首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In spite of the techniques based on the amplification of 16S rRNA genes (16S rDNA) to compare bacterial communities that are now widely in use in microbial ecology, little is known about the composition of the soybean continuous cropping (CC) and rotational cropping (RC) soil microbial community. To address this, we compared the levels of bacterial community diversity in RC and 5-year CC rhizosphere soil samples. We selected 407 clones in RC and 490 clones in CC for restriction fragment length polymorphism analysis. A total of 123 phylotypes were identified among the 16S rDNA clones, while 78 unique and 21 common phylotypes were identified among the CC soil isolates. Analysis of sequences from a subset of the phylotypes showed that at least 11 bacterial divisions were represented in the clone libraries. The phylotype richness, frequency distribution (evenness), and composition of the two clone libraries were investigated using a variety of diversity indices. Although the analysis of diversity indices and LIBSHUFF comparisons revealed that the compared libraries were not significantly different ( P =0.05) between the RC vs. CC soils, some differences could be observed in terms of specific phyla and groups. We concluded that the group variance was not determined immediately by the cropping system's induction, but was a long-term and slow process.  相似文献   

2.
3.
4.
5.
Archaeal diversity in Lake Ac?göl, a closed-basin, alkaline, hypersaline lake located at the northern edge of western Tourides in southwest Anatolia, was investigated using culture-independent methods. Microbial mat samples were collected from six different points. Archaeal 16S rRNA gene libraries were generated using domain specific oligonucleotide primers, and 16S rRNA gene sequences of clone libraries were analyzed phylogenetically. Denaturing gradient gel electrophoresis of 16S rRNA genes showed a variance in diversity with spatial differences. Archaeal diversity of Ac?göl is dominated by the members of family Halobacteriaceae which requires both high salt concentration and high pH for growth. Sequence analysis of archaeal 16s rRNA genes indicates the presence of the phylotypes affiliated with the genera Halorubrum, Halosimplex, Halorhabdus, Haloterrigena and Natronococcus in the analyzed samples.  相似文献   

6.
Methane vents are of significant geochemical and ecological importance. Notable progress has been made toward understanding anaerobic methane oxidation in marine sediments; however, the diversity and distribution of aerobic methanotrophs in the water column are poorly characterized. Both environments play an essential role in regulating methane release from the oceans to the atmosphere. In this study, the diversity of particulate methane monooxygenase (pmoA) and 16S rRNA genes from two methane vent environments along the California continental margin was characterized. The pmoA phylotypes recovered from methane-rich sediments and the overlying water column differed. Sediments harbored the greatest number of unique pmoA phylotypes broadly affiliated with the Methylococcaceae family, whereas planktonic pmoA phylotypes formed three clades that were distinct from the sediment-hosted methanotrophs and distantly related to established methanotrophic clades. Water column-associated phylotypes were highly similar between field sites, suggesting that planktonic methanotroph diversity is controlled primarily by environmental factors rather than geographical proximity. Analysis of 16S rRNA genes from methane-rich waters did not readily recover known methanotrophic lineages, with only a few phylotypes demonstrating distant relatedness to Methylococcus. The development of new pmo primers increased the recovery of monooxygenase genes from the water column and led to the discovery of a highly diverged monooxygenase sequence which is phylogenetically intermediate to Amo and pMMO. This sequence potentiates insight into the amo/pmo superfamily. Together, these findings lend perspective into the diversity and segregation of aerobic methanotrophs within different methane-rich habitats in the marine environment.  相似文献   

