首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of the macronuclear anlage in the ciliate Chilodonella uncinata   总被引:1,自引:0,他引:1  
The development of the macronuclear anlage in C. uncinata occurs in three steps. During stage I, distinct Feulgen-positive elements are visible in the anlage. Along with the increase in the volume of the anlage, the DNA content of the latter increases from 2 C to about 32 C, indicating four cycles of replication. Simultaneously, the number of Feulgen-positive elements also increases, suggesting that these bodies represent the individual chromosomes and that after each duplication cycle, the daughter chromosomes fall apart. During stage II, the anlage increases greatly in volume and shows a diffused Feulgen stain, in which no structured elements are discernible. During stage III, small Feulgen-positive granules reappear inside the anlage, and gradually become bigger as well as more numerous; at the same time the anlage as a whole starts condensing and becomes more and more densely staining, until it attains the appearance of a vegetative macronucleus about to divide. During stages II and III, the DNA content of the macronuclear anlage goes on increasing, until it nearly reaches the G2 value of the vegetative macronucleus, which is about 128 C. The problem as to whether there is an elimination of some DNA in between stages I and II has however not yet been resolved and needs further study.  相似文献   

2.
We developed a modified immunofluorescence protocol that permitted visualization of microtubules inside the macronucleus of the ciliate Tetrahymena. Although the amitotically dividing macronucleus lacks a spindle, an elaborate system of microtubules is assembled inside the macronucleus and between the macronucleus and the cortex. Microtubules could not be detected inside the interphase macronuclei. The early stage of macronuclear division was associated with the assembly of short macronuclear microtubules that localized randomly. The intramacronuclear microtubules were subsequently organized in a radial manner. During elongation of the macronucleus, the distribution of macronuclear microtubules changed from radial to parallel. During constriction of the macronucleus, dense and tangled macronuclear microtubules were detected at the region of nuclear constriction. In the cytosol, microtubules were linking the macronucleus and cell cortex. During recovery after drug-induced depolymerization, microtubules reassembled at multiple foci inside the macronucleus in close proximity to the chromatin. We propose that these microtubules play roles in chromatin partitioning, macronuclear constriction, and positioning of the macronucleus in relation to the cell cortex.  相似文献   

3.
SYNOPSIS. During conjugation of E. woodruffi , the micro-nucleus divides repeatedly four times prior to synkaryon formation and twice thereafter. The first division resembles an ordinary somatic mitosis, resulting in the formation of two daughter nuclei in each conjugant. Both products of this division enter the second division which corresponds to the heterotypic division of other ciliates, characterized by a parachute stage. Following this stage sixteen bivalents appear and separate into dyads and pass to the poles. During the following divisions individualized chromosomes do not appear but only certain chromatin elements comparable to those seen in the somatic and preliminary divisions. These divide and pass to the poles. All daughter nuclei of the second division enter and complete the third division. Only two of the products of the third division enter the final pregamic division while the rest degenerate. Exchange of pronuclei and their fusion leads to synkaryon formation. The conjugants then separate and in each exconjugant the synkaryon divides twice in rapid succession. Of the four products one condenses to become the functional micronucleus, another enlarges rapidly to become the macronuclear anlage while the remaining two degenerate and disintegrate. The old macronucleus breaks into irregular and polymorphic bodies. As the macronuclear anlage enlarges the remnants of the old macronucleus reorganize and fuse with the macronuclear anlage to form a characteristic vegetative macronucleus.  相似文献   

4.
The development of the macronucleus following conjugation in the hypotrichous ciliates Euplotes and Stylonychia has been examined with the electron microscope. Banded polytene chromosomes can be seen in thin sections of the macronuclear anlagen during the early periods of exconjugant development. As the chromosomes reach their maximum state of polyteny, sheets of fibrous material appear between the chromosomes and transect the chromosomes in the interband regions. Individual bands of the polytene chromosomes thus appear to be isolated in separate compartments. Subsequently, during the stage when the bulk of the polytenic DNA is degraded (1), these compartments swell, resulting in a nucleus packed with thousands of separate spherical chambers. Individual chromosomes are no longer discernible. The anlagen retain this compartmentalized condition for several hours, at the end of which time aggregates of dense material form within many of the compartments. The partitioning layers disperse shortly before replication bands appear within the elongating anlagen, initiating the second period of DNA synthesis characteristic of macronuclear development in these hypotrichs. The evidence presented here suggests that the "chromatin granules" seen in the mature vegetative macronucleus represent the material of single bands of the polytene chromosomes seen during the earlier stages of macronuclear development. The possibility is also discussed that the degradation of DNA in the polytene chromosomes may be genetically selective, which would result in a somatic macronucleus with a different genetic constitution than that of the micronucleus from which it was derived.  相似文献   

