首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
Biodiesel is an alternative to petroleum-based conventional diesel fuel and is defined as the mono-alkyl esters of vegetable oils and animal fats. Biodiesel has been prepared from numerous vegetable oils, such as canola (rapeseed), cottonseed, palm, peanut, soybean and sunflower oils as well as a variety of less common oils. In this work, Moringa oleifera oil is evaluated for the first time as potential feedstock for biodiesel. After acid pre-treatment to reduce the acid value of the M. oleifera oil, biodiesel was obtained by a standard transesterification procedure with methanol and an alkali catalyst at 60 degrees C and alcohol/oil ratio of 6:1. M. oleifera oil has a high content of oleic acid (>70%) with saturated fatty acids comprising most of the remaining fatty acid profile. As a result, the methyl esters (biodiesel) obtained from this oil exhibit a high cetane number of approximately 67, one of the highest found for a biodiesel fuel. Other fuel properties of biodiesel derived from M. oleifera such as cloud point, kinematic viscosity and oxidative stability were also determined and are discussed in light of biodiesel standards such as ASTM D6751 and EN 14214. The (1)H NMR spectrum of M. oleifera methyl esters is reported. Overall, M. oleifera oil appears to be an acceptable feedstock for biodiesel.  相似文献   

2.
Preparation and characterization of bio-diesels from various bio-oils   总被引:19,自引:0,他引:19  
Methyl, ethyl, 2-propyl and butyl esters were prepared from canola and linseed oils through transesterification using KOH and/ or sodium alkoxides as catalysts. In addition, methyl and ethyl esters were prepared from rapeseed and sunflower oils using the same catalysts. Chemical composition of the esters was determined by HPLC for the class of lipids and by GC for fatty acid compositions. The bio-diesel esters were characterized for their physical and fuel properties including density, viscosity, iodine value, acid value, cloud point, pure point, gross heat of combustion and volatility. Methyl and ethyl esters prepared from a particular vegetable oil had similar viscosities, cloud points and pour points, whereas methyl, ethyl, 2-propyl and butyl esters derived from a particular vegetable oil had similar gross heating values. However, their densities, which were 2 7% higher than those of diesel fuels, statistically decreased in the order of methyl approximately 2-propyl > ethyl > butyl esters. Butyl esters showed reduced cloud points (-6 degrees C to -10 degrees C) and pour points (-13 degrees C to -16 degrees C) similar to those of summer diesel fuel having cloud and pour points of -8 degrees C and -15 degrees C, respectively. The viscosities of bio-diesels (3.3-7.6 x 10(-4) Pa s at 40 degrees C) were much less than those of pure oils (22.4-45.1 x 10(-4) Pa s at 40 degrees C) and were twice those of summer and winter diesel fuels (3.50 and 1.72 x 10(-4) Pa s at 40 degrees C), and their gross heat contents of approximately 40 MJ/kg were 11% less than those of diesel fuels (approximately 45 MJ/kg). For different esters from the same vegetable oil, methyl esters were the most volatile, and the volatility decreased as the alkyl group grew bulkier. However, the bio-diesels were considerably less volatile than the conventional diesel fuels.  相似文献   

3.
目前生物柴油因其环保和可再生利用资源的特性备受关注。多数生物柴油是通过甲醇和碱催化食用油得到的,而大量非食用油也可以制备生物柴油。本文报道用高含游离酸脂肪油快速高效低成本制备成其单酯的二步法工艺。先用1% H2SO4以少于1.5%量对甲醇和云南特产香果树(Lindera communis)籽的粗原料油以10∶1摩尔比组成的混合液酸催化酯化游离脂肪酸;之后再对醇和得到的油脂产品按摩尔比15∶1的混合液碱催化转化为单甲酯和甘油。本方法是一个直接甲脂化制备生物柴油的工艺简洁、降低成本的新技术。文中还讨论了该工艺影响转化效率的主要因素,如摩尔比,催化量,温度,反应时间和酸度。香果树生物柴油不重蒸,而其生物柴油的主要特性,如粘度、热值、比重、闪点、冷滤点等与生物柴油标准的匹配度,也做了报道,研究结果将为香果树生物柴油以非重蒸油料制备生物柴油产品,作为潜在的柴油燃料替代产品提供技术支撑。  相似文献   

