首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal organization in the Clare-Bishop cortical association area was studied by consecutive vertical penetration of an electrode and analysis of unit responses to photic stimulation during each penetration. Activity of one or two neurons was recorded during 131 penetrations, and activity of over 3 neurons responding to photic stimulation (visually driven) during 55 penetrations. In 8 of the 55 penetrations all neurons discovered in each had identical characteristics; this type of organization corresponded most of all to the columnar organization of the cortical neurons. In 24 penetrations the neurons were arranged in groups: two or three neurons of one type intermingled with neurons of other types. In 18 penetrations considerable overlapping of the receptive fields of neurons in the same column was observed. A chaotic distribution of neurons with different characteristics was found in 5 penetrations. It is suggested that the organization of neurons in the Clare-Bishop area in columns as functional units of cortical structure is not the principal type of their organization.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 297–302, July–August, 1979.  相似文献   

2.
Postsynaptic potentials (PSPs) of 83 neurons in the motor cortex of unanesthetized cats in response to electrodermal, photic, and acoustic stimulation were investigated by intra-and quasi-intracellular recording methods. Most cells responded to stimulation of at least one limb. About 60% of neurons of the posterior and over 75% of neurons of the anterior sigmoid gyrus responded to stimulation of two (or more) limbs. In 29 of 39 neurons of the anterior and 12 of 44 of the posterior sigmoid gyrus PSPs with a short (less than 50 msec) and stable latent period were evoked by flashes and clicks. On presentation of two somesthetic stimuli complete blocking (if the interval was less than 30–60 msec) or weakening (interval 30–200 msec) of responses to the second (testing) stimulus was observed. On presentation of paired photic (or acoustic) stimuli or paired stimuli of different modalities at various intervals from 0 to 100 msec, the testing response was often potentiated. The character of the responses and their interaction thus differed from those obtained under chloralose anesthesia [6, 7]. It is postulated that under the action of chloralose a system of neurons with strong excitatory feedback is formed in the motor cortex which may respond to stimuli of different modalities by something resembling the "all or nothing" principle.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 563–573, November–December, 1971.  相似文献   

3.
The response of caudate nucleus neurons to presentation of photic stimuli located at varying distances from the fovea centralis was investigated in awake cats. Stimulation of different sites on the visual field below the fovea produced dissimilar reactions in 25 of the 35 (or 71%) of these neurons responding to photic stimulation. This divergence of response indicates that in 6 of these cells (or 17%) the receptive fields in the test area of the visual field bordered on the central area of the latter and 6 neurons (17%) showed reduced sensitivity to the effects of stimuli nearer to the periphery than to the center of the visual field, while 13 units (37%) were receiving qualitatively different information from various sites on the field of vision. On the basis of our findings we deduced that caudate nucleus neurons are involved in the analysis of visual sensory signals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 241–250, March–April, 1986.  相似文献   

4.
Responses of 246 auditory cortical neurons to paired and repetitive stimulation of geniculo-cortical fibers were studied in experiments on cats immobilized with tubocurarine. The refractory period (RP) varied from 1 to 200 msec in different neurons. For neurons excited antidromically it varied from 1 to 3 msec. Among neurons excited monosynaptically there were some with a short (1.3–6 msec), medium, (8–16 msec) or long (30–100 msec) refractory period. Most neurons excited polysynaptically had a RP of mean length. RPs 30–200 msec in length were due to inhibition arising in the neuron after conditioning stimulation. In some neurons, after a short (1.5–2.0 msec) initial period of refractoriness there was a temporary (for 2–3 msec) recovery of responsiveness, followed by another period of ineffectiveness of the testing stimulus lasting 30–100 msec. Barbiturates selectively inhibited long-latency unit responses in the auditory cortex and during their action the number of responding neurons with a mean RP decreased sharply. The results demonstrate functional heterogeneity of auditory cortical neurons responding to an incoming volley of afferent impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 3, pp. 236–245, May–June, 1973.  相似文献   

5.
Synaptic responses of single neurons to stimulation of the bulbar "locomotor strip" were recorded extracellularly from superior cervical segments in mesencephalic cats. With a strength of stimulation of about 30 µA these responses usually had a latent period of 2–7 msec and they arose in neurons located at a depth of between 2 and 4 mm from the dorsal surface (Rexed's laminae V–VIII). These neurons could not be excited antidromically by stimulation of the lumbar or lower cervical segments. However, antidromic responses could be evoked by stimulation of a region located 3–5 mm caudally to the site of recording. It is suggested that neurons of segments C2 and C3 excited by stimulation of the locomotor strip are components of a cell column along which activity spreads polysynaptically in the direction of spinal stepping generators.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 245–253, May–June, 1979.  相似文献   

