首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A discrepancy between published values of PGI2 production by human umbilical artery in vitro measured by platelet bioassay, compared with values of 6-oxo-PGF1 alpha by radioimmunoassay, raised the possibility that another anti-aggregatory prostanoid was produced by this tissue. To test this hypothesis, umbilical artery rings were incubated in buffer and PGI2 determined by platelet bioassay and by a more specific radioimmunoassay based on comparison of 6-oxo-PGF1 alpha in hydrolysed and non-hydrolysed samples. 6-oxo-PGF1 alpha, PGF2 alpha and TXB2 were also measured by gas chromatography negative ion chemical ionisation mass spectrometry. PGI2 concentrations by radioimmunoassay and bioassay were significantly correlated (r = 0.92, p less than 0.01). There was no difference between them, disproving the presence of an additional antiaggregatory substance. PGI2 production determined by bioassay (mean 1.21 ng/mg wet weight/h, range 0.59-1.53 ng/mg/h) differed from previously reported values (range 70-325 ng/mg/h). 6-oxo-PGF1 alpha concentrations were confirmed by gas chromatography negative ion chemical ionisation mass spectrometry. Previous determinations of PGI2 production by this tissue overestimated it by approximately 100 times.  相似文献   

2.
The effects of prostacyclin (PGI2) and its stable metabolite 6-oxo-PGF on various bioassay tissues are compared with those of PGE2 and PGF, using the cascade superfusion method. On vascular smooth muscle, PGI2 caused relaxation of all tissues tested except the rabbit aorta. PGE2 relaxed rabbit coeliac and mesenteric artery but contracted bovine coronary artery and had no effect on rabbit aorta. 6-oxo-PGF was ineffective at the concentrations tested.On gastro-intestinal smooth muscle, PGI2 contracted strips of rat and hamster stomach and the chick rectum. It was less potent than PGE2 or PGF. None of these substances contracted that cat terminal ileum. 6-oxo-PGF was inactive on these tissues at the doses tested.PGI2 was less active than PGE2 or PGF in contracting guinea-pig trachea and rat uterus; 6-oxo-PGF was active only on the rat uterus. Thus, PGI2 can be distinguished from the other stable prostaglandins using the cascade method of superfusion.  相似文献   

3.
The influence of taurine (in drinking water for 6 weeks) on PGI2 and TXA2 synthesis by some female rat organs was investigated using radioimmunoassay and platelet antiaggregatory bioassay. Taurine 100 and 200 mg/kg/day increased aortic PGI2 release from 0.59 ± 0.04 (control) to 0.85 ± 0.05 and 1.01 ± 0.06 ng/mg, respectively and that by the myometrium from 0.24 ± 0.02 (control) to 0.38 ± 0.01 and 0.50 ± 0.04 ng/mg wet tissue, respectively (P < 0.05, n = 6). It did not affect PGI2 and TXA2 production in the heart or TXA2 in the aorta. Taurine 200 mg/kg depressed uterine TXA2 synthesis from 148.6 ± 9.8 (control) to 85.4 ± 6.8 pg/mg (P < 0.05, n = 6). Furthermore taurine 0.4 and 0.8 mM in vitro stimulated PGI2 released by the myometrial and aortic tissues from pregnant rats. The stimulant effect of taurine on PGI2 may be related to its antioxidant effect whereas its inhibitory effect on uterine TXA2 may result from direction of synthesis towards PGI2. It is concluded that endogenous taurine may participate in regulation of PGs synthesis and that prostanoids may contribute to its known actions. On broad basis, taurine-induced release of PGI2 may prove of potential value in those ailments characterised by deficiency in PGI2 release.  相似文献   