7.
An ecological study on distribution of Antarctic bacterial communities was determined by 16S-based phylogenetic analyses of clone libraries derived from RNA and DNA extracted from two different marine areas and compared between each other. Superficial seawater samples were collected from four stations in Ross Sea, three of them located in Rod Bay and one in Evans Cove; for each station two clone libraries (16S rDNA and 16S rRNA) were prepared and evident divergences between DNA and RNA libraries of each site were obtained. Of all phylotypes 93.6% were found in RNA libraries; in contrast, only 31 phylotypes (70.5%) were retrieved from total microbial community (DNA libraries). DNA and RNA sequences related to gamma-Proteobacteria and Bacteroidetes groups, typical for Antarctic sea-ice bacterial communities, were detected in analysed sites. 16S rDNA and rRNA libraries derived from the two different areas were enriched by picophytoplanktonic 16S sequences of plastid and mitochondrion origins, reflecting that the algal blooms occurred during sampling (Antarctic summer 2003). The finding in Rod Bay libraries of high percentage of DNA clones apparently affiliated with beta-Proteobacteria typical for activated sludges and well water could be explained by the presence of a sewage depuration system at this site. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA gene sequencing is preferred approach to have a more reliable vision on the composition of microbial communities.  相似文献   

8.
The phylogenetic diversity of archaeal 16S rRNA genes in a thermoacidic spring field of Ohwakudani, Hakone, Japan, was investigated by PCR-based analysis using a novel Archaea-specific primer designed in the present study. Clone libraries of archaeal 16S rRNA genes were constructed from hot water (78 °C) and mud (28 °C) samples by PCR using a newly designed forward primer and a previously reported forward primer with reverse primers. Most phylotypes found in the libraries from the hot water sample were related to cultured (hyper)thermophiles. The phylotypes and their detection frequencies from the hot water sample were similar for the libraries amplified with the two different primer sets. In contrast, phylotypes having a low similarity (<95%) to cultured Archaea were found in the libraries from the mud sample. Some of the phylotypes were relatively close to members of Thermoplasmata (80-93% similarity) and the others were not clearly affiliated with Crenarchaeota and Euryarchaeota, but related to Thaumarchaeota and Korarchaeota. The phylotypes and their detection frequencies were significantly different between the two libraries of the mud sample. Our results from the PCR-based analysis using the redesigned primer suggest that more diverse, uncultured Archaea are present in acidic environments at a low temperature than previously recognized.  相似文献   

9.
Bacterial communities associated with the brown alga Laminaria saccharina from the Baltic Sea and from the North Sea were investigated using denaturing gradient gel electrophoresis and 16S rRNA gene clone libraries. The rhizoid, cauloid, meristem and phyloid revealed different 16S rRNA gene denaturing gradient gel electrophoresis banding patterns indicating a specific association of bacterial communities with different parts of the alga. Associations with cauloid and meristem were more specific, while less specific associations were obtained from the old phyloid. In addition, seasonal and geographical differences in the associated communities were observed. Results from 16S rRNA gene libraries supported these findings. Bacterial phylotypes associated with the alga were affiliated with the Alphaproteobacteria (nine phylotypes), Gammaproteobacteria (nine phylotypes) and the Bacteroidetes group (four phylotypes). A number of bacteria associated with other algae and other marine macroorganisms were among the closest relatives of phylotypes associated with L. saccharina.  相似文献   

10.
Microbial ecologists have discovered novel rRNA genes (rDNA) in mesophilic soil habitats worldwide, including sequences that affiliate phylogenetically within the division Crenarchaeota (domain Archaea). To characterize the spatial distribution of crenarchaeal assemblages in mesophilic soil habitats, we profiled amplified crenarchaeal 16S rDNA sequences from diverse soil ecosystems by using PCR-single-stranded-conformation polymorphism (PCR-SSCP) analysis. PCR-SSCP profiles provide a measure of relative microbial diversity in terms of richness (number of different phylotypes as estimated from the number of unique PCR-SSCP peaks) and evenness (abundance of each phylotype as estimated from the relative area under a peak). Crenarchaeal assemblages inhabiting prairie, forest, turf, and agricultural soils were characterized at six sampling locations in southern and central Wisconsin. Phylotype richness was found to be more stable than evenness among triplicate samples collected within 30 cm at each sampling location. Transformation of the PCR-SSCP data by principal-component analysis, followed by statistical testing (analysis of variance [P < 0.0001] and least-significant-difference analysis [alpha = 0.5]), supported the conclusion that each location exhibited a unique profile. To further characterize the spatial distribution of crenarchaeal assemblages at one location, additional soil samples (a total of 30) were collected from agricultural field plots at the Hancock Agricultural Research Station. PCR-SSCP revealed a patchy spatial distribution of crenarchaeal assemblages within and between these plots. This mosaic of crenarchaeal assemblages was characterized by differences in phylotype evenness that could not be correlated with horizontal distance (15 to 30 m) or with depth (0 to 20 cm below the surface). Crenarchaeal 16S rDNA clone libraries were produced and screened for unique SSCP peaks. Clones representing the dominant phylotypes at each location were identified, sequenced, and found to group phylogenetically with sequences in crenarchaeal clade C1b.  相似文献   

