首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present experiments were designed to study the interaction between estradiol benzoate (EB) and thyroxine (T4) given in vivo on the responsiveness of pituitary luteinizing hormone (LH) to gonadotropin-releasing hormone (GnRH) and the release of GnRH in vitro. Ovariectomized-thyroidectomized (Ovx-Tx) rats were injected s.c. with saline or T4 (2 micrograms/100 g b.wt), and oil or EB (0.1 microgram) once daily for 40 days following a 2 x 2 factorial design. All animals were then decapitated and blood samples were collected. Anterior pituitaries (APs) were incubated in vitro with and without 0.1 ng GnRH at 37 degrees C for 4 h. Mediobasal hypothalami (MBHs) were excised and then incubated with and without APs from Ovx donor rats. Concentrations of LH and GnRH in the medium and that of LH in the serum were measured by radioimmunoassay. The LH level in media containing MBHs and donor APs was used as the index of bioactive GnRH release. In Ovx-Tx rats, T4 injections reduced the serum LH concentration, the pituitary LH response to GnRH, and the bioactive as well as the immunoreactive GnRH release. The serum LH levels and the spontaneous as well as the GnRH-stimulated release of LH in vitro were suppressed in Ovx-Tx rats following administration of EB. By contrast, the serum LH concentration, as well as pituitary LH response to GnRH and GnRH release in vitro, were higher in the group treated with both T4 and EB than in that treated with saline and EB. These results suggest that the differential changes in the LH secretion after thyroidectomy of Ovx versus non-Ovx rats are due to an antagonistic effect between T4 and estrogen on the response of pituitary LH to GnRH, and the release of GnRH.  相似文献   

2.
3.
Divergent selection has resulted in two lines of lambs (high and low) that have a 5-fold difference in their ability to release luteinizing hormone (LH) in response to 5 micrograms of gonadotrophin-releasing hormone (GnRH). Baseline gonadotrophin concentrations, the gonadotrophin responses to a GnRH challenge and the concentrations of testosterone and oestradiol were compared in lambs which were castrated at birth and intact lambs from both selection lines at 2, 6, 10 and 20 weeks of age. The pattern of LH and follicle-stimulating hormone (FSH) secretion was similar in the two lines, but differed between the intact and the castrated lambs. Basal LH and FSH secretion were significantly higher in the castrates than in the intact lambs from both selection lines. The high-line lambs had significantly higher basal FSH concentrations at all ages tested and significantly higher basal LH concentrations during the early postnatal period. The magnitude of the gonadotrophin responses to GnRH differed significantly between the intact and the castrated lambs within each line, the amount of gonadotrophins secreted by the castrated lambs being significantly greater. The removal of gonadal negative feedback by castration did not alter the between-line difference in either LH or the FSH response to the GnRH challenge. Throughout the experimental period, the concentration of testosterone in the intact lambs was significantly greater than in the castrated lambs in both selection lines, but no significant difference was seen in the concentrations of oestradiol. No significant between-line differences were found in the peripheral concentrations of testosterone or oestradiol in the intact lambs from the two selection lines. Therefore, despite similar amounts of gonadal negative feedback in the selection lines, there were significant between-line differences in basal gonadotrophin concentrations, at 2 and 6 weeks of age, and in the LH and FSH responses to an exogenous GnRH challenge, at all ages tested. Removal of gonadal negative feedback did not affect the magnitude of the between-line difference in the response of the lines to GnRH stimulation. The results indicate that the effects of selection on gonadotrophin secretion are primarily at the level of the hypothalamo-pituitary complex.  相似文献   

4.
Testosterone (T) secretion declines in the aging male, albeit for unknown reasons. From an ensemble perspective, repeated incremental signaling among gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and T is required to maintain physiological androgen availability. Pattern-regularity statistics, such as univariate approximate entropy (ApEn) and bivariate cross-ApEn, provide specific and sensitive model-free measurement of altered multi-pathway control. The present study exploits partial muting of one pathway (GnRH drive) to appraise adaptive regulation of LH and T secretion in young and aging individuals. Analyses comprised 100 paired 18-h LH and T concentration time series obtained in 25 healthy men ages 20-72 yr each administered placebo and three graded doses of a specific GnRH-receptor antagonist. Graded blockade of GnRH drive increased the individual regularity of LH and T secretion and the synchrony of LH-T feedforward and T-LH feedback in the cohort as a whole (P<0.001 for each). However, age markedly attenuated ganirelix-induced enhancement of univariate T orderliness and bivariate LH-T feedback and T-LH feedback synchrony (P 相似文献   

