首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite studies indicating the presence of specific pancreatic acinar receptors for PACAP-38, a peptide that was recently isolated from ovine hypothalamus, the actions of the new peptide on pancreatic enzyme secretion have not been examined. The present study demonstrates that in terms of cAMP production and amylase release from dispersed acini from rat pancreatic acini, PACAP-38 and an N-terminal fragment, PACAP-27, have the same potency and efficacy as vasoactive intestinal peptide (VIP). As with VIP, these actions are potentiated by adding an inhibitor of cyclic nucleotide phosphodiesterase, and combination of PACAP-38 with bombesin, CCK-8, carbachol or the calcium ionophore A23187 results in 2-fold augmentation of the secretory actions of these agents. Inhibition of PACAP-38-induced cAMP production and amylase release by two VIP-receptor antagonists indicates that the secretory effects of PACAP-38 are mediated by interaction with VIP receptors. PACAP-38, a new brain-gut peptide, may be a physiological modulator of pancreatic enzyme secretion.  相似文献   

2.
Long-term total parenteral nutrition (TPN) is associated with elevated plasma lipids and a marked decrease of glucose-stimulated insulin release. Since nitric oxide (NO) has been shown to modulate negatively the insulin response to glucose, we investigated the influence of TPN-treatment on isoforms of islet NO-synthase (NOS) activities in relation to the effect of glucagon-like peptide-1 (GLP-1), a known activator of glucose-stimulated insulin release. Isolated islets from TPN rats incubated at basal glucose (1 mmol/l) showed a modestly increased insulin secretion accompanied by an enhanced accumulation of islet cAMP and cGMP. In contrast, TPN islets incubated at high glucose (16.7 mmol/l) displayed an impaired insulin secretion and a strong suppression of islet cAMP content. Moreover, islet inducible NOS (iNOS) as well as islet cGMP content were greatly increased in these TPN islets. A dose-response study of GLP-1 with glucose-stimulated islets showed that GLP-1 could overcome and completely restore the impaired insulin release in TPN islets, bringing about a marked increase in islet cAMP accumulation concomitant with heavy suppression of both glucose-stimulated increase in islet cGMP content and the activities of constitutive NOS (cNOS) and iNOS. These effects of GLP-1 were mimicked by dibutyryl-cAMP. The present results show that the impaired insulin response of glucose-stimulated insulin release seen after TPN treatment is normalized by GLP-1. This beneficial effect of GLP-1 is most probably exerted by a cAMP-induced suppression of both iNOS and cNOS activities in these TPN islets.  相似文献   

3.
Chronic exposure of pancreatic islets to elevated plasma lipids (lipotoxicity) can lead to beta-cell dysfunction, with overtime becoming irreversible. We examined, by confocal microscopy and biochemistry, whether the expression of islet inducible nitric oxide synthase (iNOS) and the concomitant inhibition of glucose-stimulated insulin release seen after lipid infusion in rats was modulated by the islet neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP)27. Lipid infusion for 8 days induced a strong expression of islet iNOS, which was mainly confined to beta-cells and was still evident after incubating islets at 8.3 mmol/l glucose. This was accompanied by a high iNOS-derived NO generation, a decreased insulin release, and increased cyclic GMP accumulation. No iNOS expression was found in control islets. Addition of PACAP27 to incubated islets from lipid-infused rats resulted in loss of iNOS protein expression, increased cyclic AMP, decreased cyclic GMP, and suppression of the activities of neuronal constitutive (nc)NOS and iNOS and increased glucose-stimulated insulin response. These effects were reversed by the PKA inhibitor H-89. The suppression of islet iNOS expression induced by PACAP27 was not affected by the proteasome inhibitor MG-132, which by itself induced the loss of iNOS protein, making a direct proteasomal involvement less likely. Our results suggest that PACAP27 through its cyclic AMP- and PKA-stimulating capacity strongly suppresses not only ncNOS but, importantly, also the lipid-induced stimulation of iNOS expression, possibly by a nonproteasomal mechanism. Thus PACAP27 restores the impairment of glucose-stimulated insulin release and additionally might induce cytoprotection against deleterious actions of iNOS-derived NO in beta-cells.  相似文献   