4.
Intrarenal arterial (i.a.) infusions of prostacyclin (PGI2) at 30–300 ng/min to anaesthetized dogs reduced renal vascular resistance (RVR) and filtration fraction (FF), increased mean renal blood flow (MRBF) but did not alter mean arterial pressure (MAP) or glomerular filtration rate (GFR). The urinary excretion of sodium (UNaV), potassium (UKV) and chloride ions (UClV) were increased through inhibition of net tubular ion reabsorption. PGI2 (3000 ng/min, i.a.) reduced MAP and increased heart rate. Intravenous (i.v.) infusions of PGI2 (3000 ng/min) reduced MAP, GFR, FF, urine volume and ion excretion, with elevation of heart rate. The measured variables were unaltered by 6-oxo-PGF (10,000 ng/min i.a.). Treatment of the dogs witht he PG synthetase inhibitor meclofenamic acid (2.5 mg/kg i.v.), did not antagonise the elevation of MRBF to PGI2 (300 ng/min i.a.). Thus the renal effects of PGI2 were due to a direct action rather than through conversion to 6-oxo-PGF or through stimulation of endogenous renal PG biosynthesis and release.  相似文献   

5.
In the preceding paper we described the characterisation of an acute intravenous challenge model for the evaluation of the effects of thromboxane synthase inhibition (TXSI) on eicosanoid metabolism (1). Herein we describe the biochemical pharmacology of two TXSI and aspirin in this model. Both TXSI caused significant inhibition of plasma TXB2 without elevation of 6-oxo-PGF levels. Similar results were obtained when combined levels of 6-oxo-PGF,13,14 dihydro 6-oxo-PGF, 13,14 dihydro 6,15-dioxo-PGF and 6-oxo-PGE1 were measured as an index of PGI2 biosynthesis (PGI2m). Thus no evidence of redirection of PGH2 to PGI2 was found. experiments performed in serum gave an apparent stimulation of immunoreactive 6-oxo-PGF following TXSI but RPHPLC analysis of extracted serum showed that this stimulation was accounted for by increase in a product co-eluting with [3H]PGF. The implications of these findings in relation to TXSI and receptor antagonists are discussed.  相似文献   

6.
Prostaglandin (PG) E2, thromboxane (TX) B2 and the stable breakdown product of prostacyclin, 6-oxo-PGF are present in carrageenin-induced inflammatory exudates. Carrageenin-impregnated polyester sponges were implanted subcutaneously in rats and inflammatory exudates were collected 4–192 h after implantation. The concentrations of cyclo-oxygenase products in sponge fluids was measured by radioimmunoassay after extraction and purification. All three products were detectable after 4 h and reached a peak at 12–24 h. Mean TXB2 concentrations reached 74 ng/ml at 12 h but decreased to less than 10 ng/ml after 24 h. PGE2 concentrations were 65 ng/ml at 24 h, after which there was no significant increase and then dropped to about 20 ng/ml between 96 and 192 h. 6-oxo-PGF reached a concentration of 33 ng/ml at 24 h which did not change significantly until levels fell to less than 10 ng/ml between 96 and 192 h. The presence of PGE2, TXB2 and 6-oxo-PGF was confirmed by gas-liquid chromatography and mass spectrometry. Total leukocyte numbers increased steadily and were at their highest (116.0 × 106 cells/ml) at 192 h. These results suggest that thromboxanes and prostacyclin, as well as PGE2, contribute to the acute inflammatory response.  相似文献   

