首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of ergosterol is demonstrated in the GL7 mutant of Saccharomyces cerevisiae. This sterol auxotroph has been thought to lack the ability to synthesize sterols due both to the absence of 2,3-oxidosqualene cyclase and to a heme deficiency eliminating cytochrome P-450 which is required in demethylation at C-14. However, when the medium sterol was 5 alpha-cholestan-3 beta-ol, 5 alpha-cholest-8(14)-en-3 beta-ol, or 24 beta-methyl-5 alpha-cholest-8(14)-en-3 beta-ol, sterol synthesis was found to proceed yielding 1-3 fg/cell of ergosterol (24 beta-methylcholesta-5,7,22E-trien-3 beta-ol). Ergosterol was identified by mass spectroscopy, gas and high performance liquid chromatography, ultraviolet spectroscopy, and radioactive labeling from [3H]acetate. Except for some cholest-5-en-3 beta-ol (cholesterol) which was derived from the 5 alpha-cholestan-3 beta-ol, the stanol and the two 8(14)-stenols were not significantly metabolized confirming the absence of an isomerase for migration of the double bond from C-8(14) to C-7. Drastic reduction of ergosterol synthesis to not more than 0.06 fg/cell was observed when the medium sterol either had a double bond at C-5, as in the case of cholesterol, or could be metabolized to a sterol with such a bond. Thus, both 5 alpha-cholest-8(9)-en-3 beta-ol and 5 alpha-cholest-7-en-3 beta-ol (lathosterol) were converted to cholesta-5,7-dien-3 beta-ol (7-dehydrocholesterol), and the presence of the latter dienol depressed the level of ergosterol. The most attractive of the possible explanations for our observations is the assumption of two genetic compartments for synthesis of sterols, one of which has and one of which has not been affected by the two mutations. The ability, despite the mutations, to synthesize small amounts of ergosterol which could act to regulate the cell cycle may also explain why this mutant can grow aerobically with cholesterol (acting in the bulk membrane role) as the sole exogenous sterol.  相似文献   

2.
3.
The sterol composition of Aspergillus fumigatus for the biosynthesis of ergosterol is of interest since this pathway is the target for many antifungal drugs in clinical use. The sterol composition of this fungal species was analyzed by gas chromatography-mass spectrometry in different strains (susceptible and resistant to azole drugs). Also, sterols were analyzed in several A. fumigatus mutant strains deficient in enzymatic steps of the ergosterol biosynthesis pathway such as 14-alpha sterol demethylases (Cyp51A and Cyp51B) and C-5 sterol desaturases (Erg3A, Erg3B and Erg3C). All sterols identified from azole-resistant A. fumigatus strains were qualitatively and quantitatively similar to the susceptible strain (CM-237). However, sterol composition of mutants strains were different depending on the lacking enzyme. The analysis of the sterol composition in these mutant strains led to a better understanding of the ergosterol biosynthesis pathway in this important fungus.  相似文献   

4.
Sterols of a nystatin resistant mutant of the wild type parent of Saccharomyces cerevisiae were separated by a newly developed procedure involving high-pressure liquid chromatography and were identified. The mutant contained larger amounts of squalene and lanosterol (I) than the wild type, as well as 4,14-dimethylcholesta-8,24-dien-3beta-ol (II), 4,14-dimethylergosta-8,24(28)-dien-3beta-ol (III), and 14-methylergosta-8,24(28)-dien-3beta-ol (IV), which were not hitherto found in yeast. These results indicated a block in removal of the methyl group at C-14 of lanosterol. An ergosterol requiring derivative of the mutant which carried in addition a mutation in heme biosynthesis had the same sterols as the parent, but at one-third the concentration. The low level of sterols may be due to a requirement for a heme or cytochrome in oxygenation reactions between lanosterol and ergosterol.  相似文献   

5.
In order to elucidate the biochemical mechanism of the alkaline protease accumulation from n-paraffins by a kabicidin-resistant mutant of Fusarium sp., the cell constituents and the extracellular products of the mutant strain were compared with those of the parent strain. No prominent differences in the cell constituents were observed between the parent and the mutant. From the analysis of the extracellular products, however the mutant was found to have a high productivity of some hydrolytic enzymes, such as amylase and ribonuclease, and ergosterol which is a structural constituent of fungal cell membrane. The relationship of secretion of ergosterol, resistance to kabicidin and accumulation of alkaline protease is discussed.  相似文献   

