首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of proteins synthesized in rat thymocytes and mouse teratocarcinoma PCC-4 Aza 1 and myeloma Sp2/0 cells after 1 h of treatment at 42 or 44 degrees C was carried out. Shock at 42 degrees C reduced the total synthetic rate of proteins in all three cell lines and induced "classical" heat-shock protein with a mass of 70 kDa (hsp 70). Heat shock at 44 degrees C resulted in almost complete inhibition of protein synthesis; only a small amount of hsp 70 was synthesized. Meanwhile a new 48-kDa polypeptide (pI = 7.5) was found in the cells exposed to severe heat shock. This protein was compared by peptide mapping with other known polypeptides of the same size: heat-shock protein from chicken embryo cells and mitogen-stimulated polypeptide from human lymphoid cells. The peptide maps were not identical. It was also shown that after a shock at 44 degrees C teratocarcinoma cells were able to accumulate anomalous amounts of hsp 70 despite hsp 70 synthesis inhibition. The data show that reaction of various cells to extreme heat shock depends heavily on cell type.  相似文献   

2.
We have shown that heat shock does not induce the synthesis of hsp70 in FM3A cells maintained at a low culture temperature of 33 degrees C although it does so in cells maintained at 37 degrees C [T. Hatayama et al. (1991) Biochem. Int. 24, 467-474]. In this paper, we show that FM3A cells maintained at 37 degrees C produced hsp70 mRNA during continuous heating at 42 degrees C or during postincubation at either 37 or 33 degrees C after being heated at 45 degrees C for 15 min, whereas cells maintained at 33 degrees C did not produce hsp70 mRNA during continuous heating at 37, 39, 42, or 45 degrees C, or during postincubation after being heated at any temperature. Thus the lack of hsp70 synthesis in cells maintained at 33 degrees C seemed to be due to the absence of hsp70 mRNA induction. Also, hsp70 was accumulated in cells maintained at 37 degrees C during continuous heating at 42 degrees C and during postincubation at 37 degrees C after heat shock at 45 degrees C, but not during postincubation at 33 degrees C. The cellular level of the constitutive hsp73 as well as the mRNA level were both similar in cells maintained at 33 and 37 degrees C. On the other hand, the cellular level of the constitutive hsp105 in cells maintained at 33 degrees C was only half of that in cells maintained at 37 degrees C. These hsp105 levels increased significantly in both types of cells after continuous heating at 39 degrees C. These findings indicate that the culture temperature affects not only the induction of hsp70 mRNA but also the accumulation of hsp70 and hsp105 in the cells.  相似文献   

3.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

4.
5.
Lack of heat-shock response in preovulatory mouse oocytes   总被引:5,自引:0,他引:5  
The response to heat (hs response) of preovulatory mouse oocytes was compared with that of mouse granulosa cells and characterized in regard to in vitro resumption of meiosis, amino acid incorporation into total protein, and qualitative analysis of protein synthesized before and after the shock. Granulosa cells displayed a hs response typical of other mammalian systems. When incubated at 43 degrees C for 20-40 min, these cells maintained a normal level of amino acid incorporation into total protein, responded to stress by new synthesis of 33- and 68-kDa heat-shock proteins (hsps), and enhanced synthesis of 70-kDa heat-shock cognate protein (hsc70) and of 89- and 110-kDa hsps. In contrast to granulosa cells, preovulatory mouse oocytes were very sensitive to hyperthermia. Incubation at 43 degrees C for 20-40 min strongly inhibited oocyte resumption of meiosis and protein synthesis and did not induce a new or enhanced synthesis of hsps. Unstressed preovulatory mouse oocytes constitutively synthesized 70- and 89-kDa polypeptides resembling hsc70 and hsp89 of granulosa cells.  相似文献   