4.
The vegetable oils are all extremely viscous with viscosities ranging from 10 to 20 times greater than petroleum diesel fuel. The purpose of the transesterification process is to lower the viscosity of the oil. Methyl and ethyl esters as biodiesel were prepared from cottonseed oil through transesterification using non-catalytic supercritical fluids. The transesterfication of linseed oil in SCF such as methanol and ethanol has proved to be the most promising process. The biodiesels were characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value (HHV). The viscosities of biodiesels (3.6-4.0 mm(2)/s at 311 K) were much less than those of pure oils (33-36 mm(2)/s at 311 K), and their HHVs of approximately 40.5 MJ/kg were 10% less than those of petrodiesel fuels (approximately 45 MJ/kg). The flash point values (435-445 K) of methyl and ethyl esters are highly lower than that of cottonseed oil (507-512 K). The most important variables affecting the ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature.  相似文献   

5.
The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 wt.% of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel (BD) production. Jojoba oil methyl esters (JME) were prepared from acid-catalyzed pretreated jojoba oil in order to evaluate important fuel properties of jojoba-based BD, including kinematic viscosity, cloud point (CP), pour point (PP), cold filter plugging point (CFPP), acid value (AV), oxidative stability, and lubricity. A comparison was made with soybean oil methyl esters (SME) and relevant BD fuel standards such as ASTM D6751 and EN 14214. JME was characterized using Fourier transform infrared spectroscopy and 1H and 13C nuclear magnetic resonance. The CP, PP, and CFPP of JME were ?13°C, ?16°C, and ?14°C, respectively, which were superior to SME. The kinematic viscosity (40°C) of JME was 6.67 mm2/s, which was higher than observed for SME. Blends (B5 and B20) of JME in ultra-low sulfur diesel fuel (ULSD) were also evaluated for the aforementioned fuel properties and compared to an analogous set of blends of SME in ULSD and relevant petro diesel fuel standards such as ASTM D975 and D7467. JME blends in ULSD displayed improved low-temperature properties in comparison to neat ULSD and blends of SME in ULSD. In summary, jojoba oil has potential as an alternative, nonfood feedstock for BD production.  相似文献   

6.
Edible oil seed crops, such as rapeseed, sunflower, soyabean and safflower and non-edible seed oil plantation crops Jatropha and Pongamia have proved to be internationally viable commercial sources of vegetable oils for biodiesel production. Considering the paucity of edible oils and unsustainability of arable land under perennial plantation of Jatropha and Pongamia in countries such as India, the prospects of seed oil producing Cleome viscosa, an annual wild short duration plant species of the Indogangetic plains, were evaluated for it to serve as a resource for biodiesel. The seeds of C. viscosa resourced from its natural populations growing in Rajasthan, Haryana and Delhi areas of Aravali range were solvent extracted to obtain the seed oil. The oil was observed to be similar in fatty acid composition to the non-edible oils of rubber, Jatropha and Pongamia plantation crops and soybean, sunflower, safflower, linseed and rapeseed edible oil plants in richness of unsaturated fatty acids. The Cleome oil shared the properties of viscosity, density, saponification and calorific values with the Jatropha and Pongamia oils, except that it was comparatively acidic. The C. viscosa biodiesel had the properties of standard biodiesel specified by ASTM and Indian Standard Bureau, except that it had low oxidation stability. It proved to be similar to Jatropha biodiesel except in cloud point, pour point, cold filter plugging point and oxidation stability. In view of the annual habit of species and biodiesel quality, it can be concluded that C. viscosa has prospects to be developed into a short-duration biodiesel crop.  相似文献   

7.
Turnip oil (TO; Raphanus sativus L.) produces seeds that contain around 26 wt% of inedible base stock that are suitable as a potential feedstock for biodiesel production. A turnip oil methyl ester (TME) was prepared from acid-catalyzed pretreated TO in an effort to evaluate important fuel properties of turnip oil-based biodiesel, such as kinematic viscosity, cloud point, pour point (PP), cold filter plugging point, acid value, oxidative stability and lubricity. A comparison was made with soybean oil methyl esters (SME) as per biodiesel fuel standards such as ASTM D6751 and EN 14214. TME was characterized using FTIR, HPLC and 1H NMR. Except PP property, SME displays superior fuel properties compared to TME. Blends (B5 and B20) of TME in ultra-low sulphur diesel fuel (ULSD) were also assessed for the aforesaid fuel properties and compared to an analogous set of blends of soybean oil methyl ester in ULSD as per petro diesel fuel standards such as ASTM D975 and D7467. TME B5 blends in ULSD displayed improved PP property in comparison to neat ULSD and blends of SME in ULSD. It was demonstrated that the B5 and B20 blends of TME in ULSD had acceptable fuel properties as per ASTM D975 (for B5 blend) and ASTM D7467 (for B20 blend). In summary, turnip oil has potential as an alternative, non-food feedstock for biodiesel production.  相似文献   