5.
Hypothalamic-pituitary-testicular axis in patients with hyperthyroidism   总被引:2,自引:0,他引:2  
To test whether chronic thyroid hormone excess influences the hypothalamic-pituitary-testicular axis, 8 hyperthyroid men were given two identical intravenous GnRH tests. The first test was performed before any treatment had been instituted, the second 6-13 months later, when medical treatment had made the patients euthyroid. Although basal serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone (T) levels were of similar magnitudes before and after the medical treatment, LH and FSH responsiveness to gonadotropin-releasing hormone (GnRH), as reflected by the hormone incremental areas (U/l X min), were significantly larger in the thyrotoxic state compared with the euthyroid state (LH incremental areas: 3,999 +/- 665 vs. 2,640 +/- 430, p less than 0.02; FSH incremental areas: 825 +/- 193 vs. 542 +/- 98, p less than 0.05). Furthermore, serum T increased significantly in response to GnRH when the patients were hyperthyroid (T incremental area: 162 +/- 51, p less than 0.02), but failed to do so when they were euthyroid (T incremental area: 92 +/- 53, NS). These results imply that chronic thyroid hormone excess makes the pituitary gonadotrophs 'hypersensitive' to exogenous GnRH. This may in turn explain why human Leydig cells respond more powerful to exogenous GnRH in thyrotoxic patients than in euthyroid subjects.  相似文献   

6.
The objective was to compare the relative response between rams and bulls in characteristics of LH, FSH and testosterone (T) secretion, during and after long-term treatment with GnRH analogs. Animals were treated with GnRH agonist, GnRH antagonist, or vehicle (Control) for 28 days. Serial blood samples were collected on day 21 of treatment, and at several intervals after treatment. Injections of natural sequence GnRH were used to evaluate the capacity of the pituitary to release gonadotropins during and after treatment. Treatment with GnRH agonist increased basal LH and T concentrations in both rams and bulls, with a greater relative increase in bulls. Endogenous LH pulses and LH release after administration of GnRH were suppressed during treatment with GnRH agonist. Treatment with GnRH antagonist decreased mean hormone concentrations, LH and T pulse frequency, and the release of LH and T after exogenous GnRH, with greater relative effects in bulls. Rams previously treated with antagonist had a greater release of LH after administration of GnRH compared with control rams, while rams previously treated with agonist showed a reduced LH response. Bulls previously treated with agonist had reduced FSH concentrations and LH pulse amplitudes compared with control bulls while bulls previously treated with antagonist had greater T concentrations and pulse frequency. The present study was the first direct comparison between domestic species of the response in males to treatment with GnRH analogs. The findings demonstrated that differences do occur between rams and bulls in LH, FSH and testosterone secretion during and after treatment. Also, the consequences of treatment with either GnRH analog can persist for a considerable time after discontinuation of treatment.  相似文献   

7.
The effects of thyroidectomy and thyroxine (T4) replacement on the release of luteinizing hormone (LH) and gonadotropin-releasing hormone (GnRH) in ovariectomized (Ovx) rats were studied. Immediately after ovariectomy, rats were thyroidectomized (Tx) or sham-Tx. The Ovx-Tx rats were injected subcutaneously with either saline or T4 (2 micrograms/100 g body weight) daily for 30 days before sacrifice. Sham-Tx rats were treated with saline only. Twenty hours after the last injection, the blood sample was obtained by decapitation. The excised anterior pituitary gland (AP) was bisected and incubated in vitro with or without 0.1, 0.5, 2.5, and 50 ng GnRH at 37 degrees C for 4 h. The mediobasal hypothalamus (MBH) was bisected and incubated with or without the AP of Ovx donor rat in vitro. Concentrations of LH and GnRH in the medium and that of LH in the serum were measured by radioimmunoassay. LH in the serum of Tx rats was higher than that in the serum of sham-Tx and Tx-T4 rats. Thyroidectomy resulted in an increase of LH release by Ovx rat AP, stimulated with or without 0.1 and 50 ng GnRH, as well as in an increase of immunoreactive GnRH release from MBH of Ovx rats in vitro. After a 4-hour incubation with donor APs, the LH in the medium containing MBH obtained from Tx rats was significantly higher than that obtained from sham-Tx and Tx-T4 rats. LH concentrations, in both sera and media, as well as GnRH concentration in the media of euthyroid and T4-replaced Tx groups were nonsignificantly different. These results suggest that T4 is inhibitory to the basal and GnRH-stimulated LH release as well as to the release of GnRH in the absence of ovarian hormones.  相似文献   