6.
Most mammalian cells respond to brief incubation at elevated temperatures by enhanced or new synthesis of a set of heat-shock proteins (hsp). In mouse cells, as determined by SDS--one-dimensional gel electrophoresis, the most prominent hsps have molecular masses of approximately 89,000, 70,000, and 68,000 Da. When the heat-shock response of the mouse erythroleukemia cell line D1B, or two other DBA/2 cell lines (707C1 and 745C2), was examined by [35S]methionine labelling, following heat shocks of 10 min at 42 or 44 degrees C, or 1 h at 45 degrees C, no protein band corresponding to hsp 68 was observed. However, the synthesis of both hsp 89 and hsp 70 was enhanced. Northern blot analysis of cytoplasmic RNA extracted from control and stressed cells indicated that hsp 68 mRNA was absent, even after stresses of up to 1 h at 45 degrees C. Differentiation induced by dimethyl sulphoxide (DMSO) (monitored by the induction of globin synthesis) had no effect on hsp 68 expression in D1B cells; also, hsp 68 could not be induced at various stages of differentiation (0-72 h). Southern blot analysis showed that all three hsp-68 genes were present and not rearranged, and apparently did not carry any deletion in their 5' ends. To determine whether methylation could be involved in maintaining the genes in their silent state, we treated cells with 10 microM 5-azacytidine for 48 h. No hsp 68 expression was observed following such treatment in either undifferentiated or DMSO-induced differentiated D1B cells. Furthermore, Southern blot analysis of MspI/HpaII-digested genomic D1B DNA did not display any differences in methylation patterns around the promoter region of the probed gene compared with control cells, indicating that methylation is not involved in hsp-68 repression. When chimeric plasmids carrying the bacterial chloramphenicol acetyl transferase gene under regulation of the mouse hsp-68 or Drosophila hsp-70 promoters were transfected into D1B cells, minimal (2-fold) or no induction was observed, in contrast with the 60-fold induction seen in a control myeloma cell line. These results suggest a trans-acting mechanism of hsp-68 repression in erythroleukemia cells.  相似文献   

7.
8.
M-14 human melanoma cells, following severe hyperthermic exposures, synthesized a heat-shock protein of 66 kDa (hsp 66), in addition to the major “classic” heat-shock proteins. This hsp 66 was not expressed following mild hyperthermic exposures sufficient to trigger the synthesis of the other heat-shock proteins. The induction of hsp 66 was observed also in Li human glioma cells treated at 45°C for 20 min. By contrast, hsp 66 was not induced in seven other human cell lines (both melanoma and nonmelanoma) when they were subjected to the same hyperthermic treatment. Immunological recognition experiments showed that hsp 66 cross-reacted with the inducible hsp 72, but not with the constitutive hsp 73. The possibility that hsp 66 is a breakdown product of hsp 72 was ruled out by the fact that Poly(A)+ RNA extracted from cells treated at 45°C for 20 min was able to direct the synthesis of hsp 66 (together with hsp 72) in a message-dependent rabbit reticulocyte lysate, as well as in microinjected Xenopus oocytes. By contrast, only the hsp 72 was expressed using Poly(A)+ RNA extracted from cells heated at 42°C for 1 h. Affinity chromatography experiments on ATP-agarose showed that hsp 66 did not bind ATP in vitro, hsp 66 was localized both in the cytoplasm (cytosol, mitochondria, and microsome fraction) and in the nuclei of cells recovered from a severe heat shock: this intracellular distribution closely corresponded to that of hsp 72. The nuclear-associated hsp 66 was found to be tightly bound to nuclear structures and could not be extracted by incubation in ATP-containing buffer. © 1996 Wiley-Liss, Inc.  相似文献   

9.
The effect of heat on IL-1 beta biosynthesis was investigated in both THP-1 cells, a myelomonocytic cell line which can be induced to make IL-1 alpha and beta, and human peripheral blood adherent monocytes (PBMC). Induction of THP-1 cells with LPS at 39 to 41 degrees C for 2 to 4 h resulted in the expected increased synthesis of the heat-shock proteins hsp 70 and hsp 90 but decreased synthesis of the IL-1 beta precursor protein, p35 (and its mRNA), compared with control cells at 37 degrees C. This appeared to be a direct effect on p35 synthesis rather than a block in LPS induction because heat also acted on preinduced cells. PBMC similarly incubated for 4 h with LPS required a temperature of 41 to 42 degrees C to induce hsp and show a decrease in p35 synthesis. Chemical inducers of the heat-shock response (heavy metals, sulphydryl reagents) were also effective inhibitors of IL-1 beta biosynthesis. A correlation was seen between the extent of IL-1 beta reduction and the level of hsp induction by chemical inducers in both THP-1 cells and PBMC which suggests that the two responses are linked. In addition, a gold salt currently used for therapy of chronic inflammation, auranofin, induced hsp and inhibited IL-1 beta biosynthesis, whereas a second salt, sodium aurothiomalate, did neither. These results support the hypothesis that elevated temperature is one of the physiologic signals for down-regulation of IL-1 beta biosynthesis through a mechanism related to the induction of hsp.  相似文献   

