首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-cell adhesion regulates processes important in embryonal development, normal physiology, and cancer progression. It is regulated by various mechanisms including tyrosine phosphorylation. We have previously shown that the protein tyrosine phosphatase Pez is concentrated at intercellular junctions in confluent, quiescent monolayers but is nuclear in cells lacking cell-cell contacts. We show here with an epithelial cell model that Pez localizes to the adherens junctions in confluent monolayers. A truncation mutant lacking the catalytic domain acts as a dominant negative mutant to upregulate tyrosine phosphorylation at adherens junctions. We identified beta-catenin, a component of adherens junctions, as a substrate of Pez by a "substrate trapping" approach and by in vitro dephosphorylation with recombinant Pez. Consistent with this, ectopic expression of the dominant negative mutant caused an increase in tyrosine phosphorylation of beta-catenin, demonstrating that Pez regulates the level of tyrosine phosphorylation of adherens junction proteins, including beta-catenin. Increased tyrosine phosphorylation of adherens junction proteins has been shown to decrease cell-cell adhesion, promoting cell migration as a result. Accordingly, the dominant negative Pez mutant enhanced cell motility in an in vitro "wound" assay. This suggests that Pez is also a regulator of cell motility, most likely through its action on cell-cell adhesion.  相似文献   

2.
The protein tyrosine phosphatase Shp-2 regulates RhoA activity   总被引:8,自引:0,他引:8  
Remodeling of filamentous actin into distinct arrangements is precisely controlled by members of the Rho family of small GTPases [1]. A well characterized member of this family is RhoA, whose activation results in reorganization of the cytoskeleton into thick actin stress fibers terminating in integrin-rich focal adhesions [2]. Regulation of RhoA is required to maintain adhesion in stationary cells, but is also critical for cell spreading and migration [3]. Despite its biological importance, the signaling events leading to RhoA activation are not fully understood. Several independent studies have implicated tyrosine phosphorylation as a critical event upstream of RhoA [4]. Consistent with this, our recent studies have demonstrated the existence of a protein tyrosine phosphatase (PTPase), sensitive to the dipeptide aldehyde calpeptin, acting upstream of RhoA [5]. Here we identify the SH2 (Src homology region 2)-containing PTPase Shp-2 as a calpeptin-sensitive PTPase, and show that calpeptin interferes with the catalytic activity of Shp-2 in vitro and with Shp-2 signaling in vivo. Finally, we show that perturbation of Shp-2 activity by a variety of genetic manipulations results in raised levels of active RhoA. Together, these studies identify Shp-2 as a PTPase acting upstream of RhoA to regulate its activity and contribute to the coordinated control of cell movement.  相似文献   

3.
The mechanisms that regulate synapse formation and maintenance are incompletely understood. In particular, relatively few inhibitors of synapse formation have been identified. Receptor protein tyrosine phosphatase σ (RPTPσ), a transmembrane tyrosine phosphatase, is widely expressed by neurons in developing and mature mammalian brain, and functions as a receptor for chondroitin sulfate proteoglycans that inhibits axon regeneration following injury. In this study, we address RPTPσ function in the mature brain. We demonstrate increased axon collateral branching in the hippocampus of RPTPσ null mice during normal aging or following chemically induced seizure, indicating that RPTPσ maintains neural circuitry by inhibiting axonal branching. Previous studies demonstrated a role for pre-synaptic RPTPσ promoting synaptic differentiation during development; however, subcellular fractionation revealed enrichment of RPTPσ in post-synaptic densities. We report that neurons lacking RPTPσ have an increased density of pre-synaptic varicosities in vitro and increased dendritic spine density and length in vivo. RPTPσ knockouts exhibit an increased frequency of miniature excitatory post-synaptic currents, and greater paired-pulse facilitation, consistent with increased synapse density but reduced synaptic efficiency. Furthermore, RPTPσ nulls exhibit reduced long-term potentiation and enhanced novel object recognition memory. We conclude that RPTPσ limits synapse number and regulates synapse structure and function in the mature CNS.  相似文献   