8.
The effect of high plasma concentrations of estradiol-17beta or estrone, similar to those observed in late gestation, on the gonadotropin releasing hormone (GnRH)-induced luteinizing hormone (LH) release was studied in early postpartum dairy cows. Twenty dairy cows in late gestation were assigned to four groups of five cows each. Treatment groups were 1) no exogenous estrogens, 2) 20 mg estradiol-17beta (E(2)beta) daily, 3) 30 mg estrone (E(1)) daily and 4) 20 mg E(2)beta and 30 mg E(1) daily. Steroids were dissolved in ethanol (vehicle). Injections of the vehicle or steroids were given in two daily subcutaneous injections for seven consecutive days starting immediately following parturition. All cows (Groups 1-4) were given 100 mug GnRH intramuscularly on days 2, 10, 18 and 26 postpartum. Blood for plasma determination of E(2)beta, E(1), progesterone (P) and LH was collected daily from parturition to completion of vehicle or steroid injection and on alternate days thereafter. In addition, blood was collected on GnRH treatment days prior to GnRH and at 30-min intervals thereafter for four hours. Concentrations of hormones were determined by validated radioimmunoassays (RIA's). Effects of treatment (T), days postpartum (D) and the interaction between T and D (T x D) on the amount of LH released (area under the curve) in response to GnRH were significant (P < 0.01). More LH was released over all days combined in Group 1 compared to the other groups. LH release to GnRH increased as time postpartum increased in Groups 1 and 3, but at a ratelower for Group 3 than Group 1 (P < 0.05). In contrast, LH release to GnRH was greater (P < 0.05) on day 2 postpartum for Groups 2 and 4 compared to Groups 1 and 3, but less on days 10 and 18 postpartum. Average LH release was less (P < 0.05) on day 10 for Groups 2 and 4 than for day 2 postpartum. By day 26 postpartum, however, LH release in Groups 2 and 4 was greater than in Group 3. In summary, E(2)beta appeared to stimulate LH release early postpartum with a subsequent inhibition of LH release after prolonged E(2)beta administration, and E(1) administration did not stimulate LH release early postpartum.  相似文献   

9.
The effects of exogenous gonadal steroids, testosterone (T), and 17beta-estradiol (E(2)) upon the hypothalamo-pituitary-gonadal axis were reported to be different between prepubertal and adult Siberian hamsters. Utilizing an in vitro static culture system, we investigated if age-related differences in steroid responsiveness occurs at the pituitary. Prepubertal (20 days old) or adult (140 days old) male Siberian hamsters were implanted with 1 mm silastic capsules containing undiluted T, E(2) or cholesterol (Ch, control). After 15 days, pituitaries were removed, incubated in vitro, and subjected to the following treatments: two baseline measurements, one challenge with 10ng/ml of D-Lys(6)-gonadotropin-releasing hormone (GnRH), and three post-challenge washes. Fractions were collected every 30 minutes and measured for follicle-stimulating hormone (FSH) and luteinizing hormone (LH). T and E(2 )reduced basal secretion of LH and FSH in juveniles but not adults. In juveniles, E(2) increased GnRH-induced FSH and LH secretion, while T augmented GnRH-induced FSH secretion but attenuated GnRH-induced LH secretion. Steroid treatment had no effect on GnRH-stimulated LH or FSH release in adults. The only effect of steroid hormones upon adult pituitaries was the more rapid return of gonadotropin secretion to baseline levels following a GnRH challenge. These data suggest both basal and GnRH-induced gonadotropin secretion are more sensitive to steroid treatment in juvenile hamsters than adults. Further, differential steroidal regulation of FSH and LH at the level of the pituitary in juveniles might be a mechanism for the change in sensitivity to the negative effects of steroid hormones that occurs during the pubertal transition.  相似文献   

