid, fumaric acid, methanol, ethanol, ethanediol, and propanediol, threshold concentrations were 10–2 to 10–3 M. Compounds such as methylamine, ethanolamine, formaldehyde, benzene, toluene, phenol, indol, nickel, and various amino acids did not elicit a repellent response. The results of competition experiments suggest that the repellents identified are recognized by three distinct receptors: a weak acid receptor, an alcohol receptor, and a sulfide receptor. The repellent responses to weak acids were maximal at pH 5.5 and decreased with increasing pH, whereas the response to propanol was unaffected by pH over a range of 5.5–8.0. The demonstration of negative chemotaxis inS. aurantia and the identification of distinct classes of repellents will allow further experimentation directed at understanding chemosensory mechanisms in spirochetes.  相似文献   

13.
Aldo-keto reductase 1C3 (AKR1C3) also known as type 5 17β-hydroxysteroid dehydrogenase has been implicated as one of the key enzymes driving the elevated intratumoral androgen levels observed in castrate resistant prostate cancer (CRPC). AKR1C3 inhibition therefore presents a rational approach to managing CRPC. Inhibitors should be selective for AKR1C3 over other AKR1C enzymes involved in androgen metabolism. We have synthesized 2-, 3-, and 4-(phenylamino)benzoic acids and identified 3-(phenylamino)benzoic acids that have nanomolar affinity and exhibit over 200-fold selectivity for AKR1C3 versus other AKR1C isoforms. The AKR1C3 inhibitory potency of the 4′-substituted 3-(phenylamino)benzoic acids shows a linear correlation with both electronic effects of substituents and the pKa of the carboxylic acid and secondary amine groups, which are interdependent. These compounds may be useful in treatment and/or prevention of CRPC as well as understanding the role of AKR1C3 in endocrinology.  相似文献   

14.
A previous three phase fluidized sand bed reactor design was improved by adding a draft tube to improve fluidization and submerged effluent tubes for sand separation. The changes had little influence on the oxygen transfer coefficients(K L a), but greatly reduced the aeration rate required for sand suspension. The resulting 12.5 dm3 reactor was operated with 1 h liquid residence time, 10.2dm3/min aeration rate, and 1.7–2.3 kg sand (0.25–0.35 mm diameter) for the degradation of phenol as sole carbon source. The K La of 0.015 s–1 gave more than adequate oxygen transfer to support rates of 180g phenol/h · m3 and 216 g oxygen/h · m3. The biomass-sand ratios of 20–35 mg volatiles/g gave estimated biomass concentrations of 3–6 g volatiles/dm3. Offline kinetic measurements showed weak inhibition kinetics with constants ofK s=0.2 mg phenol/dm3, K o2=0.5 mg oxygen/dm3 and KinI= 122.5 mg phenol/dm3. Very small biofilm diffusion effects were observed. Dynamic experiments demonstrated rapid response of dissolved oxygen to phenol changes below the inhibition level. Experimentally simulated continuous stagewise operation required three stages, each with 1 h residence time, for complete degradation of 300 mg phenol/dm3 · h.  相似文献   

15.
A simple and effective strategy for fabrication of hydrogen peroxide (H2O2) biosensor has been developed by entrapping horseradish peroxidase (HRP) in chitosan/silica sol–gel hybrid membranes (CSHMs) doped with potassium ferricyanide (K3Fe(CN)6) and gold nanoparticles (GNPs) on platinum electrode surface. The hybrid membranes are prepared by cross-linking chitosan (CS) with 3-aminopropyltriethoxysilane (APTES), while the presence of GNPs improved the conductivity of CSHMs, and the Fe(CN)63−/4− was used as a mediator to transfer electrons between the electrode and HRP due to its excellent electrochemistry activity. UV–Vis absorption spectroscopy was employed to characterize the different components in the CSHMs and their interaction. The parameters influencing the performance of the resulting biosensor were optimized and the characteristic of the resulting biosensor was characterized by cyclic voltammetry and chronoamperometry. Linear calibration for hydrogen peroxide was obtained in the range of 3.5 × 10− 6 to 1.4 × 10− 3 M under the optimized conditions with the detection limit (S/N = 3) of 8.0 × 10− 7 M. The apparent Michaelis–Menten constant of the enzyme electrode was 0.93 mM. The enzyme electrode retained about 78% of its response sensitivity after 30 days. The system was applied for the determination of the samples, and the results obtained were satisfactory.  相似文献   