11.
This study examined the diversity of Bacteria, Archaea and in particular aerobic methanotrophs associated with a shallow (84 m) methane seep in the tropical Timor Sea, Australia. Seepage of thermogenic methane was associated with a large carbonate hardground covered in coarse carbonate-rich sediments and various benthic organisms such as solitary corals. The diversity of Bacteria and Archaea was studied by analysis of cloned 16S rRNA genes, while aerobic methanotrophic bacteria were quantified using real-time PCR targeting the α-subunit of particulate methane monooxygenase ( pmoA ) genes and diversity was studied by analysis of cloned pmoA genes. Phylogenetic analysis of bacterial and archaeal 16S rRNA genes revealed diverse and mostly novel phylotypes related to sequences previously recovered from marine sediments. A small number of bacterial 16S rRNA gene sequences were related to aerobic methanotrophs distantly related to the genera Methylococcus and Methylocaldum . Real-time PCR targeting pmoA genes showed that the highest numbers of methanotrophs were present in surface sediments associated with the seep area. Phylogenetic analysis of pmoA sequences revealed that all phylotypes were novel and fell into two large clusters comprised of only marine sequences distantly related to the genera Methylococcus and Methylocaldum that were clearly divergent from terrestrial phylotypes. This study provides evidence for the existence of a novel microbial diversity and diverse aerobic methanotrophs that appear to constitute marine specialized lineages.  相似文献   

12.
Microbial ecologists have discovered novel rRNA genes (rDNA) in mesophilic soil habitats worldwide, including sequences that affiliate phylogenetically within the division Crenarchaeota (domain Archaea). To characterize the spatial distribution of crenarchaeal assemblages in mesophilic soil habitats, we profiled amplified crenarchaeal 16S rDNA sequences from diverse soil ecosystems by using PCR-single-stranded-conformation polymorphism (PCR-SSCP) analysis. PCR-SSCP profiles provide a measure of relative microbial diversity in terms of richness (number of different phylotypes as estimated from the number of unique PCR-SSCP peaks) and evenness (abundance of each phylotype as estimated from the relative area under a peak). Crenarchaeal assemblages inhabiting prairie, forest, turf, and agricultural soils were characterized at six sampling locations in southern and central Wisconsin. Phylotype richness was found to be more stable than evenness among triplicate samples collected within 30 cm at each sampling location. Transformation of the PCR-SSCP data by principal-component analysis, followed by statistical testing (analysis of variance [P < 0.0001] and least-significant-difference analysis [α = 0.5]), supported the conclusion that each location exhibited a unique profile. To further characterize the spatial distribution of crenarchaeal assemblages at one location, additional soil samples (a total of 30) were collected from agricultural field plots at the Hancock Agricultural Research Station. PCR-SSCP revealed a patchy spatial distribution of crenarchaeal assemblages within and between these plots. This mosaic of crenarchaeal assemblages was characterized by differences in phylotype evenness that could not be correlated with horizontal distance (15 to 30 m) or with depth (0 to 20 cm below the surface). Crenarchaeal 16S rDNA clone libraries were produced and screened for unique SSCP peaks. Clones representing the dominant phylotypes at each location were identified, sequenced, and found to group phylogenetically with sequences in crenarchaeal clade C1b.  相似文献   