4.
The formation of laminae within the retina requires the coordinate regulation of cell differentiation and migration. The cell adhesion molecule and member of the immunoglobulin superfamily, receptor protein tyrosine phosphatase Mu, PTPmu, is expressed in precursor and early, differentiated cells of the prelaminated retina, and later becomes restricted to the inner plexiform, ganglion cell, and optic fiber layers. Since the timing of PTPmu expression correlates with the peak period of retinal lamination, we examined whether this RPTP could be regulating cell adhesion and migration within the retina, and thus influencing retinal development. Chick retinal organ cultures were infected with herpes simplex viruses encoding either an antisense sequence to PTPmu, wild-type PTPmu, or a catalytically inactive mutant form of PTPmu, and homophilic adhesion was blocked by using a function-blocking antibody. All conditions that perturbed PTPmu dramatically disrupted retinal histogenesis. Our findings demonstrate that catalytic activity and adhesion mediated by PTPmu regulate lamination of the retina, emphasizing the importance of adhesion and signaling via receptor protein tyrosine phosphatases in the developing nervous system. To our knowledge, this is the first demonstration that an Ig superfamily RPTP regulates the lamination of any neural tissue.  相似文献   

5.
Focal adhesion complexes are actin-rich, cytoskeletal structures that mediate cell adhesion to the substratum and also selectively regulate signal transduction pathways required for interleukin (IL)-1beta signaling to the MAP kinase, ERK. IL-1-induced ERK activation is markedly diminished in fibroblasts deprived of focal adhesions whereas activation of p38 and JNK is unaffected. While IL-1 signaling is known to involve the activity of protein and lipid kinases including MAP kinases, FAK, and PI3K, little is known about the role of phosphatases in the regulation of IL-1 signal generation and attenuation. Here we demonstrate that SHP-2, a protein tyrosine phosphatase present in focal adhesions, modulates IL-1-induced ERK activation and the transient actin stress fiber disorganization that occurs following IL-1 treatment in human gingival fibroblasts. Using a combination of immunoblotting, immunoprecipitation, and immunostaining we show that SHP-2 is present in nascent focal adhesions and undergoes phosphorylation on tyrosine 542 in response to IL-1 stimulation. Blocking anti-SHP-2 antibodies, electoporated into the cytosol of fibroblasts, inhibited IL-1-induced ERK activation, actin filament assembly, and cell contraction, indicating a role for SHP-2 in these processes. In summary, our data indicate that SHP-2, a focal adhesion-associated protein, participates in IL-1-induced ERK activation likely via an adaptor function.  相似文献   

6.
7.
Edwards K  Davis T  Marcey D  Kurihara J  Yamamoto D 《Gene》2001,275(2):195-205
The FERM-PTPs are a group of proteins that have FERM (Band 4.1, ezrin, radixin, moesin homology) domains at or near their N-termini, and PTP (protein tyrosine phosphatase) domains at their C-termini. Their central regions contain either PSD-95, Dlg, ZO-1 homology domains or putative Src homology 3 domain binding sites. The known FERM-PTPs fall into three distinct classes, which we name BAS, MEG, and PEZ, after representative human PTPs. Here we analyze Pez, a novel gene encoding the single PEZ-class protein present in Drosophila. Pez cDNAs were sequenced from the distantly related flies Drosophila melanogaster and Drosophila silvestris, and found to be highly conserved except in the central region, which contains at least 21 insertions and deletions. Comparison of fly and human Pez reveals several short conserved motifs in the central region that are likely protein binding sites and/or phosphorylation sites. We also identified novel invertebrate members of the BAS and MEG classes using genome data, and generated an alignment of vertebrate and invertebrate FERM domains of each class. 'Specialized' residues were identified that are conserved only within a given class of PTPs. These residues highlight surface regions that may bind class-specific ligands; for PEZ, these residues cluster on and near FERM subdomain F1. Finally, the PTP domain of fly Pez was modeled based on known PTP tertiary structures, and we conclude that Pez is likely a functional phosphatase despite some unusual features of the active site cleft sequences. Biochemical confirmation of this hypothesis and genetic analysis of Pez are currently underway.  相似文献   