7.
It has been proposed that thromboxane synthase inhibition (TXSI) may be a useful form of anti-thrombotic therapy and that this is due, in part, to redirection of PGH2 metabolism in favour of PGI2, a potent vasodilator and anti-platelet agent. While redirection has been observed there are conflicting reports of its occurrence . We now describe the characterisation of an acute intravenous challenge model using thrombin, collagen, arachidonic acid (AA) and PGH2 for the study of PGH2 metabolism. Following challenge, plasma concentrations of TXB2, 6-oxo-PGF, alleged metabolites of PGI2 (PGI2m) and PGE2 were measured by radioimmunoassay (RIA). Thrombin and collagen challenge resulted in a dose-related increase in plasma TXB2 while AA and PGH2, in addition, elevated 6-oxo-PGF and PGI2m. Injection of PGH2 elevated 6-oxo-PGF, PGI2m, TXB2 and PGE2 levels. Experimental conditions were defined such that challenge with thrombin (40 NIH units kg−1), collagen (100 kg−1), AA (1mg kg−1) and PGH2 (5μg kg−1) and measurement of eicosanoids 0.5min following challenge (5μg kg−1) and measurement of eicosanoids 0.5min following challenge were optimal for detection of redirection of PGH2 metabolism . The identity of immunoreactive TXB2 and 6-oxo-PGF was further supported by experiments in which the extracted immunoreactive eicosanoids co-eluted with authentic [3H]standards when subject to reverse phase high performance liquid chromatography (RPHPLC). Evidence is also presented that the levels of plasma eicosanoids measured in this model reflect biosynthesis.  相似文献   

8.
These experiments were conducted to determine the effects of dipyridemole on human platelet aggregation, platelet thromboxane A2 (TXA2) and human vessel wall prostacyclin (PGI2) generation. Dipyridamole in varying concentrations (5 to 50 μg/ml) had no direct effect on ADP-induced platelet aggregation in vitro, but it potentiated PGI2-induced platelet aggregation inhibition at these concentrations. Dipyridamole also inhibited arachidonic acid-induced platelet TXA2 generation at these concentrations. In continuously perfused umbilical vein segments, dipyridamole treatment resulted in stimulation of PGI2 release determined by bioassay and by measurement of its stable metabolite 6-keto-PGF. Minimum concentration of dipyridamole causing PGI2 release was 50 μg/ml. These in vitro studies suggest that anti-thrombotic effects of dipyridamole in man are mediated mainly by potentiation of PGI2 activity and to some extent by TXA2 suppression. Stimulation of PGI2 release by human vessels may not be seen in usual therapeutic concentrations.  相似文献   

9.
The influence of platelets and platelet membranes on the generation of prostacyclin (PGI2) and thromboxane A2(TXA2) by isolated rat lung and porcine aortic endothelial cell, as measured by RIA of their stable end-producs, 6-oxo-PGF and TXB2 respectively, was studied. After introduction of either aspirin-treated platelets or membranes from aspirin-treated platelets to the perfusate, 1 5-fold increase in the amount of 6-oxo-PGF and TXB2 in the perfusate was observed. Treatment of the lung with aspirin produced a 50% reduction in the platelet-stimulated release of PGI2 and TXA2. Treatment of the lung with the phospholipase inhibitor, mepacrine, significantly reduced the platelet-stimulated release of PGI2 and TXA2. Incubation of endothelial cells with untreated platelet membranes did not alter the generation of PGI2. These results suggest that platelet-stimulated release of PGI2 and TXA2 occurs via mechanical stimulation of phospholipase A2, liberating arachidonic acid.  相似文献   