10.
Selective elevations of plasma follicle-stimulating hormone (FSH) levels are characteristic of some physiological conditions, such as the early stages of human puberty, and in some disorders of testicular function, such as idiopathic oligospermia. We tested the hypotheses that a slow gonadotropin-releasing hormone (GnRH) pulse frequency favors a selective elevation of plasma FSH and that this is influenced by the circulating steroidal milieu. We administered exogenous GnRH at frequencies of once every 90 min (q 90 min) and once every 240 min (q 240 min) to castrated prepubertal male monkeys who had received either empty (sham) or testosterone (T)-filled Silastic capsules at the time of castration. At the end of each experimental frequency period, mean plasma levels of luteinizing hormone (LH) and FSH were measured. Plasma T levels were also measured. Animals with T implants had plasma levels of this hormone that were in the adult range (approximately equal to 8 ng/ml), whereas those with sham implants had plasma T levels in the prepubertal range (less than or equal to 4 ng/ml). In animals with sham implants, mean plasma FSH levels were markedly elevated at the slower GnRH pulse frequency (39.5 +/- 3.6 ng/ml following GnRH q 240 min compared with 23.7 +/- 2.8 ng/ml following GnRH q 90 min). This selective FSH elevation was not apparent in animals with T implants. Mean plasma LH levels were similar (approximately equal to 8 micrograms/ml) at the two GnRH pulse frequencies, in both T-treated and sham-implanted animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Chronic (2-4 days) constant-rate infusions of mammalian gonadotropin releasing hormone (GnRH) were performed in female bullfrogs, Rana catesbeiana. The magnitude and temporal relationship of profiles of plasma follicle-stimulating hormone (FSH), luteinizing hormone (LH) and sex steroids [testosterone (T), estradiol-17 beta (E2) and progesterone (P)] during GnRH infusion were dependent on ovarian stage. However, in all females, the same biphasic increase in plasma gonadotropins was apparent and initial elevations in gonadotropins were accompanied by correlated increments in plasma T and E2. Complete pituitary "desensitization" to chronic GnRH infusion was not observed. Females in early follicular stages were relatively unresponsive to infusions of 1.0-10.0 micrograms/h GnRH; elevations in plasma LH were marginal and FSH was unchanged. Females with fully developed (preovulatory) ovaries were more responsive: infusion of 1.0 micrograms/h GnRH produced significant elevations in plasma LH by 2 h followed by even larger increases ("surges") after 12 h. This LH "surge" was preceded by a decline in plasma T and E2 and was accompanied by abrupt elevations in plasma P and by ovulation. Postovulatory females showed a more gradual and smaller increase in plasma LH. Infusion of GnRH in the female bullfrog establishes a clear relationship between pituitary responsiveness and the ovarian cycle not evident from acute GnRH injection; GnRH was most effective immediately before ovulation. These data are also the first to detail periovulatory changes in plasma gonadotropins and ovarian steroids in an amphibian.  相似文献   

12.
Experiments were performed to study the responsiveness of the pituitary to gonadotropin-releasing hormone (GnRH) during the dynamic changes in gonadotropin secretion associated with the estrogen-induced luteinizing hormone (LH) surge in the ovariectomized (OVX) rhesus monkey. Silastic capsules filled with estradiol-17-beta were implanted subcutaneously in ovariectomized rhesus monkeys, resulting in an initial lowering of circulating LH and follicle-stimulating hormone (FSH) concentrations followed by an LH-FSH surge. GnRH was injected intravenously just before estrogen implantation, during the negative feedback response and during the rising, the peak, and the declining phases of the LH surge. The LH and FSH responses during the negative feedback phase were as large as those before estrogen treatment (control responses). During the rising phase of the LH surge, the acute response to GnRH injection did not differ significantly from the control response, but the responses 60 and 120 min after injection were somewhat increased. During the declining phase of the LH surge, the pituitary was not responsive to exogenous GnRH, although LH probably continued to be secreted at this time since the LH surge decreased more slowly than predicted by the normal rate of disappearance of LH in the monkey. We conclude that an increased duration of response to GnRH may be an important part of the mechanism by which estrogen induces the LH surge, but we do not see evidence of increased sensitivity of the pituitary to GnRH as an acute releasing factor at that time.  相似文献   