5.
王哈利  曹同庚 《动物学报》1991,37(4):402-407
在伍氏游仆虫(Euplotes woodruffi)接合后体发育过程中,已呈退化状态的老大核后碎块,在细胞第二次形态发生时,逐渐恢复其正常形态结构。T形新大核原基向后延伸而与恢复正常形态的老大核后碎块紧密靠拢。此时在光镜下观察,很容易误认为二者已融合为一。但在接合后体分裂之前,老大核后碎块再次瓦解,T形大核原基缩短成棒状而与老大核后碎块分开,此时二者界限分明。细胞分裂后,残存的老大核后碎块停留于后子虫中,最后被吸收。几个关键时期大核原基和老大核后碎块DNA含量的测定,也证明新老大核不融合。本文还讨论了老大核后碎块在有性过程中的功能。  相似文献   

6.
During the process of macronuclear development, the ciliate Euplotes crassus undergoes extensive programmed DNA rearrangement. Previous studies have identified a gene, H3(P), that is expressed only during sexual reproduction and is predicted to encode a variant histone H3 protein. In the current study, an antiserum to the H3(P) protein has been generated. The antiserum has been used to demonstrate that H3(P) is maximally expressed during the polytene chromosome stage of macronuclear development. Moreover, H3(P) is localized to the developing macronucleus, but not other nuclei present within the cell. Additional studies indicate that at least one additional variant histone is also present within the developing macronucleus. The results indicate that there are significant changes in nucleosome composition within the developing macronucleus, and provide additional support for the notion that changes in chromatin structure play a role in the DNA rearrangement processes of macronuclear development. genesis 26:179-188, 2000.  相似文献   

7.
During macronuclear development in the ciliate Euplotes crassus, micronuclear-derived chromosomes undergo a series of rearrangements that include polytenization, DNA splicing, chromosome fragmentation, and telomere addition and processing. Although cis-acting signals that may function in the regulation of these events have been characterized, the proteins that mediate these events have not yet been identified. To identify development-specific factors that may be involved in DNA rearrangement, we previously isolated clones of a number of genes that are expressed only during early macronuclear development. Here, we report the genomic and cDNA sequences of one of these genes, conZA8. The analysis indicates that the conZA8 gene encodes a novel, 468-amino acid, proline-rich protein. Antibodies were raised against both a recombinant form of the conZA8 protein and an internal peptide. Immunoblotting and immunofluorescence analyses indicated that the conZA8 protein is highly abundant, expressed only during the polytene chromosome stage of macronuclear development, and localized to the developing macronucleus. Possible functions of the conZA8 protein are discussed.  相似文献   

8.
9.
Summary The nuclei ofTracheloraphis crassus were studied using light and electron microscopy combined with Bernhard's RNP staining and pronase digestion. The nuclear apparatus of this species consists of a longitudinal row of 11–43 macronuclei and 4–16 micronuclei. Like in all karyorelictids, the macronuclei are unable to divide and become segregated during cytokinesis; their number is supplemented in every cell cycle by differentiation of several new macronuclei from micronuclei.Each adult macronucleus contains a single compact endonuclear aggregate of several large chromocenters, readily destained with EDTA, and several RNP containing nucleoli. There is continuity between the material of the chromocenters and the decondensed DNP fibrils in the nuclear matrix. The nucleoli contain NORs in the form of fibrillar centers. The endonuclear aggregate includes also groups of RNP granules which are especially resistant to EDTA destaining. A microfibrillar sphere, usually localized at the periphery of the aggregate, contacts one or several nucleoli. The sphere is not bleached with EDTA, and only its periphery becomes digested with pronase. The macronuclear matrix consists of both protein fibrils and pronase-resistant fibrils, the latter being localized at the nuclear periphery.Developing macronuclear primordia contain loose strands of decondensed chromatin; only later they form chromocenters and nucleoli.The micronuclei reproduce by mitosis with typical chromosomes (2n=66). During interphase, they are filled with condensed chromatin which can be bleached with EDTA; they form no nucleoli. Ring-like lamellae, existing in the cavities of the chromatin mass, stain for RNA (after Bernhard) and are pronase-sensitive. These lamellae resemble the kinetochore material conserved during interphase in another karyorelictid ciliate,Trachelocerca geopetiti.  相似文献   