10.
It has previously been found (1) that feeding rats a diet containing a high amount of sunflowerseed oil results in a higher coronary flow and left ventricular work of their isolated hearts as compared to hearts of rats fed hydrogenated coconut oil or lard. It was hypothesized that this phenomenon can be explained by an influence of dietary linoleic acid on prostaglandin synthesis in the heart. To verify this hypothesis rabbits and rats were fed for four weeks sunflowerseed oil (SSO), hydrogenated coconut oil (HCO) or lard (L) to a maximum of 30 to 40 per cent of the total digestable energy, and the prostaglandin release from the isolated perfused hearts and rat aortas was determined by gas chromatography and bio-assay (PGI2).For the isolated hearts of rabbits fed SSO, the release of PGE2, PGF and 6-oxo-PGF was 1.7, 0.7 and 3.0 ng min−1 g−1 dry weight respectively; when fed L, these values were 2.9, 1.1 and 5.6 ng min−1 g−1. For the isolated hearts of rats fed SSO, HCO or L, the total release of PGE2, PGD2, PGF and thromboxane B2 (TXB2) was 5.9, 5.8 and 5.6 ng min−1 g−1 respectively; the release of 6-oxo-PGF was 3.4, 5.7 and 6.4 ng min−1 g−1 respectively. Relatively, 26% PGE2, 13% PGD2, 8% PGF, 6% TXB2 and 47% 6-oxo-PGF were released. For the isolated aortas of rats fed SSO or HCO, the release of PGI2-like activity was 0.37 ± 0.05 and 0.49 ± 0.05 ng min−1 cm−2. The release of PGI2-like activity from hearts of EFA-deficient rats was about 20% of that from control hearts.We conclude that, although feeding sunflowerseed oil, with respect to feeding hydrogenated coconut oil or lard, does increase coronary flow and left ventricular work, it does not increase the basal prostaglandin production in the isolated rat or rabbit heart; instead there is a tendency for a lower PGI2 synthesis.  相似文献   

11.
Concentrations of prostaglandin E (PGE), PGF and 6-oxo-PGF (the hydrolytic product of PGI2) were measured by radioimmunoassay (RIA) in myometrium, endometrium, cotyledons, amnion and chorioallantois taken from different uterine areas from chronically catheterized sheep bearing fetuses which had died 12–26 h previously (n=4) or 34–72 h previously (n=4). These two groups of animals were designated fetuses dead <30 h and >30 h respectively. The time of fetal death was assessed on the basis of fetal heart rate and blood gases. At the time of the tissue collection the ewes were between 123 and 130 days after mating. For comparative purposes, tissues also were collected from four sheep bearing live chronically catheterized fetuses at 130 days of gestation.For myometrium, concentration of PGF, PGE and 6-oxo-PGF were significantly higher in sheep bearing dead fetuses, compared to those bearing live fetuses. Analysis of variance also showed a significant effect of uterine area on myometrial PGE concentrations, concentrations being higher in tubal areas than elsewhere. Concentrations of PGE, PGF and 6-oxo-PGF were higher in endometrium taken from uteri containing dead fetuses. In cotyledons, concentrations of PGF and 6-oxo-PGF but not PGE, were significant elevated following fetal death. Concentrations of 6-oxo-PGF, but not PGE or PGF, were elevated in both chorioallantois and amnion of sheep bearing dead fetuses, compared to those bearing live fetuses. In association with elevated PG concentrations, there was a progressive increase in the frequency and maximum amplitude of uterine contractions. These results show that PG concetrations are elevated following fetal death in sheep, and suggest an association between elevated PG concentrations and delivery of the dead fetus.  相似文献   

12.
Dietary supplementation with a fish oil concentrate (FOC) reduced the endogenous synthesis of prostacyclin (PGI2), as measured by the excretion of its major urinary catabolite, 2,3-dinor-6-oxo-PGF (PGI2-M). Thirty-four healthy men (24–57 years old) were given controlled diets and supplements that provided 40% of the energy from fat and a minimum of 22 mg/d of α-tocopherol for two consecutive experimental periods of 10 weeks each. During the experimental periods, the men received capsules containing 15 g/d of a placebo oil (PO) (period 1) or 15 g/d of the FOC (period 2). In addition to the PO or FOC, capsules contained 1 mg of α-tocopherol per g of fat as an antioxidant. The average daily excretion of PGI2-M during the last week of FOC supplementation (period 2) was 22% less (P = 0.0001) than at the end of the first period. These results are at variance with those reported in comparable human studies conducted by other investigators during the middle and late 1980s. A 20% reduction (P = 0.003) in the 11-dehydrothromboxane B2 to 2,3-dinor-6-oxo-PGF excretion ratio at the end of period 2 in this study demonstrates that a shift of the n-6 to n-3 polyunsaturated fatty acid ratio from 12.5 to 2.3 brings about a substantial modulation of the eicosanoid system.  相似文献   