13.
14.
We investigated the mechanism of estradiol-17beta (E2) action on stimulation of LH (=gonadotropin II) release in the black porgy fish (Acanthopagrus schlegeli Bleeker) using an in vivo approach and primary cultures of dispersed pituitary cells in vitro. In vivo, E2 but not androgens (testosterone [T] and 11-ketotestosterone [11-KT]) significantly stimulated plasma LH in a dose-dependent manner. Estradiol-17beta also increased brain content of seabream GnRH. GnRH antagonist prevented E2 stimulation of LH release in vivo, indicating that the effect of E2 on LH was mediated by GnRH. In vitro, sex steroids (E2, T, 11-KT) alone had no effect on basal LH release in the cultured pituitary cells, but GnRH significantly stimulated LH release. Estradiol-17beta potentiated GnRH stimulation of LH release, an effect that was inhibited by GnRH antagonist, and 11-KT, but not T, also potentiated GnRH stimulation of LH release. The potentiating effect of 11-KT on GnRH-induced LH release in vitro was stronger than that of E2. These data suggest that E2 triggers LH release in vivo by acting both on GnRH production at the hypothalamus and on GnRH action at the pituitary. In contrast, 11-KT may only stimulate GnRH action at the pituitary. The E2) induction of LH release, through multiple interactions with GnRH control, supports a possible central role of E2in the sex change observed in the protandrous black porgy.  相似文献   

15.
The effects of a thyroidectomy and thyroxine (T4) replacement on the spontaneous and human chorionic gonadotropin (hCG)-stimulated secretion of testosterone and the production of adenosine 3',5'-cyclic monophosphate (cAMP) in rat testes were studied. Thyroidectomy decreased the basal levels of plasma luteinizing hormone (LH) and testosterone, which delayed the maximal response of testosterone to gonadotropin-releasing hormone (GnRH) and hCG in male rats. T4 replacement in thyroparathyroidectomized (Tx) rats restored the concentrations of plasma LH and testosterone to euthyroid levels. Thyroidectomy decreased the basal release of hypothalamic GnRH, pituitary LH, and testicular testosterone as well as the LH response to GnRH and testosterone response to hCG in vitro. T4 replacement in Tx rats restored the in vitro release of GnRH, GnRH-stimulated LH release as well as hCG-stimulated testosterone release. Administration of T4 in vitro restored the release of testosterone by rat testicular interstitial cells (TICs). The increase of testosterone release in response to forskolin and androstenedione was less in TICs from Tx rats than in that from sham Tx rats. Administration of nifedipine in vitro resulted in a decrease of testosterone release by TICs from sham Tx but not from Tx rats. The basal level of cAMP in TICs was decreased by thyroidectomy. The increased accumulation of cAMP in TICs following administration of forskolin was eliminated in Tx rats. T4 replacement in Tx restored the testosterone response to forskolin. But the testosterone response to androstenedione and the cAMP response to forskolin in TICs was not restored by T4 in Tx rats. These results suggest that the inhibitory effect of a thyroidectomy on the production of testosterone in rat TICs is in part due to: 1) the decreased basal secretion of pituitary LH and its response to GnRH; 2) the decreased response of TICs to gonadotropin; and 3) the diminished production of cAMP, influx of calcium, and activity of 17beta-HSD. T4 may enhance testosterone production by acting directly at the testicular interstitial cells of Tx rats.  相似文献   