10.
R Cavicchioli  K Watson 《FEBS letters》1986,207(1):149-152
Yeast cells when subjected to a primary heat shock, defined as a temperature shift from 23 to 37 degrees C for 30 min, acquired tolerance to heat stress (52 degrees C/5 min). Primary heat shocked cells incubated at 23 degrees C for up to 3 h, progressively lost thermotolerance but retained high levels of the major heat-shock proteins as observed on polyacrylamide gels. On the other hand, a temperature shift back up to 37 degrees C for 30 min fully restored thermotolerance. The major high-molecular-mass heat-shock proteins (hsp) identified were of approximate molecular mass 100 kDa (hsp 100), 80 kDa (hsp 80) and 70 kDa (hsp 70). The results indicate that loss of heat-shock acquisition of thermotolerance is not correlated with loss of heat-shock proteins.  相似文献   

11.
The bacterium Holospora obtusa is a macronuclear-specific symbiont of the ciliate Paramecium caudatum. H. obtusa-bearing paramecia could survive even after the cells were quickly heated from 25 degrees C to 35 degrees C. To determine whether infection with H. obtusa confers heat shock resistance on its host, we isolated genes homologous to the heat shock protein genes hsp60 and hsp70 from P. caudatum. The deduced amino acid sequences of both cDNAs were highly homologous to hsp family sequences from other eukaryotes. Competitive PCR showed that H. obtusa-free paramecia expressed only trace amounts of hsp60 and hsp70 mRNA at 25 degrees C, but that expression of hsp70 was enhanced immediately after the cells were transferred to 35 degrees C. H. obtusa-bearing paramecia expressed high levels of hsp7O mRNA even at 25 degrees C and the level was further enhanced when the cells were incubated at 35 degrees C. In contrast, the expression pattern of hsp60 mRNA was the same in H. obtusa-bearing as in H. obtusa-free paramecia. These results indicate that infection with its endosymbiont can confer a heat-shock resistant nature on its host cells.  相似文献   

12.
13.
14.
Exposure of primary mouse kidney cell cultures to acidic medium (pH 5.5) induced the expression of a 70 kilodalton (kDa) protein. This protein was identified as the major inducible heat-shock protein 70 (hsp70) by immunoprecipitation with anti-hsp70 serum and Northern blot analysis with a hsp70 cDNA probe. Maximum induction of the 70-kDa protein at pH 5.5 after 240 min was about 30% of that observed after 60 min of thermal treatment at 43 degrees C. In addition, there was an apparent induction of the glucose-regulated proteins (GRPs) of 76-78 and 98-100 kDa, but not of the other hsps. This subset induction of the heat-shock response by acidic medium suggests that different mechanisms are responsible for the induction of the various families of hsps.  相似文献   

15.
16.
Using affinity-purified antibodies, the 84,000 dalton heat-shock protein (hsp) has been localized in mouse N2A neuroblastoma cells by immunocytochemical techniques. Immunofluorescence microscopy showed that hsp84 was present both in the cytoplasm and in the nucleus. The nucleoli were found to be unlabelled. Immunogold labelling on ultrathin cryosections revealed that hsp84 was evenly distributed throughout the entire cytoplasm. No preferential association of hsp84 with the plasma membrane or with membranes from organelles was observed. In the nucleus the hsp84 was present in both the euchromatin and heterochromatin. In the nucleolus only the fibrillar part was labelled and virtually no gold particles were observed in the granular part. A long-term hyperthermic treatment of 3 h at 42.5 degrees C was found to induce an accumulation of hsp84 inside the nucleus. No alterations in hsp84 distribution were observed during a treatment of the cells with 75 microM sodium arsenite for 3 h. Drastic alterations were observed in the nucleoli after both stress treatments. The granular part had totally disappeared and only remnants of the fibrillar part which contained hsp84, were found. Besides the nuclear accumulations of hsp84 during heat shock, no additional changes in the hsp84 location in stressed cells were observed. During a recovery from the heat shock by replacing the cells at 37 degrees C, a decrease in the nuclear location of hsp84 was observed, indicating the reversibility of this process. The significance of these results for the role of hsp84 in normal and in stressed cells is discussed.  相似文献   

17.
The time course and magnitude of the heat-shock response in relation to severity of thermal stress are important, yet poorly understood, aspects of thermotolerance. We examined patterns of protein synthesis in congeneric marine snails (genus Tegula) that occur at different heights along the subtidal to intertidal gradient after a thermal exposure (30 degrees C for 2.5 h, followed by 50 h recovery at 13 degrees C) that induced the heat-shock response. We monitored the kinetics and magnitudes of protein synthesis by quantifying incorporation of 35S-labeled methionine and cysteine into newly synthesized proteins and observed synthesis of putative heat-shock proteins (hsp's) of size classes 90, 77, 70, and 38 kDa. In the low- to mid-intertidal species, Tegula funebralis, whose body temperature frequently exceeds 30 degrees C during emersion, synthesis of hsp's commenced immediately after heat stress, reached maximal levels 1-3 h into recovery, and returned to prestress levels by 6 h, except for hsp90 (14 h). In contrast, in the low-intertidal to subtidal species, Tegula brunnea, for which 2.5 h at 30 degrees C represents a near lethal heat stress, synthesis of hsp's commenced 2-14 h after heat stress; reached maximal levels after 15-30 h, which exceeded magnitudes of synthesis in T. funebralis; and returned to prestress levels in the case of hsp90 (50 h) and hsp77 (30 h) but not in the case of hsp70 and hsp38. Exposures to 30 degrees C under aerial (emersion) and aquatic (immersion) conditions resulted in differences in hsp synthesis in T. brunnea but not in T. funebralis. The different time courses and magnitudes of hsp synthesis in these congeners suggest that the vertical limits of their distributions may be set in part by thermal stress.  相似文献   