4.
Pituitary adenylate cyclase activating peptide (PACAP) is a ubiquitously distributed neuropeptide which also is localized to pancreatic islets and stimulates insulin secretion. We examined whether endogenous PACAP within the islets might contribute to glucose-stimulated insulin secretion by immunoneutralizing endogenous PACAP. Immunocytochemistry showed that PACAP immunoreactivity is expressed in nerve terminals within freshly isolated rat islets, but not in islets that had been cultured for 48 h. In contrast, islet endocrine cells did not display PACAP immunoreactivity. Addition of either of two specific PACAP antisera markedly inhibited glucose (11.1 mmol/l)-stimulated insulin secretion from freshly isolated rat islets, whereas a control rabbit serum did not affect glucose-stimulated insulin secretion. In contrast, the PACAP antisera had no effect on glucose-stimulated insulin secretion in cultured islets. Based on these results we therefore suggest that PACAP is an islet neuropeptide which is required for the normal insulinotropic action of glucose.  相似文献   

5.
Z Mungan  A Ertan  R A Hammer  A Arimura 《Peptides》1991,12(3):559-562
A novel neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP), which has been isolated from ovine hypothalami, shows 68% homology with vasoactive intestinal peptide (VIP). Since VIP stimulates amylase secretion from the pancreas, we investigated the effect of PACAP and VIP on rat pancreatic exocrine secretion after intravenous injections of PACAP-27, PACAP-38, or VIP at doses of 2.5, 5 or 10 nmol/kg. Results showed: 1) Bolus injection of PACAP stimulated pancreatic amylase and protein secretions in a dose-dependent manner; and 2) Stimulation of amylase secretion with 10 nmol/kg of PACAP-27 was greater than that induced with the same dose of VIP or PACAP-38 (p less than 0.05).  相似文献   

6.
Neonatal STZ (nSTZ) treatment results in damage of pancreatic B-cells and in parallel depletion of insulin and TRH in the rat pancreas. The injury of B-cells is followed by spontaneous regeneration but dysregulation of the insulin response to glucose persists for the rest of life. Similar disturbance in insulin secretion was observed in mice with targeted TRH gene disruption. The aim of present study was to determine the role of the absence of pancreatic TRH during the perinatal period in the nSTZ model of impaired insulin secretion. Neonatal rats were injected with STZ (90 microg/g BW i.p.) and the effect of exogenous TRH (10 ng/g BW/day s.c. during the first week of life) on in vitro functions of pancreatic islets was studied at the age 12-14 weeks. RT-PCR was used for determination of prepro-TRH mRNA in isolated islets. Plasma was assayed for glucose and insulin, and isolated islets were used for determination of insulin release in vitro. The expression of prepro-TRH mRNA was only partially reduced in the islets of adult nSTZ rats when compared to controls. nSTZ rats had normal levels of plasma glucose and insulin but the islets of nSTZ rats failed to response by increased insulin secretion to stimulation with 16.7 mmol/l glucose or 50 mmol/l KCl. Perinatal TRH treatment enhanced basal insulin secretion in vitro in nSTZ animals of both sexes and partially restored the insulin response to glucose stimulation in nSTZ females.  相似文献   

7.
Mice were subjected to gastrectomy (GX) or sham operation (controls). Four to six weeks later the pancreatic islets were isolated and analysed for cAMP or alternatively incubated in a Krebs-Ringer based medium in an effort to study insulin secretion and cAMP accumulation in response to glucose or the adenylate cyclase activator forskolin. Freshly isolated islets from GX mice had higher cAMP content than islets from control mice, a difference that persisted after incubation for 1 h at a glucose concentration of 4 mmol/l. Addition of forskolin to this medium induced much greater cAMP and insulin responses in islets from GX mice than in islets from control mice. In contrast, the insulin response to high glucose (16.7 mmol/l) was much weaker in GX islets than in control islets. Glucose-induced insulin release was associated with a 2-fold rise in the cAMP content in control islets. Surprisingly no rise in cAMP was noted in GX islets incubated at high glucose. Capacitance measurements conducted on isolated insulin cells from GX mice revealed a much lower exocytotic response to a single 500 ms depolarisation (from -70 mV to zero) than in control insulin cells. Addition of cAMP to the cytosol enhanced the exocytotic response in insulin cells from control mice but not from GX mice. The depolarisation-triggered inward Ca(2+) current in insulin cells from GX mice did not differ from that in control mice, and hence the reduced exocytotic response following GX cannot be ascribed to a decreased Ca(2+) influx. Experiments involving a train of ten 500 ms depolarisations revealed that the exocytotic response was prominent in control insulin cells but modest in GX insulin cells. It seems that cAMP is capable of eliciting insulin release from insulin cells of GX mice only when cAMP is generated in a specific microdomain conceivably through the intervention of membrane-associated adenylate cyclases that can be activated by forskolin. The GX-evoked impairment of depolarisation-induced exocytosis and glucose-stimulated insulin release may reflect the lack of a gastric agent that serves to maintain an appropriate insulin response to glucose and an appropriate exocytotic response to depolarisation by raising cAMP in a special glucose-sensitive compartment possibly regulated by a soluble adenylate cyclase.  相似文献   