13.
Fecal microbial diversity in a strictly vegetarian woman was determined by the 16S rDNA library method, terminal restriction fragment length polymorphism (T-RFLP) analysis and a culture-based method. The 16S rDNA library was generated from extracted fecal DNA, using bacteria-specific primers. Randomly selected clones were partially sequenced. T-RFLP analysis was performed using amplified 16S rDNA. The lengths of T-RF were analyzed after digestion by HhaI and MspI. The cultivated bacterial isolates were used for partial sequencing of 16S rDNA. Among 183 clones obtained, approximately 29% of the clones belonged to 13 known species. About 71% of the remaining clones were novel "phylotypes" (at least 98% similarity of clone sequence). A total of 55 species or phylotypes were identified among the 16S rDNA library, while the cultivated isolates included 22 species or phylotypes. In addition, many new phylotypes were detected from the 16S rDNA library. The 16S rDNA library and isolates commonly included the Bacteroides group, Bifidobacterium group, and Clostridium rRNA clusters IV, XIVa, XVI and XVIII. T-RFLP analysis revealed the major composition of the vegetarian gut microbiota were Clostridium rRNA subcluster XIVa and Clostridium rRNA cluster XVIII. The dominant feature of this strictly vegetarian gut microbiota was the detection of many Clostridium rRNA subcluster XIVa and C. ramosum (Clostridium rRNA cluster XVIII).  相似文献   

14.
The diversity of the methyl‐coenzyme reductase A (mcrA) and 16S rRNA genes was investigated in gas hydrate containing sediment from the Kazan mud volcano, eastern Mediterranean Sea. mcrA was detected only at 15 and 20 cm below seafloor (cmbsf) from a 40‐cm long push core, while based on chemical profiles of methane, sulfate, and sulfide, possible anaerobic oxidation of methane (AOM) depth was inferred at 12–15 cmbsf. The phylogenetic relationships of the obtained mcrA, archaeal and bacterial 16S rRNA genes, showed that all the found sequences were found in both depths and at similar relative abundances. mcrA diversity was low. All sequences were related to the Methanosarcinales, with the most dominant (77.2%) sequences falling in group mcrA‐e. The 16S rRNA‐based archaeal diversity also revealed low diversity and clear dominance (72.8% of all archaeal phylotypes) of the Methanosarcinales and, in particular, ANME‐2c. Bacteria showed higher diversity but 83.2% of the retrieved phylotypes from both sediment layers belonged to the δ‐Proteobacteria. These phylotypes fell in the SEEP‐SRB1 putative AOM group. In addition, the rest of the less abundant phylotypes were related to yet‐uncultivated representatives of the Actinobacteria, Spirochaetales, and candidate divisions OP11 and WS3 from gas hydrate‐bearing habitats. These phylotype patterns indicate that AOM is occurring in the 15 and 20 cmbsf sediment layers.  相似文献   

15.
The phylogenetic diversity of the bacterial communities supported by a seven-stage, full-scale biological wastewater treatment plant was studied. These reactors were operated at both mesophilic (28 to 32 degrees C) and thermophilic (50 to 58 degrees C) temperatures. Community fingerprint analysis by denaturing gradient gel electrophoresis (DGGE) of the PCR-amplified V3 region of the 16S rRNA gene from the domain Bacteria revealed that these seven reactors supported three distinct microbial communities. A band-counting analysis of the PCR-DGGE results suggested that elevated reactor temperatures corresponded with reduced species richness. Cloning of nearly complete 16S rRNA genes also suggested a reduced species richness in the thermophilic reactors by comparing the number of clones with different nucleotide inserts versus the total number of clones screened. While these results imply that elevated temperature can reduce species richness, other factors also could have impacted the number of populations that were detected. Nearly complete 16S rDNA sequence analysis showed that the thermophilic reactors were dominated by members from the beta subdivision of the division Proteobacteria (beta-proteobacteria) in addition to anaerobic phylotypes from the low-G+C gram-positive and Synergistes divisions. The mesophilic reactors, however, included at least six bacterial divisions, including Cytophaga-Flavobacterium-Bacteroides, Synergistes, Planctomycetes, low-G+C gram-positives, Holophaga-Acidobacterium, and Proteobacteria (alpha-proteobacteria, beta-proteobacteria, gamma-proteobacteria and delta-proteobacteria subdivisions). The two PCR-based techniques detected the presence of similar bacterial populations but failed to coincide on the relative distribution of these phylotypes. This suggested that at least one of these methods is insufficiently quantitative to determine total community biodiversity-a function of both the total number of species present (richness) and their relative distribution (evenness).  相似文献   