18.
In the yeast, Saccharomyces cerevisiae, the disaccharide trehalose is a stress-related metabolite that accumulates upon exposure of cells to heat shock or a variety of non-heat inducers of the stress response. Here, we describe the influence of mutations in individual heat-shock-protein genes on trehalose metabolism. A strain mutated in three proteins of the SSA subfamily of 70-kDa heat-shock proteins (hsp70) overproduced trehalose during heat shock at 37 degrees C or 40 degrees C and showed abnormally slow degradation of trehalose upon temperature decrease from 40 degrees C to 27 degrees C. The mutant cells were unimpaired in the induction of thermotolerance; however, the decay of thermotolerance during recovery at 27 degrees C was abnormally slow. Since both a high content of trehalose and induced thermotolerance are associated with the heat-stressed state of cells, the abnormally slow decline of trehalose levels and thermotolerance in the mutant cells indicated a defect in recovery from the heat-stressed state. A similar albeit minor defect, as judged from measurements of trehalose degradation during recovery, was detected in a delta hsp104 mutant, but not in a strain deleted in the polyubiquitin gene, UB14. In all our experiments, trehalose levels were closely correlated with thermotolerance, suggesting a thermoprotective function of trehalose. In contrast, heat-shock proteins, in particular hsp70, appear to be involved in recovery from the heat-stressed state rather than in the acquisition of thermotolerance. Cells partially depleted of hsp70 displayed an abnormally low activity of neutral trehalase when shifted to 27 degrees C after heat shock at 40 degrees C. Trehalase activity is known to be under positive control by cAMP-dependent protein kinases, suggesting that hsp70 directly or indirectly stimulate these protein-kinase activities. Alternatively, hsp70 may physically interact with neutral trehalase, thereby protecting the enzyme from thermal denaturation.  相似文献   

19.
To reveal the intracellular localization of Hsp104 in the yeast Saccharomyces cerevisiae before and after heat-shock, we performed immunoelectron microscopy after immunogold labeling with anti-Hsp104 antibody. At normal temperature (25 degrees C), a small amount of Hsp104 was located in the cytoplasm and nucleus. On exposure to mild heat-shock at 40 degrees C, protein aggregates appeared in the cytoplasm and nucleus, and Hsp104 increased around the aggregates with increasing time of the mild heat-shock treatment. Moreover, at lethal heat-shock temperature (51 degrees C) for 20 min after mild heat treatment at 40 degrees C, the intracellular localization of Hsp104 and intracellular structures were similar to those of the mild heat-shocked cells. However, in the lethally heat-shocked cells, certain intracellular structures were destroyed, and Hsp104 was not expressed. In the hsp104 null mutant strain Deltahsp104 which was treated at 40 degrees C, Hsp104 was not localized around the aggregates. Additionally, in the Deltahsp104 strain, even mild heat-shocked cells at 37 degrees C or 40 degrees C, showed destruction of intracellular structure compared to the wild-type strain. Our data suggest the following: (1) Hsp104 is associated closely with protein aggregates during heat-shock treatment, (2) Hsp104 is important for maintenance of the intracellular structure under lethal heat-shock conditions, (3) acquisition of thermotolerance depends on the amount of Hsp104 produced during mild heat-shock treatment.  相似文献   

20.
After a 60 min heat-shock at 36 degrees C, Xenopus oocytes are still able to accomplish a complete meiotic maturation in response to a progesterone treatment. The 36 degrees C heat-shock applied to maturing oocytes strongly enhances the synthesis of a single heat-shock protein of approx. 70 000 molecular weight (hsp70); after activation with the Ca2+-ionophore A 23187, matured oocytes still display the ability to synthesize hsp70 and to survive a heat-shock. A cycloheximide treatment combined with a heat-shock induces, during the recovery period, the synthesis of two heat-shock proteins, of approx. 70 000 and 83 000 molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号