8.
Winzell MS  Ahrén B 《Peptides》2007,28(9):1805-1813
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two closely related neuropeptides that are expressed in islets and in islet parasympathetic nerves. Both peptides bind to their common G-protein-coupled receptors, VPAC1 and VPAC2, and PACAP, in addition to the specific receptor PAC1, all three of which are expressed in islets. VIP and PACAP stimulate insulin secretion in a glucose-dependent manner and they both also stimulate glucagon secretion. This action is achieved through increased formation of cAMP after activation of adenylate cyclase and stimulation of extracellular calcium uptake. Deletion of PAC1 receptors or VPAC2 receptors results in glucose intolerance. These peptides may be of importance in mediating prandial insulin secretion and the glucagon response to hypoglycemia. Animal studies have also suggested that activation of the receptors, in particular VPAC2 receptors, may be used as a therapeutic approach for the treatment of type 2 diabetes. This review summarizes the current knowledge of the potential role of VIP and PACAP in islet function.  相似文献   

9.
A possible role for cyclic adenosine-3'-5'-monophosphate (cAMP) in islet cell replication was examined in collagenase-isolated pancreatic islets from Wistar rats of different age and different metabolic state (non-pregnant, pregnant, days 15.5-17.5). Islets obtained from pregnant rats released significantly more insulin in response to 10 mmol/l glucose (culture for 24 h) and their DNA synthesis (incorporation of [3H]thymidine into islet DNA) was doubled compared to islets from non-pregnant controls. Islets obtained from 4-6 days old rats showed a maximal stimulation of DNA synthesis after exposure to 0.1 mmol/l IBMX (3-isobutyl-1-methylxanthine) whereas the cAMP accumulation and the insulin biosynthesis measured in a subsequent short-term incubation were dose-dependent stimulated up to 1.0 mmol/l IBMX. In islets of 12 days old rats or 3 months old rats, however, IBMX did not stimulate DNA synthesis or insulin release measured during culture, although the cAMP content per islet was significantly enhanced after culture in the presence of IBMX.  相似文献   

10.
M Nakata  S Shioda  Y Oka  I Maruyama  T Yada 《Peptides》1999,20(8):943-948
Pituitary adenylate cyclase-activating polypeptide (PACAP) is localized in pancreatic nerve fibers and islets and potently augments glucose-induced insulin secretion. The present study explored a possible extra-pancreatic action of PACAP. The specific PACAP receptor (PAC1 receptor) was expressed in the rat fat tissue and 3T3-LI adipocytes. PACAP-38 (10 nM) significantly enhanced insulin-induced 2-deoxyglucose uptake by 3T3-L1 adipocytes. Insulin-stimulated phosphatidylinositol 3-kinase activity was further increased by PACAP-38, whereas the tyrosine-phosphorylation of insulin receptor beta-subunit and insulin receptor substrate-1 was unaltered by PACAP-38. These results reveal that PACAP-38 enhances insulin-induced glucose uptake, an effect probably mediated by insulin-stimulated phosphatidyl-inositol 3-kinase, and that PACAP potentiates not only insulin secretion, but also insulin action in adipocytes.  相似文献   