16.
Anestrous lighthorse mares were treated in December with dihydrotestosterone (DHT; 150 micrograms/kg of body weight), progesterone (P; 164 micrograms/kg), both DHT and P (DHT+P), testosterone (T; 150 micrograms/kg), or vehicle (n = 4/group). Daily blood sampling was started on Day 1, and on Day 4 all mares were administered a pretreatment injection of gonadotropin-releasing hormone (GnRH) and were bled frequently to characterize the responses of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations. Treatment injections were given on Day 4 and then daily through Day 17. On Day 18, all mares were again administered GnRH and were bled frequently. Treatment of mares with DHT, P, or T increased (p less than 0.01) plasma concentrations of these steroids to approximately 1.5 ng/ml during the last 10 days of treatment. There was no effect (p greater than 0.10) of treatment on LH or FSH concentrations in daily blood samples. Relative to the pretreatment GnRH injection, mares treated with T or DHT+P secreted approximately 65% more (p less than 0.01) FSH in response to the post-treatment GnRH injection; FSH response to the second GnRH injection was not altered (p greater than 0.10) in control mares or in DHT- or P-treated mares. There was no effect of any steroid treatment on LH secretion after administration of GnRH (p greater than 0.10). Averaged over all mares, approximately 94 times more FSH than LH was secreted in response to injection of GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Testosterone (T) replacement suppresses the postcastraction hypersection of follicle-stimulating hormone (FSH) in monkeys with an intact central nervous system (CNS), but not in hypothalamic-lesioned animals in which the pituitary-testicular axis is driven by an i.v. infusion of gonadotropin-releasing hormone (GnRH). One possible explanation for this finding is that T replacement markedly reduces the frequency of pulsatile GnRH release in CNS-intact animals. Under such a state of compromised hypophysiotropic drive to the gonadotropes, removal of a specific FSH-inhibiting factor would not be expected to lead to a hypersecretion of FSH. To test this hypothesis indirectly, adult monkeys were orchidectomized and immediately implanted with T-containing Silastic capsules to maintain circulating T concentrations in the upper physiological range, thereby preventing the postcastration hypersecretion of luteinizing hormone (LH) and FSH. An intermittent i.v. infusion of GnRH, identical to that used in studies with the hypothalamic-lesioned, GnRH-replaced model (1 microgram/min for 3 min every 3 h), was initiated 1 wk after castration and T replacement; subsequently, plasma LH and FSH concentrations were determined on Days 8 and 16-18 of GnRH treatment in samples collected every 20 min for 9 h. This GnRH stimulus resulted in a striking elevation in FSH concentrations from 5.2 +/- 1.5 ng/ml (mean +/- SE) before GnRH treatment to 62.6 +/- 20.8 and 118.3 +/- 33.1 ng/ml on Days 8 and 16-18 of GnRH treatment, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Plasma hormone levels were examined in 4 mature Zebu bulls of normal libido (HL) and 4 which were sexually inactive (LL). When used in an artificial insemination programme the 8 bulls had similar fertility. Basal levels of LH and testosterone (T) estimated from 8 sequential blood samples at 30 minute intervals were not different in HL and LL bulls. Exposure of the animals to an estrous cow did not stimulate LH release. Following sexual stimulation plasma T levels actually decreased by an average (±S.E) of 2.9 (±1.9) ng/ml in the HL group and increased by 3.9 (±1.6) ng/ml in the LL group. An injection of 1 mg GnRH (Hoechst) caused LH release of similar magnitude in HL and LL bulls. The elevation of plasma T which followed GnRH injection was significantly larger in HL bulls.Low libido was not associated with a deficiency of basal LH or T, nor with the ability of the pituitary to respond to GnRH.  相似文献   

19.
J Y Yu  H Namiki  A Gorbman 《Life sciences》1978,22(3):269-281
A study was made of the separate patterns of luteinizing hormone (LH) and follicle stimulating hormone (FSH) release from isolated rat pituitary tissue evoked by synthetic gonadotropin releasing hormone (GnRH) or female hypothalamic extracts (HE), respectively, in a continuous perifusion system. Under defined conditions, gonadotropin release from hemipituitaries was relatively stable and reproducible. Absolute levels of LH and FSH release evoked by HE in terms of their GnRH content were always greater than those following exposure to synthetic GnRH at varying doses. Synthetic GnRH released more FSH than LH. In contrast, the HE released slightly higher levels of LH than FSH. The data suggest that the female rat hypothalamus contains substances other than GnRH, capable of releasing both LH and FSH. It is possible that such unidentified components can modify the hypophysial action of GnRH, resulting in particular circumstances in a differential release of LH and FSH.  相似文献   

20.
Sexually mature gilts were actively immunized against gonadotropin-releasing hormone (GnRH) by conjugating GnRH to bovine serum albumin, emulsifying the conjugate in Freund's adjuvant, and giving the emulsion as a primary immunization at Week 0 and as booster immunizations at Weeks 10 and 14. Antibody titers were evident by 2 wk after primary immunization and increased markedly in response to booster immunizations. Active immunization against GnRH caused gonadotropins to decline to nondetectable levels, gonadal steroids to decline to basal levels, and the gilts to become acyclic. Prolactin concentrations in peripheral circulation were unaffected by immunization against GnRH. The endocrine status of the hypothalamic-pituitary-ovarian axis was examined by giving GnRH and two agonists to GnRH and by ovariectomy. An i.v. injection of 100 micrograms GnRH caused release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in control animals, but not in gilts immunized against GnRH. In contrast, administration of 5 micrograms D-(Ala6, des-Gly-NH2(10] ethylamide or 5 micrograms D-(Ser-t-But6, des-Gly-NH2(10] ethylamide resulted in immediate release of LH and FSH in both control and GnRH-immunized gilts. Circulating concentrations of LH and FSH increased after ovariectomy in the controls, but remained at nondetectable levels in gilts immunized against GnRH. Prolactin concentrations did not change in response to ovariectomy. We conclude that cyclic gilts can be actively immunized against GnRH and that this causes cessation of estrous cycles and inhibits secretion of LH, FSH, and gonadal steroids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号