16.
Bacterioplankton community compositions in the Dongjiang River were characterized using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library construction. Water samples in nine different sites were taken along the mainstem and three tributaries. In total, 24 bands from DGGE gels and 406 clones from the libraries were selected and sequenced, subsequently analyzed for the bacterial diversity and composition of those microbial communities. Bacterial 16S rRNA gene sequences from freshwater bacteria exhibited board phylogenetic diversity, including sequences representing the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes, Verrucomicrobia, and candidate division TM7. Members of Betaproteobacteria group were the most dominant in all sampling sites, followed by Gammaproteobacteria, Alphaproteobacteria, and Actinobacteria. DGGE profiles and the ∫-LIBSHUFF analysis revealed similar patterns of bacterial diversity among most sampling sites, while spatial distribution variances existed in all sites along the river basin. Statistical analysis showed that bacterial species distribution strongly correlated with environmental variables, such as nitrate and ammonia, suggesting that nitrogen nutrients may shape the microbial community structure and composition in the Dongjiang River. This study had important implications for the comparison with other rivers elsewhere and contributed to the growing data set on the factors that structure bacterial communities in freshwater ecosystems.  相似文献   

17.
Currently, there is no consensus concerning the geographic distribution and extent of endemism in Antarctic cyanobacteria. In this paper we describe the phenotypic and genotypic diversity of cyanobacteria in a field microbial mat sample from Lake Fryxell and in an artificial cold-adapted sample cultured in a benthic gradient chamber (BGC) by using an inoculum from the same mat. Light microscopy and molecular tools, including 16S rRNA gene clone libraries, denaturing gradient gel electrophoresis, and sequencing, were used. For the first time in the study of cyanobacterial diversity of environmental samples, internal transcribed spacer (ITS) sequences were retrieved and analyzed to complement the information obtained from the 16S rRNA gene. Microscopy allowed eight morphotypes to be identified, only one of which is likely to be an Antarctic endemic morphotype. Molecular analysis, however, revealed an entirely different pattern. A much higher number of phylotypes (15 phylotypes) was found, but no sequences from Nodularia and Hydrocoryne, as observed by microscopy, were retrieved. The 16S rRNA gene sequences determined in this study were distributed in 11 phylogenetic lineages, 3 of which were exclusively Antarctic and 2 of which were novel. Collectively, these Antarctic sequences together with all the other polar sequences were distributed in 22 lineages, 9 of which were exclusively Antarctic, including the 2 novel lineages observed in this study. The cultured BGC mat had lower diversity than the field mat. However, the two samples shared three morphotypes and three phylotypes. Moreover, the BGC mat allowed enrichment of one additional phylotype. ITS sequence analysis revealed a complex signal that was difficult to interpret. Finally, this study provided evidence of molecular diversity of cyanobacteria in Antarctica that is much greater than the diversity currently known based on traditional microscopic analysis. Furthermore, Antarctic endemic species were more abundant than was estimated on the basis of morphological features. Decisive arguments concerning the global geographic distribution of cyanobacteria should therefore incorporate data obtained with the molecular tools described here.  相似文献   