11.
In pancreatic islets, glucose metabolism is a key process for insulin secretion, and pregnancy requires an increase in insulin secretion to compensate for the typical insulin resistance at the end of this period. Because a low-protein diet decreases insulin secretion, this type of diet could impair glucose homeostasis, leading to gestational diabetes. In pancreatic islets, we investigated GLUT2, glucokinase and hexokinase expression patterns as well as glucose uptake, utilization and oxidation rates. Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. The insulin secretion in 2.8 mmol l(-1) of glucose was higher in islets from LPP rats than that in islets from CP, CNP and LPNP rats. Maximal insulin release was obtained at 8.3 and 16.7 mmol l(-1) of glucose in LPP and CP groups, respectively. The glucose dose-response curve from LPNP group was shifted to the right in relation to the CNP group. In the CP group, the concentration-response curve to glucose was shifted to the left compared with the CNP group. The LPP groups exhibited an "inverted U-shape" dose-response curve. The alterations in the GLUT2, glucokinase and hexokinase expression patterns neither impaired glucose metabolism nor correlated with glucose islet sensitivity, suggesting that β-cell sensitivity to glucose requires secondary events other than the observed metabolic/molecular events.  相似文献   

12.
The effects of pituitary adenylate cyclase activating peptide (PACAP) on the blood pressure of the anesthetized rat and on the isolated rat tail artery were investigated and compared to those of vasoactive intestinal peptide (VIP). PACAP-38, PACAP-27 and the C-terminal fragment 16–38 caused a dose-dependent decrease in the systemic blood pressure. PACAP-27 and PACAP-38 were equipotent with VIP. The C-terminal fragment 16–38 was much less potent than VIP. The duration of action was longer for equimolar doses of PACAP-38 and PACAP-27 than for VIP and much longer than for PACAP 16–38. PACAP-27 and the phosphodiesterase inhibitor rolipram given in combination produced additive vasodepressive responses. In vitro PACAP-38, PACAP-27, VIP and PACAP 16–38 relaxed the phenylephrine-precontracted rat tail artery. PACAP-38 and PACAP-27 were equipotent with VIP. PACAP 16–38 was much less potent than the full-length peptides. The responses were resistant to atropine and propranolol. Addition of VIP 1 μM to preparations exposed to 1 μM PACAP-38 or -27 did not produce a further relaxation. VIP-like peptides, PACAP in particular, are known to activate adenylate cyclase and to elevate the plasma cyclic AMP (cAMP) concentration. cAMP was found to be a potent vasodepressor in the anaesthetized rat and a potent vasodilator of precontracted blood vessels. On the basis of these results it cannot be excluded that the vascular effects of PACAP are secondary to the effect of elevated levels of extracellular cAMP.  相似文献   

13.
Dipeptidyl-peptidase IV (DPPIV/CD26) metabolizes neuropeptides regulating insulin secretion. We studied the in vitro steady-state kinetics of DPPIV/CD26-mediated truncation of vasoactive intestinal peptide (VIP), pituitary adenylyl cyclase-activating peptide (PACAP27 and PACAP38), gastrin-releasing peptide (GRP) and neuropeptide Y (NPY). DPPIV/CD26 sequentially cleaves off two dipeptides of VIP, PACAP27, PACAP38 and GRP. GRP situates between the best DPPIV/CD26 substrates reported, comparable to NPY. Surprisingly, the C-terminal extension of PACAP38, distant from the scissile bond, improves both PACAP38 binding and turnover. Therefore, residues remote from the scissile bond can modulate DPPIV/CD26 substrate selectivity as well as residues flanking it.  相似文献   

14.
To investigate the mechanism of hyperinsulinaemia in rats with acute liver failure induced by the administration of d-galactosamine (GalN), we focused on the role of polyprimidine tract-binding protein (PTB) in islet insulin synthesis. Recent reports indicate that PTB binds and stabilizes mRNA encoding insulin and insulin secretory granule proteins, including islet cell autoantigen 512 (ICA512), prohormone convertase 1/3 (PC1/3), and PC2. In the present study, glucose-stimulated insulin secretion was significantly increased in GalN-treated rats compared to controls. Levels of mRNA encoding insulin 1, ICA512, and PC1/3 were increased in the pancreatic islets of GalN-treated rats. This mRNA level elevation was not prevented by pretreatment with actinomycin D. When the PTB-binding site in insulin 1 mRNA was incubated with the islet cytosolic fraction, the RNA-protein complex level was increased in the cytosolic fraction obtained from GalN-treated rats compared to the level in control rats. The cytosolic fraction obtained from pancreatic islets obtained from GalN-treated rats had an increased PTB level compared to the levels obtained from the pancreatic islets of control rats. These findings suggest that, in rats with acute liver failure, cytosolic PTB binds and stabilizes mRNA encoding insulin and its secretory granule proteins.  相似文献   