13.
PGI2 and 6-keto-PGF were converted to 6-methoxime-PGF (6-MeON-PGF) by treatment with methoxyamine HCl in acetate buffer. The formed 6-MeON-PGF was measured by radioimmunoassay. Antisera were raised in rabbits after immunization against 6-MeON-PGF-BSA conjugate. Diluted 1:20.000 to bind 50% of the tracer (3H-6-MeON-PGF, 100 Ci/mmol), the antiserum cross reacted 0.8% with PGE2, 1% with PGF and less than 0.2% with PGD2, PGF, PGF and TXB2. The radioimmunoassay was used to estimate release of PGI2 and 6-keto-PGF from chopped rabbit renal medulla and cortex incubated in Krebs-Ringer bicarbonate buffer (37°C, 30 min). The 6-keto-PGf radioimmunoassay was validated in biological samples by mass fragmentography. The chopped medulla (n=5) released 38±9 ng/g/min and the cortex (n=5) 4.7±2.0 ng/g/min, while the release of immunoreactive PGE2 (iPGE2) and iPGF was 171±26 and 74±13 ng/g/min from the medulla and 4.3±1.3 and 2.7±0.3 ng/g/min from the cortex, respectively. The results confirm previous findings, which indicate that in the renal medulla prostaglandin endoperoxides are mainly transformed to prostaglandins, while in the cortex transformation to PGI2 seems to be of greater importance.  相似文献   

14.
Fragments of chopped lung from indomethacin treated guinea-pigs had an anti-aggregating effect when added to human platelet rich plasma (PRP), probably due to the production of prostacyclin (PGI2) since the effect was inhibited by 15-hydroperoxy arachidonic acid (15-HPAA, 10 μg ml−1). Both 15-HPAA (1–20 μg ml−1 min−1) and 13-hydroperoxy linoleic acid (13-HPLA, 20 μg ml−1 min−1) caused a marked enhancement of the anaphylactic release of histamine, slow-reacting substance of anaphylaxis (SRS-A) and rabbit aorta contracting substance (RCS) from guinea-pig isolated perfused lungs. This enhancement was not reversed by the concomitant infusion of either PGI2 (5 μg ml−1 min−1) or 6-oxo-prostaglandin F (6-oxo-PGF, 5 μg ml−1 min−1). Anaphylactic release of histamine and SRS-A from guinea-pig perfused lungs was not inhibited by PGI2 (10 ng - 10 μg ml−1 min−1) but was inhibited by PGE2 (5 and 10 μg ml−1 min−1). Antiserum raised to 5,6-dihydro prostacyclin (PGI1) in rabbits, which also binds PGI2, had no effect on the release of anaphylactic mediators. The fatty acid hydroperoxides may enhance mediator release either indirectly by augmenting thromboxane production or by a direct effect on sensitized cells. Further experiments to distinguish between these alternatives are described in the accompanying paper (27).  相似文献   

15.
Synthesis of COP (prostaglandins; PG and thromboxanes; Tx) from exogenous and endogenous arachidonic acid (AA) was studied in isolated perfused lungs from rats treated in vivo with a single dose of α-naphthylthiourea (ANTU; 10mg/kg;). Lung dry: wet weight ratios showed changes characteristic of oedema between 6 and 16h after ANTU. Bioassay of COP showed that COP synthesis from exogenous AA was raised above control values in lungs from rats treated with ANTU, reaching a maximum at 16h after treatment. By radioimmunoassay, the major increase was in 6-oxo-PGF, with lesser effects on PGE2 and PGF levels. Synthesis of bioassayable COP from endogenous AA induced by the calcium ionophore A23187 was increased as early as 2h after ANTU treatment and remained elevated up to 70h. In lungs 28h after ANTU, 6-oxo-PGF release was greater than in normal lungs. These results show that in this model of pulmonary oedema, the potential for COP synthesis was increased. From the time course of this effect, increased COP synthesis was probably a response to the initial damage rather than a cause of the oedema.  相似文献   