8.
Neural activity regulates dendrite and synapse development, but the underlying molecular mechanisms are unclear. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is an important sensor of synaptic activity, and the scaffold protein liprinalpha1 is involved in pre- and postsynaptic maturation. Here we show that synaptic activity can suppress liprinalpha1 protein level by two pathways: CaMKII-mediated degradation and the ubiquitin-proteasome system. In hippocampal neurons, liprinalpha1 mutants that are immune to CaMKII degradation impair dendrite arborization, reduce spine and synapse number, and inhibit dendritic targeting of receptor tyrosine phosphatase LAR, which is important for dendrite development. Thus, regulated degradation of liprinalpha1 is important for proper LAR receptor distribution, and could provide a mechanism for localized control of dendrite and synapse morphogenesis by activity and CaMKII.  相似文献   

9.
Cross-linking of CD45 induced capping and physical sequestration from CD22 leading to an increase in tyrosine phosphorylation of CD22 and SHP-1 recruitment. Additionally, CD22 isolated from a CD45-deficient B cell line exhibited increased basal/inducible tyrosine phosphorylation and enhanced recruitment of SHP-1 compared with CD22 isolated from CD45-positive parental cells. Subsequent experiments were performed to determine whether enhanced SHP-1 recruitment to CD22 is responsible for attenuation of receptor-mediated Ca2+ responses in CD45-deficient cells. Catalytically inactive SHP-1 expressed in CD45-deficient cells interacted with CD22 and decreased phosphatase activity in CD22 immunoprecipitates to levels that were comparable to those in CD45-positive cells. Expression of catalytically inactive SHP-1 restored intracellular mobilization of Ca2+ in response to MHC class II cross-linking, but did not affect B cell Ag receptor- or class II-mediated Ca2+ influx from the extracellular space. These results indicate that CD45 regulates tyrosine phosphorylation of CD22 and binding of SHP-1. The data further indicate that enhanced recruitment and activation of SHP-1 in CD45-deficient cells affect intracellular mobilization of Ca2+, but are not responsible for abrogation of receptor-mediated Ca2+ influx from the extracellular space.  相似文献   

10.
Angiogenesis is a tightly controlled process in which signaling by the receptors for vascular endothelial growth factor (VEGF) plays a key role. In order to define signaling pathways downstream of VEGF receptors (VEGFR), the kinase domain of VEGFR2 (Flk-1) was used as a bait to screen a human fetal heart library in the yeast two-hybrid system. One of the signaling molecules identified in this effort was HCPTPA, a low molecular weight, cytoplasmic protein tyrosine phosphatase. Although HCPTPA possesses no identifiable phosphotyrosine binding domains (i.e. SH2 or phosphotyrosine binding domains), it bound specifically to active, autophosphorylated VEGFR2 but not to a mutated, kinase-inactive VEGFR2. Recombinant VEGFR2 and endogenous VEGFR2 were substrates for recombinant HCPTPA, and HCPTPA was co-expressed with VEGFR2 in endothelial cell lines, suggesting that HCPTPA may be a negative regulator of VEGFR2 signal transduction. To pursue this possibility, an adenovirus directing the expression of HCPTPA was constructed. When used to infect cultured endothelial cells, this adenovirus directed high level expression of HCPTPA that resulted in impairment of VEGF-mediated VEGFR2 autophosphorylation and mitogen-activated protein kinase activation. Adenovirus-mediated overexpression of HCPTPA also inhibited VEGF-induced cellular responses (endothelial cell migration and proliferation) and inhibited angiogenesis in the rat aortic ring assay. Taken together, these findings indicate that HCPTPA may be an important regulator of VEGF-mediated signaling and biological activity. Potential interactions with other signaling pathways and possible therapeutic implications are discussed.  相似文献   