16.
Alkaline wet oxidation (WO) (using water, 6.5 g/L sodium carbonate and 12 bar oxygen at 195 degrees C) was used as pretreatment method for wheat straw (60 g/L), resulting in a hydrolysate and a cellulosic solid fraction. The hydrolysate consisted of soluble hemicellulose (8 g/L), low-molecular-weight carboxylic acids (3.9 g/L), phenols (0.27 g/L = 1.7 mM) and 2-furoic acid (0.007 g/L). The wet oxidized wheat straw hydrolysate caused no inhibition of ethanol production by Saccharomyces cerevisiae ATCC 96581. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested in concentrations of 50-100 times the concentration found in the hydrolysate for their effect on fermentation by yeast. At these high concentrations (10 mM), 4-hydroxybenzaldehyde, vanillin, 4-hydroxyacetophenone and acetovanillone caused a 53-67% decrease in the volumetric ethanol productivity in S. cerevisiae compared to controls with an ethanol productivity of 3.8 g/L. The phenol acids (4-hydroxy, vanillic and syringic acid), 2-furoic acid, syringaldehyde and acetosyringone were less inhibitory, causing a 5-16% decrease in ethanol productivity. By adding the same aromatic compounds to hydrolysate (10 mM), it was shown that syringaldehyde and acetovanillone interacted negatively with hydrolysate components on the ethanol productivity. Fermentation in WO hydrolysate, that had been concentrated 6 times by freeze-drying, lasted 4 hours longer than in regular hydrolysate; however, the ethanol yield was the same. The longer fermentation time could not be explained by an inhibitory action of phenols alone, but was more likely caused by inhibitory interactions of phenols with carboxylic acids, such as acetic and formic acid.  相似文献   

17.
Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degrees C) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g/l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested in concentrations of 10-100x the concentration found in the hydrolysate for their effect on fermentation by T. mathranii. At 2 mM, these aromatic compounds were not inhibitory to growth or ethanol yield in T. mathranii. When the concentration of aromatics was increased to 10 mM, the fermentation was severely inhibited by the phenol aldehydes and to a lesser extent by the phenol ketones. By adding the same aromatic compounds to WO hydrolysate (10 mM), synergistic inhibitory effects of all tested compounds with hydrolysate components were shown. When the hydrolysate was concentrated three- and six-fold, growth and fermentation with T. mathranii were inhibited. At a six-fold hydrolysate concentration, the total concentration of phenolic monomers was 17 mM; hence aromatic monomers are an important co-factor in hydrolysate inhibition.  相似文献   

18.
The kinetics of bio-oxidation by a microbial ensemble of a model mixture of contaminants that mimicked the ground-water pollution plume at an existing contaminated site was investigated. Phenol at 50 mg/l and a mixture of ten organic contaminants (MOC) (benzene, tetrachloromethane, trichloroethylene, toluene, o-xylene, 1,4-dichlorobenzene, o-cresol, nitrobenzene, naphthalene and 2,6-dichlorophenol) at individual concentrations ranging from 150 g/l to 600 g/l were the components of the model mixture. The microbial ensemble consisted of at least three Pseudomonas spp. isolated from the polluted site. Patterns of oxygen uptake rate (OUR) for the oxidation of phenol alone and with added MOC were treated mathematically. The values for kinetic parameters that gave the best fit to the data were respectively 11.29 and 15.03 ml O2 h–1 (mg protein)–1 for the OUR maximum (OURmax), 75.89 mg/l and 33.66 mg/l for the saturation constant (K s), 105.92 mg/l and 36.44 mg/l for the inhibitor constant (K i), and 89.66 mg/l and 35.02 mg/l the substrate minimum inhibitory concentration (S mic). This study also scrutinised interference between the two components of the model mixture of contaminants (phenol and MOC) on the basis of variations in kinetic patterns. MOC was shown to be toxic at milligram per litre levels. The microbial ensemble increased phenol oxidation in response to MOC, possibly to obtain the energy to overcome this toxic effect. This was indicated by an acceleration of phenol oxidation in response to increasing concentrations of MOC and higher OURmax for oxidation of phenol in the presence of MOC. The toxicity of MOC also resulted in enhanced vulnerability of the microbial ensemble to a phenol inhibitory effect, indicated by the diminution of K i and S mic. The microbial ensemble showed high resistance to inhibition by the sole presence of phenol possibly because of adaptation to toxic features of MOC during the processes of enrichment and cultivation.  相似文献   