6.
By extracellular recording of spike discharges the sensory properties of neurons of the anterior and posterior regions of the cat hypothalamus were studied during stimulation of the splanchnic and sciatic nerves and during photic stimulation. Hypothalamic neurons were shown to be characterized by wide convergence of heterosensory excitation: 68% of spontaneously active hypothalamic neurons responded to somatovisceral and photic stimulation. Some posterior hypothalamic neurons responded to somatovisceral stimulation but not to photic stimulation. Neurons responding only to photic stimulation were found in the anterior hypothalamus; no neurons responding only to visceral stimulation were found in the hypothalamus. Total convergence of somatic and visceral afferentation of neurons of the posterior and anterior hypothalamus was observed. Mostly responses of phasic type were obtained to stimulation of all modalities. The study of the quantitative ratio between responses of excitatory and inhibitory types showed that the former predominate. The principles governing the functional organization of hypothalamic afferent systems are discussed.Academician L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 276–282, May–June, 1976.  相似文献   

7.
Extracellular and intracellular single unit responses of neurons of the auditory cortex to electrical stimulation of geniculocortical fibers (GCF) were recorded in experiments on cats immobilized with tubocurarine. The latent period of responses of 15% of neurons to GCF stimulation was 0.3–1.5 msec. It is postulated that they were excited anti-dromically. The latent period of spikes generated by neurons responding to GCF stimulation orthodromically varied from 1.6 to 12 msec. In 28.6% of neurons the latent period was 1.6–2.5 msec. It is postulated that these neurons were excited monosynaptically. Intracellular recording revealed primary IPSPs in response to GCF stimulation in 63.3% of neurons, a brief EPSP followed by a prolonged IPSP in 17.7%, an EPSP-spike-IPSP complex in 12.3%, and subthreshold EPSPs in 7% of neurons. The latent period of the primary IPSPs varied from 1.8 to 11 msec, being 1.8–3.7 in 72%, 3.8–5.7 in 20.0%, and 5.8–11 msec in 8.0% of neurons. The latent period of responses beginning with an EPSP was 1–4 msec (mean 1.8 msec). Orthodromic responses arising 3–10 msec after the antidromic response, and consisting of 3–5 spikes, were recorded in some antidromically excited neurons. Hypotheses regarding the functional organization of the auditory cortex and mechanisms of inhibition in its neurons are put forward on the basis of the results obtained.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 227–235, May–June, 1972.  相似文献   

8.
Responses of 146 spontaneously active neurons of the reticular nucleus (R) and of 98 neurons of the ventral anterior (VA) nucleus of the thalamus to electrical stimulation of the skin of the footpads, to flashes, and to clicks were studied in experiments on cats immobilized with D-tubocurarine or myorelaxin. Stimulation of the contralateral forelimb was the most effective: 24.9% of R neurons and 31.3% of VA neurons responded to this stimulation. A response to clicks was observed in only 4.4% of R neurons and 2.4% of VA neurons. Nearly all responding neurons did so by phasic (one spike or a group of spikes) or tonic excitation. Depression of spontaneous activity was observed only in response to electrical stimulation of the skin. Depending on the site of stimulation, it was observed in 2.6–4.3% of R neurons and 1.7–2.1% of VA neurons tested. The latent period of the phasic responses of most neurons was 6–64 msec to electrical stimulation of the contralateral forelimb, 11–43 msec in response to stimulation of the hindlimb on the same side, 10–60 msec to photic and 8–60 msec to acoustic stimulation. Depending on the character of stimulation, 75.1–95.6% of R neurons and 68.7–97.6% of VA cells did not respond at all to the stimuli used. Of the total number of cells tested against the whole range of stimuli, 25% of R neurons and 47% of VA neurons responded to stimulation of different limbs, whereas 16% of R neurons and 22% of VA cells responded to stimuli of different sensory modalities. The functional role of the convergence revealed in these experiments is to inhibit (or, less frequently, to facilitate) the response of a neuron to a testing stimulus during the 40–70 msec after conditioning stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 6, pp. 563–571, November–December, 1975.  相似文献   

9.
Habituation (extinction) of postsynaptic unit responses of the cat motor cortex to repetitive electrodermal, photic, acoustic, and combined bimodal stimulation was investigated by intracellular recording. Habituation was shown by a decrease in the number of spikes per grouped discharge and a decrease in the amplitude and duration of the EPSPs, and sometimes IPSPs, on repetition of the stimulus. The way in which the course of habituation depends on the modality and duration of stimulation (at a constant frequency of 1/sec) is examined. Habituation of postsynaptic responses to sensory stimuli is observed with neurons of different functional groups, namely identified neurons of pyramidal tract and unidentified neurons, some of which were evidently pyramidal neurons and interneurons. The hypothesis is put forward that the habituation of PSPs of the cortical neurons is based on processes taking place mainly at the subcortical level.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 545–553, September–October, 1972.  相似文献   