8.
《Process Biochemistry》2010,45(6):829-834
Biocatalytic synthesis is a promising environmentally friendly process for the production of biodiesel, a sustainable alternative fuel from renewable plant resources. In order to develop an economical heterogeneous biocatalyst, protein-coated microcrystals (PCMCs) were prepared from a commercial enzyme preparation from a recombinant Aspergillus strain expressing Thermomyces lanuginosus lipase and used for synthesis of biodiesel from palm olein by ethanolysis. Reaction parameters, including catalyst loading, temperature, and oil/alcohol molar ratio have been systematically optimized. Addition of tert-butanol was found to markedly increase the biocatalyst activity and stability resulting in improved product yield. Optimized reactions (20%, w/w PCMC-lipase to triacylglycerol and 1:4 fatty acid equivalence/ethanol molar ratio) led to the production of alkyl esters from palm olein at 89.9% yield on molar basis after incubation at 45 °C for 24 h in the presence of tert-butanol at a 1:1 molar ratio to triacylglycerol. Crude palm oil and palm fatty acid distillate were also efficiently converted to biodiesel with 82.1 and 75.5% yield, respectively, with continual dehydration by molecular sieving. Operational stability of PCMC-lipase could be improved by treatment with tert-butanol allowing recycling of the biocatalyst for at least 8 consecutive batches with only slight reduction in activity. This work thus shows a promising approach for biodiesel synthesis with microcrystalline lipase which could be further developed for cost-efficient industrial production of biodiesel.  相似文献   

9.
Methyl esters from vegetable oils have attracted a great deal of interest as substitute for petrodiesel to reduce dependence on imported petroleum and provide an alternate and sustainable source for fuel with more benign environmental properties. In the present study biodiesel was prepared from sunflower seed oil by transesterification by alkali-catalyzed methanolysis. The fuel properties of sunflower oil biodiesel were determined and discussed in the light of ASTM D6751 standards for biodiesel. The sunflower oil biodiesel was chemically characterized with analytical techniques like FT-IR, and NMR (1H and 13C). The chemical composition of sunflower oil biodiesel was determined by GC–MS. Various fatty acid methyl esters (FAMEs) were identified by retention time data and verified by mass fragmentation patterns. The percentage conversion of triglycerides to the corresponding methyl esters determined by 1H NMR was 87.33% which was quite in good agreement with the practically observed yield of 85.1%.  相似文献   

10.
Mixed esters of ascorbic acid were synthesized using methyl esters of palm and soybean oils as acyl donors, in acetone at 50 degrees C, and catalyzed by Novozym 435. A conversion of 62% was obtained with palm oil methyl ester at an ascorbic acid to acyl donor molar ratio of 1:4; the mixed ester contained 45.89% ascorbyl palmitate, 42.59% ascorbyl oleate and 10.1% ascorbyl linoleate. Acylation with soybean oil methyl ester resulted in 17% conversion, yielding a mixed ester containing 10.08% ascorbyl palmitate, 20.68% ascorbyl oleate, and 64.96% of ascorbyl linoleate. The mixed esters of ascorbic acid can find direct use in food and cosmetics.  相似文献   

11.
Trans-esterification of four vegetable oils; canola oil, greenseed canola oil from heat-damaged seeds, processed waste fryer grease and unprocessed waste fryer grease, was carried out using methanol, and KOH as catalyst. The methyl esters of the corresponding oils were separated from the crude glycerol, purified, and characterized by various methods to evaluate their densities, viscosities, iodine values, acid numbers, cloud points, pour points and gross heat of combustion, fatty acid and lipid compositions, lubricity properties, and thermal properties. The fatty acid composition suggests that 80-85% of the ester was from unsaturated acids. Substantial decrease in density and viscosity of the methyl esters compared to their corresponding oils suggested that the oils were in their mono or di glyceride form. The lubricity of the methyl esters, when blended at 1 vol% treat rate with ISOPAR M reference fuel, showed that the canola methyl ester enhanced the fuel's lubricity number. From the analyses performed, it was determined that the ester with the most potential for being an additive or a substitute for diesel fuel is the canola methyl ester, whose physical and chemical characteristics are similar to diesel fuel.  相似文献   