15.
Abstract: In this study, the effects of three related peptides, pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, and vasoactive intestinal peptide (VIP), on cyclic AMP (cAMP) accumulation and intracellular Ca2+ concentration ([Ca2+]i) were compared in N1E-115 cells. PACAP38 and PACAP27 stimulated cAMP accumulation up to 60-fold with EC50 values of 0.54 and 0.067 n M , respectively. The effect of VIP on cAMP accumulation was less potent. The binding of 125I-PACAP27 to intact cells was inhibited by PACAP38 and PACAP27 (IC50 values of 0.44 and 0.55 n M , respectively) but not by VIP. In fura-2-loaded cells, both PACAP38 and PACAP27 increased [Ca2+]i with EC50 values around 10 n M . The interactions of these three peptides with ionomycin, a Ca2+ ionophore, and 4β-phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were also determined. Ionomycin increased the cAMP accumulation caused by all three peptides. With low concentrations of PACAP38 or PACAP27, the effect of PMA was inhibitory, whereas at higher concentrations of PACAP (>1 n M ), the effect of PMA was stimulatory. Similar to other agents that elevate cAMP, PACAP38 was an effective stimulator of neurite outgrowth. These results show that (a) PACAP27 and PACAP38 stimulate cAMP accumulation and increase [Ca2+]i through the type I PACAP receptors in N1E-115 cells, (b) ionomycin enhances cAMP accumulation by all three peptides, and (c) activation of protein kinase C has a dose-dependent stimulatory or inhibitory effect on the PACAP38- or PACAP27-stimulated cAMP accumulation.  相似文献   

16.
Maternal malnutrition leads to permanent alterations in insulin secretion of offspring and the soybean diet contributes to improve insulin release. At least a soy component, genistein, seems to increase the insulin secretion by activating the cAMP/PKA and PLC/PKC pathways. Here, we investigated the effect of the soybean diet on the expression of PKAalpha and PKCalpha, and insulin secretion in response to glucose and activators of adenylate cyclase and PKC in adult pancreatic rat islets. Rats from mothers fed with 17% or 6% protein (casein) during pregnancy and lactation were maintained with 17% casein (CC and CR groups) or soybean (SC and SR groups) diet until 90 days of life. The soybean diet improved the insulin response to a physiological concentration of glucose in control islets, but only in the presence of supra-physiological concentrations of glucose in islets from CR and SR groups. PMA also improved the insulin response in islets of SC and SR groups. The expression of PKCalpha was similar in all groups. Forskolin increased the insulin secretion; however, the magnitude of the increment was lower in islets from CR and SR groups than in control animals and in those from rats maintained with soybean diet than in rats fed with casein diet. The PKAalpha expression was similar between SR and CR groups and lower in SC than in CC islets. Thus, soybean diet improved the secretory pattern of beta cells, at least in part, by activating the cAMP/PKA-signaling cascade.  相似文献   

17.
A receptor for vasoactive-intestinal-peptide (VIP)-related peptides was functionally characterized in a cell line derived from Xenopus melanophores using a recently described microtiter-plate-based bioassay. Activation of the melanophore VIP receptor by VIP or the peptides pituitary-adenylate-cyclase-activating polypeptide (PACAP 38), PACAP 27, and helodermin stimulated intracellular 3'-5' cyclic adenosine monophosphate (cAMP) accumulation and pigment dispersion in the cells. Helodermin, with an EC50 (concentration of peptide inducing half-maximal melanosome dispersion) of 46.5 pM, was the most potent activator of pigment dispersion, followed by PACAP 38 > VIP > PACAP 27. A similar order of potencies was observed for the peptides to induce cAMP accumulation. The responses to VIP agonists were selectively inhibited by the VIP antagonists PACAP-(6-27) and (N-Ac-Tyr(1)-D-Phe2)-growth-hormone-releasing factor[GRF](1-29)-NH2. Taken together, the results suggest that the melanophores express a VIP receptor that shares certain characteristics of, but also differs significantly from, other previously identified VIP receptors.  相似文献   

18.