10.
The question of the sensory function of neurons of nonspecific structures in the higher levels of the brian is examined. The complexity of this problem and the debatable nature of some of its aspects are noted. Justification is given for the choice of test object — the neostriatum (caudate nucleus) as a nonspecific subcortical structure. The results of experiments on actively alert cats are described. Extracellular responses of neurons to various types of photic stimulation were compared. Predominantly activation of neurons by local photic stimuli was found, especially with a particular spatial distribution of the illuminated areas of the visual field, compared with diffuse light. Difficulties of interpretation of the results because of fluctuations of spontaneous activity and of the recorded responses observed during repeated application of stimuli are discussed. In conclusion, an attempt is made to establish a correlation between the sensory properties of neurons in the neostriatum with the effector motor function of this structure.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 384–394, May–June, 1984.  相似文献   

11.
The dynamics of structural and functional characteristics of residual neurons in the degenerating lateral geniculate body was studied in cats during the 4–12 months after division of all cortico-subcortical projection connections, including axons of relay cells of the lateral geniculate body [9]. Spontaneous and evoked activity of the residual cells, their number, and also the dimensions of the cell bodies were investigated. With lengthening of the postoperative period a decrease in the number of cells of the lateral geniculate body responding to photic stimulation and also destruction of their receptive fields were observed; 12 months after the operation the residual neurons of the lateral geniculate body lose their sensitivity to photic stimulation. Morphological investigation revealed a progressive reduction in the number of neurons in the degenerating lateral geniculate body and predominance of small neurons among them. The nature of interneuronal relations in the lateral geniculate body are discussed on the basis of the results.Research Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 6, pp. 575–582, November–December, 1977.  相似文献   

12.
Acute experiments on cats anesthetized with pentobarbital and immobilized with Diplacin or Listhenon showed that electrical stimulation of the vagus, splanchnic, pelvic, and sciatic nerves and also of the mesencephalic reticular formation induces either a prolonged change in the frequency of unit activity or phasic responses of single units of the lateral geniculate body. During stimulation of the visceral nerves tonic changes in unit activity were predominant, whereas phasic responses were found more often during somatic stimulation. Most neurons tested responded to all types of stimulation used and only 15–18% responded only to the specific stimulus: photic stimulation of the receptive field. The results suggest that interaction of visceral, somatic, and sensory-specific excitation takes place on single neurons of the lateral geniculate body.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Ivano-Frankovsk Medical Institute. Translated from Neirofiziologiya, Vol. 5, No. 3, pp. 246–252, May–June, 1973.  相似文献   

13.
Single unit responses in the visual cortex of the waking rabbit to repetitive photic stimulation at a frequency of once every 2.5 sec were studied. Depending on the total number of spikes in the response, the dynamics of the responses could be divided into two types: "fast" and "slow." From 5 to 15 stimuli were required to establish a stable level of response with changes of the first type, but 50 to 100 stimuli were needed for the response with changes of the second type. About 50% of all neurons did not change the characteristics of response. In the group of neurons with changing responses, partial habituation was found in 55–59% of cells; there were 25% of neurons with sensitization of discharge and 17–20% with a humpbacked type of response dynamics. A "slow" dynamics of unit responses in most cases was accompanied by changes in the duration of inhibitory pauses in the response; negative correlation of these values was observed in 65% of neurons.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 451–459, September–October, 1978.  相似文献   

14.
Responses of 304 neurons in the anterior part of the middle suprasylvian gyrus in cats to acoustic, photic, and somatosensory stimulation and also to simultaneous presentation of 2 or 3 stimuli of these modalities. Three groups of neurons were distinguished: those responding by an increased firing rate (187) or by inhibition (22) and those not responding (95). The first group comprised mono- (64) and polysensory (105) and well as neurons responding only to a combination (18). On the basis of the convergent properties of the polysensory neurons in this region it is postulated that the parietal cortex performs principally integrative processes based on iteraction of visual-cutaneous and cutaneo-auditory afferent information.State Medical Institute, Kemerovo. Translated from Neirofiziologiya, Vol. 4 No. 1, pp. 54–60, January–February, 1972.  相似文献   