6.
The plasma membrane (PM) is a main site of injury during osmotic perturbation. Sterols, major lipids of the PM structure in eukaryotes, are thought to play a role in ensuring the stability of the lipid bilayer during physicochemical perturbations. Here, we investigated the relationship between the nature of PM sterols and resistance of the yeast Saccharomyces cerevisiae to hyperosmotic treatment. We compared the responses to osmotic dehydration (viability, sterol quantification, ultrastructure, cell volume, and membrane permeability) in the wild-type (WT) strain and the ergosterol mutant erg6Δ strain. Our main results suggest that the nature of membrane sterols governs the mechanical behavior of the PM during hyperosmotic perturbation. The mutant strain, which accumulates ergosterol precursors, was more sensitive to osmotic fluctuations than the WT, which accumulates ergosterol. The hypersensitivity of erg6Δ was linked to modifications of the membrane properties, such as stretching resistance and deformation, which led to PM permeabilization during the volume variation during the dehydration-rehydration cycles. Anaerobic growth of erg6Δ strain with ergosterol supplementation restored resistance to osmotic treatment. These results suggest a relationship between hydric stress resistance and the nature of PM sterols. We discuss this relationship in the context of the evolution of the ergosterol biosynthetic pathway.  相似文献   

7.
The ergosterol biosynthesis pathway is well understood in Saccharomyces cerevisiae, but currently little is known about the pathway in plant‐pathogenic fungi. In this study, we characterized the Fusarium graminearum FgERG4 gene encoding sterol C‐24 reductase, which catalyses the conversion of ergosta‐5,7,22,24‐tetraenol to ergosterol in the final step of ergosterol biosynthesis. The FgERG4 deletion mutant ΔFgErg4‐2 failed to synthesize ergosterol. The mutant exhibited a significant decrease in mycelial growth and conidiation, and produced abnormal conidia. In addition, the mutant showed increased sensitivity to metal cations and to various cell stresses. Surprisingly, mycelia of ΔFgErg4‐2 revealed increased resistance to cell wall‐degrading enzymes. Fungicide sensitivity tests revealed that ΔFgErg4‐2 showed increased resistance to various sterol biosynthesis inhibitors (SBIs), which is consistent with the over‐expression of SBI target genes in the mutant. ΔFgErg4‐2 was impaired dramatically in virulence, although it was able to successfully colonize flowering wheat head and tomato, which is in agreement with the observation that the mutant produces a significantly lower level of trichothecene mycotoxins than does the wild‐type progenitor. All of these phenotypic defects of ΔFgErg4‐2 were complemented by the reintroduction of a full‐length FgERG4 gene. In addition, FgERG4 partially rescued the defect of ergosterol biosynthesis in the Saccharomyces cerevisiae ERG4 deletion mutant. Taken together, the results of this study indicate that FgERG4 plays a crucial role in ergosterol biosynthesis, vegetative differentiation and virulence in the filamentous fungus F. graminearum.  相似文献   

8.
Lanosterol C-14 demethylase Erg11p of the yeast Saccharomyces cerevisiae catalyzes the enzymatic step following formation of lanosterol by the lanosterol synthase Erg7p in lipid particles (LP). Localization experiments employing microscopic inspection and cell fractionation revealed that Erg11p in contrast to Erg7p is associated with the endoplasmic reticulum (ER). An erg11Delta mutation in erg3Delta background, which is required to circumvent lethality of the erg11 defect, did not only change the sterol pattern but also the sterol distribution within the cell. Whereas in wild type the plasma membrane was highly enriched in ergosterol and LP harbored large amounts of sterol precursors in the form of steryl esters, sterol intermediates were more or less evenly distributed among organelles of erg11Delta erg3Delta. This distribution is not result of the erg3Delta background, because in the erg3Delta strain the major intermediate formed, ergosta-7,22-dienol, is also highly enriched in the plasma membrane similar to ergosterol in wild type. These results indicate that (i) exit of lanosterol from LP occurs independently of functional Erg11p, (ii) random supply of sterol intermediates to all organelles of erg11Delta erg3Delta appears to compensate for the lack of ergosterol in this mutant, and (iii) preferential sorting of ergosterol in wild type, but also of ergosta-7,22-dienol in erg3Delta, supplies sterol to the plasma membrane.  相似文献   