Background

Gap junctions between β-cells participate in the precise regulation of insulin secretion. Adherens junctions and their associated proteins are required for the formation, function and structural maintenance of gap junctions. Increases in the number of the gap junctions between β-cells and enhanced glucose-stimulated insulin secretion are observed during pregnancy. In contrast, protein restriction produces structural and functional alterations that result in poor insulin secretion in response to glucose. We investigated whether protein restriction during pregnancy affects the expression of mRNA and proteins involved in gap and adherens junctions in pancreatic islets. An isoenergetic low-protein diet (6% protein) was fed to non-pregnant or pregnant rats from day 1–15 of pregnancy, and rats fed an isocaloric normal-protein diet (17% protein) were used as controls.

Results

The low-protein diet reduced the levels of connexin 36 and β-catenin protein in pancreatic islets. In rats fed the control diet, pregnancy increased the levels of phospho-[Ser279/282]-connexin 43, and it decreased the levels of connexin 36, β-catenin and beta-actin mRNA as well as the levels of connexin 36 and β-catenin protein in islets. The low-protein diet during pregnancy did not alter these mRNA and protein levels, but avoided the increase of levels of phospho-[Ser279/282]-connexin 43 in islets. Insulin secretion in response to 8.3 mmol/L glucose was higher in pregnant rats than in non-pregnant rats, independently of the nutritional status.

Conclusion

Short-term protein restriction during pregnancy prevented the Cx43 phosphorylation, but this event did not interfer in the insulin secretion.  相似文献   

19.
In pancreatic islets of adult (three month) and old (24 month) rats the effect of glucose on glucose oxidation, pyridine nucleotides, glutathione and insulin secretion was studied. DNA content was similar in both groups of animals; however, islets of old rats exhibited 30% less insulin content. While glucose-induced (16.7 mM) insulin secretion in islets of old rats was approximately 50% less than in islets of adults, no significant difference was observed in the insulin releasing effect of theophylline (1 mM). Although islet production of 14CO2 in the presence of 16.7 mM glucose increased equally in both groups, elevation of glucose failed to increase the percentage of total glucose oxidation via the pentose phosphate shunt in islets of old rats. Elevation of glucose increased the NADPH/NADP and the NADH/NAD ratio in both groups of islets in a similar manner. The effect of glucose on the GSH/GSSG ratio revealed a dose-related increase in the islets of adult rats, whereas islets of old rats did not respond to elevation of glucose. Our data seem to indicate that the lower secretory response of islets of old rats is related to the failure of glucose to increase the GSH/GSSG ratio. In contrast the insulin release induced by theophylline does not appear to depend on islet thiols.  相似文献   

20.
A number of regulatory peptides were investigated for their ability to elevate plasma cAMP. Pituitary adenylate cyclase activating peptide (PACAP)-27, PACAP-38, helodermin, helospectin I and II, vasoactive intestinal peptide (VIP), glucagon, parathyroid hormone (PTH), calcitonin and calcitonin gene-related peptide were among the peptides that were highly effective in raising plasma cAMP when given intravenously in equimolar doses to conscious mice. PACAP-27 and -38 were more effective than any of the other peptides. PACAP 16–38, secretin, gastrin-17, galanin, somatostatin, cholecystokinin-8s, pancreatic polypeptide, substance P, peptide YY and neuropeptide Y were inactive and also did not interfere with the PACAP-27-evoked rise in plasma cAMP levels. Repeated injections of PACAP-27 every 30 min caused a progressive reduction in the plasma cAMP response (measured 5 min after each injection). Forskolin, an activator of adenylate cyclase, dose-dependently raised the plasma concentration of cAMP and displayed a synergistic effect when given in a low dose concurrently with PTH or PACAP-38. The phosphodiesterase inhibitor rolipram dose-dependently raised the plasma concentration of cAMP. Combined treatment with PACAP-27 and a threshold dose of rolipram resulted in an exaggerated plasma cAMP response. Kidney hilus ligation suppressed the responses to PACAP-38, PTH, helodermin, helospectin, VIP, glucagon and calcitonin. Hepatectomy suppressed the response to glucagon but was without effect on the response to the other peptides. Pancreatectomy and spleenectomy reduced the response to VIP, but was without effect on the response to the other peptides. PACAP-27 stimulated cAMP efflux from the isolated rat tail vein. Hence, it cannot be excluded that blood vessels contribute to the peptide evoked plasma cAMP response in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号