15.
Characteristics of temporal summation in neurons of area 17 of the visual cortex in acute experiments on unanesthetized, immobilized cats. During light adaptation, extracellular spike responses of these neurons to optimal local photic stimuli of varied duration — from 5 to 1000 msec — were studied. The critical duration of temporal summation of excitation, determined by the supraliminal method using the criterion of maximal discharge frequency in the first volley of the spike response, varied in different cells from 5 to 100 msec; neurons with summation lasting 15–100 msec (mean 31.45±5.67 msec) were found most frequently. Neurons with central receptive fields differed significantly from cellswith peripheral fields in the shorter critical duration of temporal summation, the lower frequency of spontaneous discharges, and the shorter duration of the first volley of the response. Summation time in neurons with simple receptive fields was significantly shorter than in neurons with complex receptive fields. The results of these experiments are compared with data in the literature obtained by the study of retinal and lateral geniculate neurons in cats and are discussed from the stand-point of division of ascending afferent projections in the visual system into X-and Y-groups (Ia and Ib).Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 345–352, July–August, 1981.  相似文献   

16.
During acute experiments on awake cats the response of 98 neurons belonging to the head and tail of the caudate nucleus to direct electrical stimulation of the optic tract and presentation of photic stimuli was investigated using extracellular recording techniques. Of the test neurons 34.6% responded to stimulation of the optic tract and 36.2% to optic stimulation. Long latency (over 40 msec for the optic tract and over 80 msec for visual stimulation) excitatory responses prevailed in both cases. A small number of cells responded to optic tract stimulation with short latencies of 5–14 msec. Both types of stimulation were presented during investigations of 58 units of which eight were found to respond to both stimuli. The latter varied in their reaction to different stimuli and their response pattern. Findings are discussed in relation to the possible pathways by which visual information reaches the cortical structure under study.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 476–485, July–August, 1986.  相似文献   

17.
Unilateral division of corticogeniculate connections increases the number of spikes in unit responses of the ipsilateral lateral geniculate body to receptive field stimulation and potentiates the effects of lateral inhibition. The area of the zone of complete summation of all lateral geniculate neurons recorded on the side of operation depends on contrast of the local photic stimulus. It is concluded that cortical fibers descending to the lateral geniculate body are inhibitory in nature and that the existence of receptive fields with a variable zone of spatial summation is due to intrageniculate mechanisms.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 7, No. 5, pp. 486–492, September–October, 1975.  相似文献   

18.
In acute experiments on cats under chloralose anesthesia (70 mg/kg) unit activity was recorded extra- and intracellularly in the sensomotor cortex (areas 4 and 6) during prolonged (up to 1000 msec) photic stimulation. Responses of on-off type were generated by 100% of neurons tested to photic stimuli whose duration corresponded to the recovery cycle of functional changes after a single flash, determined by the paired stimulation method. Cutaneous stimulation affected the appearance of the photic off response if it led to a spike discharge of the neuron before the off response. It is suggested that IPSPs of cortical neurons largely determine both the duration of the cycle of functional recovery after a single flash and also differences in the pattern of generation of the off response and its interaction with responses to cutaneous stimulation.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 355–360, July–August, 1977.  相似文献   

19.
In the visual cortex of unanesthetized cats, the number and frequency of discharges in response to a new stimulus differed from the subsequent responses: the first response was more intensive in 34% of the neurons, but in 30% it was inhibited. The phenomenon of short-term memory was detected in 19% of the cells: it was expressed in regeneration of the configuration of response discharges after the cessation of rhythmic stimulation. These peculiarities can be linked with functional organization of the neurons. We divided them into two groups according to their response to photic stimuli. The first group includes short-latent neurons that respond with discharges of the phasic type and that virtually or totally lack spontaneous activity. The second group consists of long-latent neurons with the tonic type of discharges and distinct spontaneous activity. In the overwhelming majority of cases, response to novelty and short-term memory were discovered in neurons of the second group. It is hypothesized that the population of neurons of the first group — having narrower afferent connections — takes part mainly in analysis of properties of a photic stimulus; the population of neurons of the second group participates in information processing at the final and highest level, on which mechanisms of memory and attention are implicated.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 6, pp. 611–617, November–December, 1970.  相似文献   

20.
The effect of stimulation of cortical association (orbito-frontal, parietal) and projection (auditory, sensomotor) areas on the activity of Purkinje neurons of the cerebellar cortex was studied in adult cats anesthetized with pentobarbital, with or without chloralose. These responses were compared with those to peripheral stimuli. Definite similarity was found between the responses of Purkinje cells to different cortical (association and projection) stimuli as regards both the types of responses of the neurons and their ability to respond. No similarity was observed in the responses of Purkinje cells to peripheral (visual, auditory, electrodermal) stimulation. Whereas almost identical numbers of neurons (over 50%) were excited in response to the different forms of cortical stimulation, the ability of the neurons to respond to peripheral stimuli differed considerably: 44.6% of neurons responded to electrodermal stimulation, 34.2% to auditory, and 18.8% to visual.Medical Institute, Kemerovo. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 483–489, September–October, 1976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号