12.
The kinetics of biodegradation of palm-derived fatty methyl and ethyl esters (Elaeis guineensis biodiesel) by a wild-type aerobic bacterial population was measured at 20 degrees C, as the rate of oxygen uptake by a manometric technique. The methyl and ethyl biodiesels were obtained by potassium-hydroxide catalysed trans-esterification of palm oil, respectively. The bacterial flora included the genera Bacillus, Proteus, Pseudomonas, Citrobacter and Enterobacter. The rate of oxygen uptake for palm biodiesel is similar to the quantity observed in the biodegradation of 1.0 mM solutions of simple substrates such as carbohydrates or amino acids. Palm methyl or ethyl biodiesel is subjected to facile aerobic biodegradation by wild-type bacteria commonly present in natural open environments. This result should lessen any environmental concern for its use as alternative fuel, solvent or lubricant.  相似文献   

13.
Biodiesel is an alternative fuel that has been used for partial or total substitution of diesel to reduce its environmental impacts. Prior studies on this topic have focused on the quest for better synthesis process, new catalysts and low-cost non-food and raw materials to improve the economic and sustainable production as well as product quality. In this study, acidic oil from macauba, a palm tree native to South America that has no food uses, was converted into biodiesel. The esterification and transesterification reactions were performed with methanol, ethanol and isobutanol with the goal of improving the cold properties of the biodiesel. The isobutyl ester exhibited the lowest freezing point temperature but underperformed outside of international specifications for kinematic viscosity; it also exhibited a low ester content. The methyl and ethyl esters were within the specifications of the international standards for ester content, density, kinematic viscosity and sulphur content. The ethyl ester produced from macauba oil displayed better properties in cold conditions than methyl and isobutyl esters studied here, with a cold filter plugging point of 0 °C. Its onset crystallisation temperature was reduced from ?5.96 to ?13.41 °C when subjected to fractional crystallisation. The ethyl ester exhibited the best lubricity value among the other esters studied.  相似文献   

14.
Preparation of biodiesel from crude oil of Pongamia pinnata   总被引:14,自引:0,他引:14  
Biodiesel was prepared from the non-edible oil of Pongamia pinnata by transesterification of the crude oil with methanol in the presence of KOH as catalyst. A maximum conversion of 92% (oil to ester) was achieved using a 1:10 molar ratio of oil to methanol at 60 degrees C. Tetrahydrofuran (THF), when used as a co-solvent increased the conversion to 95%. Solid acid catalysts viz. Hbeta-Zeolite, Montmorillonite K-10 and ZnO were also used for this transesterification. Important fuel properties of methyl esters of Pongamia oil (Biodiesel) compare well (Viscosity = 4.8 Cst @ 40 degrees C and Flash point = 150 degrees C) with ASTM and German biodiesel standards.  相似文献   

15.
The purpose of this study is to investigate influences of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Tall oil resinic acids were reacted with MgO and MoO(2) stoichiometrically for the production of metal-based fuel additives (combustion catalysts). The metal-based additives were added into tall oil biodiesel (B60) at the rate of 4 micromol/l, 8 micromol/l and 12 micromol/l for preparing test fuels. In general, both of the metal-based additives improved flash point, pour point and viscosity of the biodiesel fuel, depending on the rate of additives. A single cylinder DI diesel engine was used in the tests. Engine performance values did not change significantly with biodiesel fuels, but exhaust emission profile was improved. CO emissions and smoke opacity decreased by 56.42% and by 30.43%, respectively. In general, low NO(x) and CO(2) emissions were measured with the biodiesel fuels.  相似文献   

16.
A comparative study on the composition, biodiesel production and fuel properties of non-edible oils from Euphorbia lathyris L. (EL), Sapium sebiferum L. (SS), and Jatropha curcas L. (JC) was conducted. Under optimal conditions, the FAME content and yield of the three oils were greater than 97.5 wt.% and 84.0%, respectively. The best biodiesel was produced from EL due to its high monounsaturation (82.66 wt.%, Cn: 1), low polyunsaturation (6.49 wt.%, Cn: 2, 3) and appropriate proportion of saturated components (8.78 wt.%, Cn: 0). Namely, EL biodiesel possessed a cetane number of 59.6, an oxidation stability of 10.4 h and a cold filter plug point of -11 °C. However, the cetane number (40.2) and oxidative stability (0.8 h) of dewaxed SS kernel oil (DSSK) biodiesel were low due to the high polyunsaturation (72.79 wt.%). In general, the results suggest that E. lathyris L. is a promising species for biodiesel feedstock.  相似文献   