10.
Endo M  Sugai T 《Zoological science》2011,28(7):482-490
The macronucleus of the ciliate Tetrahymena cell contains euchromatin and numerous heterochromatins called chromatin bodies. During cell division, a chromatin aggregate larger than chromatin body appears in the macronucleus. We observed chromatin aggregates in the dividing macronucleus in a living T. thermophila cell, and found that these were globular in morphology and homogeneous in size. To observe globular chromatin clearly, optimal conditions for making it compact were studied. Addition of Mg ion, benomyl and oryzalin, microtubule inhibitors, to cell suspension was effective. Globular chromatin appeared when the micronuclear anaphase began at the cell cortex, and disappeared long after cell separation. Using living cells with a small macronucleus at early log phase, we counted the number of globular chromatin per nucleus and measured the DNA content of globular chromatin in the macronucleus which was stained with Hoechst 33342 by using ImageJ. The number of globular chromatin per nucleus was reduced by half after division, indicating the globular chromatin is a distribution unit of DNA. A globular chromatin contained similar DNA content as that of the macronuclear genome. We developed methods for inducing and isolating a cell with an extremely small macronucleus with a DNA amount of one globular chromatin. These cells grew, divided, and give clones, suggesting that the macronuclear genome is not dispersed within the macronucleus and the globular chromatin may be a macronuclear genome. We named this globular chromatin "macronuclear genome unit" (MGU).  相似文献   

11.
SYNOPSIS Structural changes in the Feulgen-positive material of the Tetrahymena pyriformis GL macronucleus have been observed during the cell cycle. From the finely granulated appearance in the interphase cell it appears as small rods, often arranged in pairs (probably the endomitotic stage) during early morphogenesis and as larger (and fewer) aggregates of granules during the nuclear division. These latter aggregates are also visible in dividing nuclei in the electron microscope where groups of chromation granules are separated by fairly empty nucleoplasm. It is suggested that these Feulgen positive aggregates in dividing nuclei are macronuciear segregation units or "subnuclei." The number per dividing macronucleus may vary from one experiment to another, but the variation seems to be related to cell volume. The distribution of the aggregates among the daughter nuclei is almost equal. The total number per dividing macronucleus is about 80 which is close to the estimated number of "subnuclei" in the T. pyriformis macronucleus (Allen and Nanney, 1958).
Some calculations are made on the polyploidy of the T. pyriformis GL macronucleus. Using published electron micrographs of micronuclei of known age to calculate the total number of chromatin granules per haploid nucleus, the polyploidy of the strain GL macronucleus is about 40. This figure is half of that expected from Allen and Nanney's estimation, since they assumed that the "subnuclei" were diploid; however, it is in agreement with the reported haploid nature of the "subnuclei" as found by Woodard, Gorovsky & Kaneshiro, 1968. Further calculations suggest that each macronuclear "chromosome" is composed of about 40 chromatin granules; an indication of such a chain arrangement of the chromatin granules has been observed in the phase contrast and electron microscope during the earliest macronuclear events, i.e., at the macronuclear "prophase."  相似文献   

12.
Micronuclear elongation is the first major event in a series of nuclear changes occurring during the sexual stage of the life cycle of Tetrahymena. Beginning at about one hour after cells of complementary mating types have conjugated, the micronucleus leaves its recess in the macronucleus and swells slightly. This is accompanied by a reorganization of its chromatin from a reticular to a solid body. In the next stage the micronucleus assumes an egg shape, a development concomitant with the appearance of microtubules. While the chromatin spins out from the dense body, and microtubules increase in number, the nucleus assumes a spindle shape. During the elongation, which increases the length of the nucleus some fifty fold, microtubules are prominent in clusters just internal to the nuclear membrane, and parallel to the longitudinal axis of the nucleus. When elongation is completed the nucleus is curved around the macronucleus. Internally, partially condensed strands of chromatin are located off-center, towards the macronuclear side, and the density of the microtubules is diminished. At all the stages, DNA is located throughout the nucleus; neither discrete chromosomes nor synaptonemal complexes are seen. Occasionally cytoplasmic membrane systems are seen fused to the nuclear envelope which retains the typical appearance of a double membrane with pores.  相似文献   

13.
A. Ruthmann  M. Hauser 《Chromosoma》1974,45(3):261-272
The macronucleus of a small marine ciliate of the genus Protocrucia consists of a cluster of ten vesicles which give rise to 20 distinct chromosomal elements in the course of prophase-like condensation stages. Size differences of vesicles and chromosomes are cytological indications of their genetic individuality. In an anaphase-like stage, the chromosomal elements are separated in two daughter groups which re-form 10 vesicles each. The micronucleus divides simultaneously. The existence of a precisely functioning mode of chromosome distribution is also indicated by DNA measurements. Since the macronucleus contains much more DNA than the micronucleus, the macronuclear chromosomes are thought to be oligotenic. This hypothesis is supported by the much larger size of the macronuclear chromosomes. In contrast to other modes of macronuclear division known so far, this ciliate has retained some essential features of mitosis.  相似文献   