18.
Bacterial diversity in human subgingival plaque   总被引:50,自引:0,他引:50       下载免费PDF全文
The purpose of this study was to determine the bacterial diversity in the human subgingival plaque by using culture-independent molecular methods as part of an ongoing effort to obtain full 16S rRNA sequences for all cultivable and not-yet-cultivated species of human oral bacteria. Subgingival plaque was analyzed from healthy subjects and subjects with refractory periodontitis, adult periodontitis, human immunodeficiency virus periodontitis, and acute necrotizing ulcerative gingivitis. 16S ribosomal DNA (rDNA) bacterial genes from DNA isolated from subgingival plaque samples were PCR amplified with all-bacterial or selective primers and cloned into Escherichia coli. The sequences of cloned 16S rDNA inserts were used to determine species identity or closest relatives by comparison with sequences of known species. A total of 2,522 clones were analyzed. Nearly complete sequences of approximately 1,500 bases were obtained for putative new species. About 60% of the clones fell into 132 known species, 70 of which were identified from multiple subjects. About 40% of the clones were novel phylotypes. Of the 215 novel phylotypes, 75 were identified from multiple subjects. Known putative periodontal pathogens such as Porphyromonas gingivalis, Bacteroides forsythus, and Treponema denticola were identified from multiple subjects, but typically as a minor component of the plaque as seen in cultivable studies. Several phylotypes fell into two recently described phyla previously associated with extreme natural environments, for which there are no cultivable species. A number of species or phylotypes were found only in subjects with disease, and a few were found only in healthy subjects. The organisms identified only from diseased sites deserve further study as potential pathogens. Based on the sequence data in this study, the predominant subgingival microbial community consisted of 347 species or phylotypes that fall into 9 bacterial phyla. Based on the 347 species seen in our sample of 2,522 clones, we estimate that there are 68 additional unseen species, for a total estimate of 415 species in the subgingival plaque. When organisms found on other oral surfaces such as the cheek, tongue, and teeth are added to this number, the best estimate of the total species diversity in the oral cavity is approximately 500 species, as previously proposed.  相似文献   

19.
A combination of culture-dependent and culture-independent methodologies (Bacteria and Archaea 16S rRNA gene clone library analyses) was used to determine the microbial diversity present within a geographically distinct high Arctic permafrost sample. Culturable Bacteria isolates, identified by 16S rRNA gene sequencing, belonged to the phyla Firmicutes, Actinobacteria and Proteobacteria with spore-forming Firmicutes being the most abundant; the majority of the isolates (19/23) were psychrotolerant, some (11/23) were halotolerant, and three isolates grew at -5 degrees C. A Bacteria 16S rRNA gene library containing 101 clones was composed of 42 phylotypes related to diverse phylogenetic groups including the Actinobacteria, Proteobacteria, Firmicutes, Cytophaga - Flavobacteria - Bacteroides, Planctomyces and Gemmatimonadetes; the bacterial 16S rRNA gene phylotypes were dominated by Actinobacteria- and Proteobacteria-related sequences. An Archaea 16S rRNA gene clone library containing 56 clones was made up of 11 phylotypes and contained sequences related to both of the major Archaea domains (Euryarchaeota and Crenarchaeota); the majority of sequences in the Archaea library were related to halophilic Archaea. Characterization of the microbial diversity existing within permafrost environments is important as it will lead to a better understanding of how microorganisms function and survive in such extreme cryoenvironments.  相似文献   

20.
Actinobacteria are ubiquitous in soil, freshwater and marine ecosystems. Although various studies have focused on the microbial ecology of this phylum, data are scant on the ecology of actinobacteria endemic to hot springs. Here, we have investigated the molecular diversity of eubacteria, with specific focus on the actinobacteria in hot springs in Zambia, China, New Zealand and Kenya. Temperature and pH values at sampling sites ranged between 44.5 and 86.5?°C and 5-10, respectively. Non-metric multidimensional scaling analysis of 16S rRNA gene T-RFLP patterns showed that samples could be separated by geographical location. Multivariate analysis showed that actinobacterial community composition was best predicted by changes in pH and temperature, whereas temperature alone was the most important variable explaining differences in bacterial community structure. Using 16S rRNA gene libraries, 28 major actinobacterial OTUs were found. Both molecular techniques indicated that many of the actinobacterial phylotypes were unique and exclusive to the respective sample. Collectively, these results support the view that both actinobacterial diversity and endemism are high in hot spring ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号