19.
A series of near-linear biphenyl benzimidazole diamidines 5a–h were synthesized from their respective diamidoximes (4a–h), through the bis-O-acetoxyamidoxime, followed by hydrogenation in glacial acetic acid/ethanol in the presence of Pd–C. Compounds 4a–h were obtained in three steps, starting with the Suzuki coupling reaction of the appropriate haloarylcarbonitriles 1a–g or 4-bromo-2-fluorobenzaldehyde with 4-formylphenylboronic acid or 4-cyanophenylboronic acid to form the anticipated 4-formylbiphenyl carbonitrile analogues 2a–h. Subsequent condensation of the formyl derivatives 2a–h with 3,4-diaminobenzonitrile in the presence of sodium bisulfite or 1,4-benzoquinone gave the desired dinitriles 3a–h, the precursors for 4a–h. All the diamidines showed strong DNA affinities, as judged by high ΔTm values with poly(dA.dT)2. The compounds were quite active in vitro versus Trypanosoma brucei rhodesiense, giving IC50 values ranging from 3 to 37 nM. These compounds were even more active versus Plasmodium falciparum, exhibiting IC50 values ranging from 0.5 to 23 nM. The compounds showed moderate to good activity in vivo in the STIB900 model for acute African trypanosomiasis. The most active compounds 5b and e gave 3/4 cures on an IP dosage of 20 mg/kg.  相似文献   

20.
Abstract. Human sweat samples were chemically fractionated into acid and non-acid components. The most abundant volatile compounds present in the fractions were identified by linked gas chromatography mass spectrometry. The acid fractions were found to be composed of a range of twenty aliphatic and three aromatic carboxylic acids ranging, on average, from 0.02 to 20 ig per ml of sweat sampled. Non-acid fractions were found to contain: 6-methyl-5-hepten-2-one, l-octen-3-ol, decanal, benzyl alcohol, dimethylsulphone, phenylethanol, phenol and 4-mefhylphenol, collectively amounting to 0.1 and 3 |ig per ml of sweat. The major component of sweat was found to be L-lactic acid which constituted from 1 to 5 mg/ml.
Using the intact antennae of the anthropophilic malaria vector mosquito Anopheles gambiae Giles, the peripheral olfactory activities of compounds identified in the sweat fractions were investigated by electroantennography (EAG). Short-chain saturated carboxylic acids, methanoic, ethanoic, propanoic, butanoic, pentanoic and hexanoic acids were found to elicit significantly larger EAG responses than longer chain saturated carboxylic acids from female An.gambiae. For a given dose the largest amplitude EAG response was elicited by methanoic acid. Pentanoic acid elicited larger EAG responses than either butanoic or hexanoic acids. Two non-acidic compounds, l-octen-3-ol and 4-methylphenol, were found to elicit significant dose-dependent EAG responses from female An.gambiae. 1 -Octen-3-ol elicited larger EAG responses than 4-methylphenol for a given dose, but both compounds elicited smaller EAG responses than the same dose of C]-C6straight-chain aliphatic carboxylic acids. The possible behavioural significance of the EAG-active compounds identified in human sweat samples is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号