9.
A nystatin-resistant mutant of Rhodotorula gracilis was obtained by treatment of the wild strain cells with N-methyl-N-nitro-N-nitrosoguanidine and selected on agar plates containing 150 g nystatin/ml. Three important transport functions of the plasma membrane of mutant cells: the accumulation of monosaccharides, the generation and maintenance of the pH-gradient and of the membrane potential, as well as the cell respiration were insensitive to at least 10-5 M nystatin. This concentration of nystatin inhibited completely all these processes in wild strain cells. Analysis of cellular sterols revealed a defect of ergosterol biosynthesis in the mutant, which was localized at the last oxidative step between 5,6-dihydroergosterol and ergosterol.  相似文献   

10.
Pneumocystis carinii is an unusual fungus that can cause pneumonitis in immunosuppressed laboratory rats. Reactions in sterol biosynthesis are attractive targets for development of antimycotic drugs. A key enzyme in sterol biosynthesis is sterol 14α-demethylase (14DM), which is coded by the erg11 gene. Here we describe detailed sterol analysis of wild-type Saccharomyces cerevisiae and in an erg11 knockout mutant expressing either P. carinii or S. cerevisiae 14DM from a plasmid-borne cDNA. Sterols of the three strains were qualitatively and quantitatively analyzed using thin-layer chromatography, high-performance liquid chromatography, and gas-liquid chromatography and mass spectrometry and nuclear magnetic resonance spectroscopy. Biochemical evidence for functional complementation was provided by detecting the same major sterols in all three strains with ergosterol being by far the most abundant. A total of 25 sterols was identified, 16 of which were identified in all three strains. The ratios of lanosterol:14-desmethyllanosterol in the three strains indicate that the mutant transformed with erg11 showed more 14DM activity than wild-type yeast. The sterol analyses also indicated that the P. carinii 14DM can utilize the sterol substrates used by the S. cerevisiae 14DM and suggested that the yeast 14DM in the yeast cell utilizes 4α-methyl sterols better than the P. carinii enzyme.  相似文献   

11.
A nystatin-resistant mutant (NR-21) of a thermotolerant yeast, Hansenula polymorpha CK-1, was isolated by mutagenesis with ethyl methanesulfonate, followed by selection for resistance to nystatin (50 units/ml). The mutant was defective in ergosterol biosynthesis. Specific growth rates (h−1 of the mutant were reduced to 0.35 at 40°C and 0.16 at 50°C as compared with the wild type (0.53 at 40°C and 0.28 at 50°C). The mutant grown with ergosterol-phosphatidylcholine emulsion at 50°C incorporated ergosterol and its specific growth rate was increased to 0.41, which was comparable to that of the wild type grown under the same conditions.  相似文献   

12.
A mutant (erg-3) of Neurospora crassa resistant to the polyene antibiotic nystatin was compared with its sensitive, wild-type parent to detect differences in sterol composition using gas chromatography-mass spectrometry. The major sterol in wild-type mycelia, comprising 80% of the total, was ergosterol. The major sterols in mutant mycelia, comprising 86% of the total, were delta 8,14-sterols. It is proposed that the nystatin-resistant strain is unable to synthesize ergosterol because it lacks delta 14,15-reductase activity as a result of a mutation in the erg-3 gene.  相似文献   

13.
Whereas wild-type strains of Saccharomyces cerevisiae can synthesize up to 7% dry weight of ergosterol, a polyene-resistant mutant has been obtained which produces no ergosterol. Instead, a C-28 methyl sterol is produced, and it has been identified as Delta(8(9),22)-ergostadiene-3beta-ol. This sterol is converted to ergosterol by wild-type yeasts and is observed transiently in cells during aerobic adaption of anaerobically grown wild-type yeasts. The new sterol is proposed as an intermediate in ergosterol biosynthesis.  相似文献   