14.
Following conjugation of the hypotrichous ciliate Euplotes aediculatus, the posterior fragments of the old (prezygotic) macronucleus persist until after the first vegetative division. These fragments remain viable during exconjugant development as shown by their ability to regenerate should the cell's new macronucleus be damaged. It thus seemed possible that these parental nuclear fragments might participate in the development of the new macronucleus and/or the crucial post-conjugant cortical reorganization that restores the exconjugant cell's ability to feed. This idea was tested by damaging the posterior fragments with various doses of microbeam ultraviolet (UV) light and assessing the results of such treatment on subsequent cortical and nuclear development. When the posterior fragments of the macronucleus were irradiated at the beginning of cortical morphogenesis, the new macronucleus in 1/3 to 1/2 of the cells assumed a “folded” appearance but did not mature. These cells did not undergo cortical reorganization. Cells irradiated at earlier stages did not detectably develop an oral apparatus; their new macronucleus remained arrested at the spherical anlage stage. The results show that the posterior fragments of the parental macronucleus are necessary for normal nuclear and cortical development. These old nuclear fragments appear to influence the growing macronuclear anlage directly and probably the cortex as well. There also appears to be an information flow from the non-irradiated partner of a persistently joined exconjugant doublet to its irradiated counterpart, enabling normal anlage and cortex development in the irradiated cell.  相似文献   

15.
16.
17.
The structural organization of macronuclear chromatin of the ciliate Didinium nasutum was studied. The macronuclear genome of D. nasutum is represented by DNA molecules of subchromosomal size. At interphase, macronuclear chromatin is organized into chromatin of 100–200-nm clumps. Some of these clumps form short, thick fibers that consist of several chromatin clumps. Using the differential staining of nucleic acids on ultrathin sections, we revealed perichromatin fibers and granules on the surface of many chromatin clumps. A 3D model of the spatial distribution of chromatin clumps in the macronucleus was built based on serial ultrathin sections and peculiar features of chromatin spatial organization were studied.  相似文献   

18.
The formation of polytene chromosomes during macronuclear development of the ciliate Stylonychia mytilus was examined in spread electron microscopical preparations. The chromatin organization of early macronuclear anlagen closely resembles the organization of micronuclear chromatin. In the course of polytenization 300 A chromatin fibers become organized in loop-like structures laterally attached to a thinner axial fiber. It is suggested that this reorganization of chromatin during polytenization is a necessary event for the subsequent chromatin elimination.  相似文献   

19.
Ciliated protozoa are characterized by generative micronuclei and vegetative polyploid macronuclei. Micronuclei of Stylonychia mytilus contain 1 600 times as much DNA per haploid genome as E. coli. Most of this DNA is shown to be repetitive. The development of the macronucleus involves, as demonstrated by cytology, only 1/3 of the chromosomes which in a first replication phase are polytenized in probably 5 replication steps and appear as giant chromosomes. At this developmental stage considerable amounts of repetitive DNA are still present in the chromosomes. During the subsequent disintegration phase more than 90% of the DNA are eliminated from the macronucleus anlage. The remainder is further replicated five times and composes the final macronucleus. Since this DNA reassociates with a reaction rate almost identical to an ideal second order reaction its kinetic complexity can be determined by comparison with the kinetic complexity of E. coli DNA. Macronuclear DNA reassociates with a kinetic complexity of 26 times the kinetic complexity of E. coli DNA (corrected for GC content) which indicates that macronuclear DNA sequences exist at a ploidy level of 4 096 C. We assume that macronuclear DNA may be present only once per haploid genome. In this case it represents only 1.6% of the DNA in micronuclei or 10% of the DNA in the giant chromosome stage.  相似文献   

20.
After conjugation in hypotrichous ciliates, a new macronucleus is produced from a copy of the micronucleus. This transformation involves large-scale reorganization of DNA, with conversion of the chromosomal micronuclear genome into short, gene-sized DNA molecules in the macronucleus. To study directly the changes that occur during this process, we have developed techniques for synchronous mating of large populations of the hypotrichous ciliate Euplotes crassus. Electron microscope studies show that the micronuclear chromosomes are polytenized during the first 20 h of macronuclear development. The polytene chromosomes lack the band-interband organization observed in other hypotrichs and in the Diptera. Polytenization is followed by transectioning of the chromosomes. We isolated DNA at various times of macronuclear development and found that the average molecular weight of the DNA decreases at the time of chromosome transectioning. In addition, we have shown that a small size group of macronuclear DNA molecules (450-550 base pairs) is excised from the chromosomal DNA approximately 10 h later in macronuclear development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号