11.
12.
13.
Polyaromatic quinones, such as the environmental pollutants 9,10-phenanthrenediones, elicit a wide range of responses including growth inhibition, immune suppression, and glucose normalization in diabetic models. Yet the molecular mechanisms behind these effects remain controversial. Here we report that many of them are oxygen-dependent and catalytic inactivators of protein tyrosine phosphatases (PTP). Under aerobic conditions, the PTP inactivation by 2-nitro-9,10-phenanthrenedione followed a pseudo-first-order process, with the rate of inactivation increasing nearly linearly with increasing inhibitor concentration, yielding apparent inactivation rate constants of 4300, 387, and 5200 M(-1) s(-1) at pH 7.2 against CD45, PTP1B, and LAR, respectively. The rate of CD45 inactivation increased approximately 25-fold from pH 6.0 to 7.5, with complete inactivation achieved using a catalytic amount (0.05 molar equiv) of the inhibitor. The quinone-catalyzed CD45 inactivation was prevented by catalase or superoxide dismutase. Inactivated CD45 after (125)I-9,10-phenanthrenedione treatment carried no radioactivity, indicating the absence of a stable inhibitor/enzyme complex. The activity of inactivated CD45 was partially restored ( approximately 10%) by hydroxylamine or dithiothreitol, supporting the presence of a small population of sulfenic acid or sulfenyl-amide species. Treatment of PTP1B with 2-nitro-9,10-phenanthrenedione resulted in the specific and sequential oxidation of the catalytic cysteine to the sulfinic and sulfonic acid. These results suggest that reactive oxygen species and the semiquinone radical, continuously generated during quinone-catalyzed redox cycling, mediate the specific catalytic cysteine oxidation. Naturally occurring quinones may act as efficient regulators of protein tyrosine phosphorylation in biological systems. Aberrant phosphotyrosine homeostasis resulting from continued polyaromatic hydrocarbon quinone exposure may play a significant role in their disease etiology.  相似文献   

14.
Liu B  Fan J  Zhang Y  Mu P  Wang P  Su J  Lai H  Li S  Feng D  Wang J  Wang H 《Plant cell reports》2012,31(6):1021-1032
Dephosphorylation plays a pivotal role in regulating plant growth, development and abiotic/biotic stress responses. Here, we characterized a plant and fungi atypical dual-specificity phosphatase (PFA-DSP) subfamily member, OsPFA-DSP1, from rice. OsPFA-DSP1 was determined to be a functional protein tyrosine phosphatase (PTP) in vitro using phosphatase activity assays. Quantitative real-time PCR and GENEVESTIGATOR analysis showed that OsPFA-DSP1 mRNA was induced by drought stress. Transfection of rice protoplasts showed that OsPFA-DSP1 accumulated in both the cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP1 in tobacco increased sensitivity to drought stress and insensitivity to ABA-induced stomatal closure and inhibition of stomatal opening. Furthermore, overexpression of OsPFA-DSP1 in rice also increased sensitivity to drought stress. These results indicated that OsPFA-DSP1 is a functional PTP and may act as a negative regulator in drought stress responses.  相似文献   

15.
Arabidopsis pinoid mutants show a strong phenotypic resemblance to the pin-formed mutant that is disrupted in polar auxin transport. The PINOID gene was recently cloned and found to encode a protein-serine/threonine kinase. Here we show that the PINOID gene is inducible by auxin and that the protein kinase is present in the primordia of cotyledons, leaves and floral organs and in vascular tissue in developing organs or proximal to meristems. Overexpression of PINOID under the control of the constitutive CaMV 35S promoter (35S::PID) resulted in phenotypes also observed in mutants with altered sensitivity to or transport of auxin. A remarkable characteristic of high expressing 35S::PID seedlings was a frequent collapse of the primary root meristem. This event triggered lateral root formation, a process that was initially inhibited in these seedlings. Both meristem organisation and growth of the primary root were rescued when seedlings were grown in the presence of polar auxin transport inhibitors, such as naphthylphtalamic acid (NPA). Moreover, ectopic expression of PINOID cDNA under control of the epidermis-specific LTP1 promoter provided further evidence for the NPA-sensitive action of PINOID. The results presented here indicate that PINOID functions as a positive regulator of polar auxin transport. We propose that PINOID is involved in the fine-tuning of polar auxin transport during organ formation in response to local auxin concentrations.  相似文献   

16.
Insulin signaling in osteoblasts contributes to whole-body glucose homeostasis in the mouse and in humans by increasing the activity of osteocalcin. The osteoblast insulin signaling cascade is negatively regulated by ESP, a tyrosine phosphatase dephosphorylating the insulin receptor. Esp is one of many tyrosine phosphatases expressed in osteoblasts, and this observation suggests that other protein tyrosine phosphatases (PTPs) may contribute to the attenuation of insulin receptor phosphorylation in this cell type. In this study, we sought to identify an additional PTP(s) that, like ESP, would function in the osteoblast to regulate insulin signaling and thus affect activity of the insulin-sensitizing hormone osteocalcin. For that purpose, we used as criteria expression in osteoblasts, regulation by isoproterenol, and ability to trap the insulin receptor in a substrate-trapping assay. Here we show that the T-cell protein tyrosine phosphatase (TC-PTP) regulates insulin receptor phosphorylation in the osteoblast, thus compromising bone resorption and bioactivity of osteocalcin. Accordingly, osteoblast-specific deletion of TC-PTP promotes insulin sensitivity in an osteocalcin-dependent manner. This study increases the number of genes involved in the bone regulation of glucose homeostasis.  相似文献   