14.
In order to determine the regulation mechanisms of ergosterol biosynthesis in yeast, we developed growth conditions leading to high or limiting ergosterol levels in wild type and sterol-auxotrophic mutant strains. An excess of sterol is obtained in anaerobic sterol-supplemented cultures of mutant and wild type strains. A low sterol level is obtained in aerobic growth conditions in mutant strains cultured with optimal sterol supplementation and in wild type strain deprived of pantothenic acid, as well as in anaerobic cultures without sterol supplementation. Measurements of the specific activities of acetoacetyl-CoA thiolase, HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) synthase and HMG-CoA reductase (the first three enzymes of the pathway), show that in cells deprived of ergosterol, acetoacetyl-CoA thiolase and HMG-CoA synthase are generally increased. In an excess of ergosterol, in anaerobiosis, the same enzymes are strongly decreased. A 5-10-fold decrease is observed for acetoacetyl-CoA thiolase and HMG-CoA synthase. In contrast, HMG-CoA reductase is only slightly affected by these conditions. These results show that ergosterol could regulate its own synthesis, at least partially, by repression of the first two enzymes of the pathway. Our results also show that exogenous sterols, even if strongly incorporated by auxotrophic mutant cells, cannot suppress enzyme activities in aerobic growth conditions. Measurement of specific enzyme activities in mutant cells also revealed that farnesyl pyrophosphate thwarts the enhancement of the activities of the two first enzymes.  相似文献   

15.
Mutants of Saccharomyces cerevisiae were isolated which were blocked in heme biosynthesis and required heme for growth on a nonfermentable carbon source. They were rho+, and grew fermentatively on ergosterol or cholesterol and Tween 80, as a source of oleic acid. Cells grown on ergosterol and Tween 80 lacked cytochromes and catalase which were restored by growth on heme. The mutants comprised five nonoverlapping complementation groups. Tetrad analysis showed that the pleiotropic properties of each of the mutants resulted from a single mutation in one of five unlinked loci (hem1 to hem5) affecting heme biosynthesis. Biochemical studies confirmed that each mutation resulted in loss of a single enzyme activity. hem1 mutants grew on delta-aminolevulinate and lacked delta-aminolevulinate synthase activity, hem2 mutants lacked delta-aminolevulinate dehydratase, and hem3 mutants uroporphyrin I synthase. Mutants in hem1, hem2, and hem3 had an additional requirement for methionine on synthetic medium supplemented with either heme or ergosterol and Tween 80, owing to a lack of sulfite reductase which contains siroheme, a modified uroporphyrin III. Since hem4 and hem5 mutants have sulfite reductase activity under all growth conditions, they are blocked after uroporphyrin III. Cell extracts of a hem4 mutant incubated with delta-aminolevulinate accumulated coproporphyrin III suggesting a block in coproporphyrinogenase, the enzyme which converts coproporphyrinogen III to protoporphyrinogen. Cells and extracts of a hem5 mutant accumulated protoporphyrin IX. Since it was the only mutant that grew on heme but not on protoporphyrin IX, a block in ferrochelatase was suggested for this strain. Mutant strains grown on heme had the sterol composition of wild type cells, whereas without heme only squalene, small amounts of lanosterol, and added sterol was observed. A heme product therefore participates in the transformation of lanosterol to ergosterol. A hem3 mutant was isolated which was also blocked between 2,3-oxidosqualene and lanosterol (erg12). When grown on lanosterol or ergosterol (with Tween 80) it accumulated a compound which was identified as 2,3-oxidosqualene by comparison with the synthetic compound in thin layer and gas-liquid chromatography, and by proton magnetic resonance and mass spectroscopy. Supplementation with heme did not remove the requirement for sterol, but it enabled the mutant to convert lanosterol to ergosterol.  相似文献   

16.
The lipid composition of a Saccharomyces cerevisiae mutant (GL 1–38) lacking δ-aminolevulinic acid synthase (EC 2.3.1.37) was investigated. This mutant is unable to synthesize heme compounds and, as a consequence, cannot make unsaturated fatty acids or ergosterol. The mutant cells were grown (i) in medium supplemented with δ-aminolevulinic acid or (ii) in medium supplemented with Tween 80 (as a source of oleate) and ergosterol. After growth in the presence of δ-aminolevulinic acid, the fatty acid composition of total lipids and mitochondrial lipids was the same as that of the corresponding wild-type strain. After growth in the presence of Tween 80 and ergosterol, the mutant cells contained increased levels of oleate and greatly decreased levels of palmitoleate. The ratio of unsaturated to saturated fatty acids in these cells was still close to that of the wild type but much lower than that of the medium. The sphingolipids accounted for 5.2% of the lipid phosphate in the wild type and, after growth in Tween 80 and ergosterol, for 12.7% in the mutant. Changes in other phospholipids were too small to be considered significant.  相似文献   