17.
Environmental concerns and depletion of fossil fuels along with government policies have led to the search for alternative fuels from various renewable and sustainable feedstocks. This review provides a critical overview of the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, WCO, and CTO and their recent trends toward potential biofuel production. Plant oils with a high energy content are primarily composed of triglycerides (generally >?95%), accompanied by diglycerides, monoglycerides, and free fatty acids. The heat content of plant oils is close to 90% for diesel fuels. The oxygen content is the most important difference in chemical composition between fossil oils and plant oils. Triglycerides can even be used directly in diesel engines. However, their high viscosity, low volatility, and poor cold flow properties can lead to engine problems. These problems require that plant oils need to be upgraded if they are to be used as a fuel in conventional diesel engines. Biodiesel, biooil, and renewable diesel are the three major biofuels obtained from plant oils. The main constraint associated with the production of biodiesel is the cost and sustainability of the feedstock. The renewable diesel obtained from crude tall oil is more sustainable than biofuels obtained from other feedstocks. The fuel properties of renewable diesel are similar to those of fossil fuels with reduced greenhouse gas emissions. In this review, the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, and tall oil, are presented. Both their major and minor components are discussed. Their compositions and fuel properties are compared to both fossil fuels and biofuels.  相似文献   

18.
In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor.  相似文献   

19.
Synthesis of surrogate molecules is particularly useful for generating in sight of structural-activity relationships, understanding processes and improving the performance. In order to improve upon the physico-chemical properties of biodiesel, methyl, ethyl, isopropyl and n-butyl esters of β-branched fatty acid have been synthesized, initiating from β-branched alcohols. β-Branched alcohols upon oxidation gave corresponding acids, which were converted to their esters. The synthesized esters have substantially better oxidative stability, exhibited by Rancimat oxidation induction period of more than 24 h. The cloud point of synthesized esters is <−36 °C, pour point is <−42 °C and CFPP is <−21 °C, which is substantially better than fatty acid methyl esters. Besides achieving the objective of better oxidative stability and improved low temperature properties, the synthesized surrogate esters have viscosity in the range of 4.2–4.6 cSt at 40 °C, meeting the international diesel and biodiesel standards. The cetane number of synthesized esters is 62–69, which is much better than diesel and biodiesel. The blends of the synthesized esters in diesel at 5% and 10% meet Indian standards of diesel.  相似文献   

20.
Medium‐chain fatty acids (MCFA, C6‐14 fatty acids) are an ideal feedstock for biodiesel and broader oleochemicals. In recent decades, several studies have used transgenic engineering to produce MCFA in seeds oils, although these modifications result in unbalance membrane lipid profiles that impair oil yields and agronomic performance. Given the ability to engineer nonseed organs to produce oils, we have previously demonstrated that MCFA profiles can be produced in leaves, but this also results in unbalanced membrane lipid profiles and undesirable chlorosis and cell death. Here we demonstrate that the introduction of a diacylglycerol acyltransferase from oil palm, EgDGAT1, was necessary to channel nascent MCFA directly into leaf oils and therefore bypassing MCFA residing in membrane lipids. This pathway resulted in increased flux towards MCFA rich leaf oils, reduced MCFA in leaf membrane lipids and, crucially, the alleviation of chlorosis. Deep sequencing of African oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera) generated candidate genes of interest, which were then tested for their ability to improve oil accumulation. Thioesterases were explored for the production of lauric acid (C12:0) and myristic (C14:0). The thioesterases from Umbellularia californica and Cinnamomum camphora produced a total of 52% C12:0 and 40% C14:0, respectively, in transient leaf assays. This study demonstrated that the introduction of a complete acyl‐CoA‐dependent pathway for the synthesis of MFCA‐rich oils avoided disturbing membrane homoeostasis and cell death phenotypes. This study outlines a transgenic strategy for the engineering of biomass crops with high levels of MCFA rich leaf oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号