17.
Protein-tyrosine phosphatase 1B (PTP1B) and T cell protein-tyrosine phosphatase (TCPTP) are closely related intracellular phosphatases implicated in the control of glucose homeostasis. PTP1B and TCPTP can function coordinately to regulate protein tyrosine kinase signaling, and PTP1B has been implicated previously in the regulation of endoplasmic reticulum (ER) stress. In this study, we assessed the roles of PTP1B and TCPTP in regulating ER stress in the endocrine pancreas. PTP1B and TCPTP expression was determined in pancreases from chow and high fat fed mice and the impact of PTP1B and TCPTP over- or underexpression on palmitate- or tunicamycin-induced ER stress signaling assessed in MIN6 insulinoma β cells. PTP1B expression was increased, and TCPTP expression decreased in pancreases of mice fed a high fat diet, as well as in MIN6 cells treated with palmitate. PTP1B overexpression or TCPTP knockdown in MIN6 cells mitigated palmitate- or tunicamycin-induced PERK/eIF2α ER stress signaling, whereas PTP1B deficiency enhanced ER stress. Moreover, PTP1B deficiency increased ER stress-induced cell death, whereas TCPTP deficiency protected MIN6 cells from ER stress-induced death. ER stress coincided with the inhibition of Src family kinases (SFKs), which was exacerbated by PTP1B overexpression and largely prevented by TCPTP knockdown. Pharmacological inhibition of SFKs ameliorated the protective effect of TCPTP deficiency on ER stress-induced cell death. These results demonstrate that PTP1B and TCPTP play nonredundant roles in modulating ER stress in pancreatic β cells and suggest that changes in PTP1B and TCPTP expression may serve as an adaptive response for the mitigation of chronic ER stress.  相似文献   

18.
Protein tyrosine phosphatase zeta (PTPzeta) is a receptor type protein tyrosine phosphatase that uses pleiotrophin as a ligand. Pleiotrophin inactivates the phosphatase activity of PTPzeta, resulting in the increase of tyrosine phosphorylation levels of its substrates. We studied the functional interaction between PTPzeta and DNER, a Notch-related transmembrane protein highly expressed in cerebellar Purkinje cells. PTPzeta and DNER displayed patchy colocalization in the dendrites of Purkinje cells, and immunoprecipitation experiments indicated that these proteins formed complexes. Several tyrosine residues in and adjacent to the tyrosine-based and the second C-terminal sorting motifs of DNER were phosphorylated and were dephosphorylated by PTPzeta, and phosphorylation of these tyrosine residues resulted in the accumulation of DNER on the plasma membrane. DNER mutants lacking sorting motifs accumulated on the plasma membrane of Purkinje cells and Neuro-2A cells and induced their process extension. While normal DNER was actively endocytosed and inhibited the retinoic-acid-induced neurite outgrowth of Neuro-2A cells, pleiotrophin stimulation increased the tyrosine phosphorylation level of DNER and suppressed the endocytosis of this protein, which led to the reversal of this inhibition, thus allowing neurite extension. These observations suggest that pleiotrophin-PTPzeta signaling controls subcellular localization of DNER and thereby regulates neuritogenesis.  相似文献   

19.
上皮间质转化(epithelial-mesenchymal transition,EMT)和细胞衰老是与肿瘤发生密切相关的两个重要事件。在肿瘤发展过程中,上皮间质转化是促进迁移和侵袭的重要机制。细胞衰老作为一个重要的细胞自主的肿瘤预防机制,可以抑制细胞转化和肿瘤发生。虽然EMT和细胞衰老发生在肿瘤发展过程中的不同时间段,但众多研究发现,多种介导EMT发生的关键信号通路和转录因子能调节细胞衰老过程;同时,参与细胞衰老的经典信号通路也影响着EMT进程。就联系这两种细胞生物学事件的调控因素作一综述。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号