17.
The yeast farnesyl diphosphate synthase (FPPS) gene was engineered so as to construct allelic forms giving various activities of the enzyme. One of the substitutions was F96W in the chain length determination region. The other, K197, conserved within a consensus sequence found in the majority of FPP and GGPP synthases, was substituted by R, E and V. An intricate correlation has been found between the FPPS activity, the amount of ergosterol synthesized and cell growth of a mutant strain defective in FPPS. About 40% of wt FPPS activity was sufficient to support normal growth of the mutant. With further decline of FPPS activity (20 down to 3%) the amount of ergosterol remained unchanged at approximately 0.16% (vs dry weight), whereas growth yield decreased and lag times increased. We postulate that, in addition to ergosterol initiating and maintaining growth of yeast cells, FPP and/or its derivatives participate in these processes.  相似文献   

18.
高产截短侧耳素担子菌的抗性突变株筛选   总被引:2,自引:0,他引:2  
截短侧耳素是由担子菌产生的一种三环二萜类化合物,通过抑制肽基转移酶的活性而使细菌蛋白质合成受阻。论文以截短侧耳素产生菌Clitopilus prunulus-04为出发菌株,经亚硝基胍诱变后分别进行制霉菌素、特比萘酚、十二烷基苯磺酸钠和十二烷基三甲基氯化铵抗性突变子筛选,获得了大量的产量提高的突变子。制霉菌素和特比萘酚抗性突变子的正突变率较高,其中,一株制霉菌素抗性突变子pn163的截短侧耳素产量比出发菌株提高了38.50%,且遗传稳定性较好。制霉菌素和特比萘酚抗性突变子在高产截短侧耳素的同时,也降低了麦角甾醇生物合成量,推测产量提高与细胞膜通透性有关。  相似文献   

19.
We have investigated the metabolism of exogenously provided delta24-sterols by whole cell cultures of a polyene-resistant mutant (D10) of Candida albicans blocked at removal of the C-14 methyl group. Comparison of the relative efficiencies of transmethylation at C-24 of selected sterol substrates revealed the following substrate preferences of the Candida delta24-sterol methyltransferase (EC 2.1.1.41): zymosterol greater than 4alpha-methylzymosterol greater than 14alpha-methylzymosterol. Exogenous 4,4-dimethylzymosterol was not transmethylated by mutant D10. Incorporation of the 14C-labelled methyl group of S-adenosyl-L-[methyl-14C]methionine into the sterols of a D10 culture preloaded with zymosterol indicated that zymosterol was a better (40 X) substrate than endogenous lanosterolmfeeding zymosterol to D10 and a polyene-resistant strain of Saccharomyces cerevisiae (Nys-P100) that was also blocked at removal of the C-14 methyl group gave 24-methyl sterols possessing delta22 and ring B unsaturation. Mutant D10 was able to produce ergosterol from zymosterol whereas Nys-P100 produced ergosta-7,22-dienol. When grown in the presence of 3 micrometer 25-aza-24,25-dihydrozymosterol, a known inhibitor of the delta24-sterol methyltransferase, Nys-P100 accumulated 14alpha-methylzymosterol, a minor metabolite in this mutant under normal growth conditions and hitherto unidentified as a yeast sterol.  相似文献   

20.
Discrimination of cytochrome P-450 involved in delta 22-desaturation of ergosta-5,7-dien-3 beta-o1 (P-450(22)-DS) from that involved in lanosterol 14 alpha-demethylation (P-450(14)-DM) in ergosterol biosynthesis was investigated with microsomes of several strains of Saccharomyces cerevisiae. In mutant N22 which is partially defective in the delta 22-desaturation, the 14 alpha-demethylation was not blocked. In contrast, mutant SG1 which is known to lack the 14 alpha-demethylation showed a significant activity of the delta 22-desaturation. The delta 22-desaturation activity was markedly increased upon aerobic adaptation of yeast cells but the 14 alpha-demethylation was not affected. Buthiobate, a specific inhibitor of P-450(14)-DM, and rabbit antibodies against P-450(14)-DM did not inhibit the delta 22-desaturation activity at all. It is evident from the obtained observations that these phenomena are not explainable in terms of NADPH-cytochrome P-450 reductase. These results indicate that P-450(22)-DS is different from P-450(14)-DM in molecular species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号