16.
The effect of carbacyclin, a chemically stable analogue of prostacyclin (PGI2), on the adhesion of platelets to collagen has been examined. The compound was compared to PGI2 which is unstable and rapidly hydrolysed to the inactive derivative, 6-oxo-PGF. The adhesion of 111Indium-labelled human plateles to collagen in the absence of platelet aggregation and secretion was measured. The cAMP level in the platelets was also monitored. Both PGI2 and carbacyclin inhibited platelet-collagen adhesion and caused a rise in the platelet cAMP level. Carbacyclin was approximately 15-fold less effective than PGI2, however, its effect was longer lasting, remaining constant for at least 30 minutes.  相似文献   

17.
Isolated perfused cat lungs secreted spontaneously a PGI2-like substance that relaxed a strip of bovine coronary artery. The presence of PGI2 was confirmed by the identification of 6-oxo-PGFα by GC-MS. Both bioassay and mass fragmentography showed that PGI2 was released at a rate of 4 – 12 ng/ml. Generation of PGI2 by the perfused cat lungs was stimulated by angiotensin II (3 – 10 ng/ml). The above results along with our in vivo experiments point to the lung as an important source of endogenous PGI2 in the body.  相似文献   

18.
Using PGH2 as substrate, we have previously demonstrated that human placenta synthetizes mainly PGE2, TxB2 and PGD2(1,2). Other reports have shown that placental tissue generates a substance which inhibits ADP-induced platelet aggregation and which was supposed to be PGI2 (3). The present study indicates that the stability of that substance is different from the stability of prostacyclin (released by umbilical artery pieces). By GC-MS and multiple ion-monitoring, we have shown the presence of 6 keto-PGF (the stable metabolite of PGI2) in the umbilical artery incubation medium, while no trace of 6-keto-PGF could be found in the placental medium. No conversion of AA to 6-keto-PGF by placental microsomes was observed, even in the presence of antioxidants. The placenta possesses, in addition to the known 15-OH-PGDH and Δ-13 reductase activities, a weak 9 OH pGDH which is specific for PGF (and not PGI2 nor 6-keto-PGF). GC-MS analysis is showed that the expected metabolites of PGI2 through those three enzymes were not found in the placental medium, indicating that neither PGI2 synthesis nor metabolism could be demonstrated in the placenta.  相似文献   

19.
A method of tissue superfusion has been used to measure prostanoid production by the ovine cervix during late pregnancy and at parturition. In late pregnancy (105–135 days of gestation) cervical tissue produced relatively large amounts of prostaglandin E (PGE); in comparison, the production rates of prostaglandin F (PGF), 13, 14-dihydro-15-oxo-prostaglandin F (PGFM) and 6-oxo-prostaglandin F were generally low. Thromboxane B2 (TXB2) production was minimal and often unmeasurable. There were significant increases in the production rates of PGE and 6-oxo-PGF by cervical tissue taken immediately after delivery, when compared to late pregnancy. Mean production rates of PGE increased from 19.8 ± 4.1 to 43.8 ± 7.4 ng/g. dry wt./min; 6-oxo-PGF production rates increased more than three-fold from 10.0 ± 2.7 to 34.6 ± 9.8 ng/g. dry wt./min (means ± S.E.M.). There were no significant differences in the rates of production of PGF, PGFM and TXB2 by the two groups.  相似文献   

20.
Incubations of PGG2 with aortic microsomes yielded two products which were not formed in boiled enzyme control, one of which was 6-oxo-PGF. The major metabolite was identified by gas-liquid chromatography-mass spectrometry as 6,15-dioxo-PGF. Thus, unlike PGH2, PGG2 is probably converted to 15-hydroperoxy PGI2 which subsequently decomposes to 6,15-dioxo-PGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号