首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of alkyloxybenzenes (AHBs) belonging to the class of alkylresorcinols differing in the degree of hydrophobicity--C7-AHB and more hydrophobic Cl12-AHB--on the resistance of Saccharomyces cerevisiae cells to heat shock and oxidative stress of lethal intensity was studied. Depending on structure and concentration, AHB added 2 h before exposure to stress had either an antistress or stress-potentiating effect on yeast cells in the mid-logarithmic growth phase. C7-AHB at concentrations 0.25-0.5 g/l caused a two- to fivefold increase in the resistance of yeast cells to hydrogen peroxide (30-150 mM), whereas Cl2-AHB reduced it at all concentrations. C7-AHB and Cl2-AHB had a similar effect on yeast subjected to heat shock (45 degrees C, 30 min). It was found that the degree of the protective effect of C7-AHB and potentiating effect of Cl2-AHB depended on the nature of the stressor, being more pronounced in heat shock. The environmental significance of the antistress and stress-potentiating effects of microbial AHBs is discussed.  相似文献   

2.
The effects of C7-alkylhydroxybenzene (C7-AHB) and p-hydroxyethylphenol (tyrosol), chemical analogs of microbial anabiosis autoregulators, on the viability of yeast cells under oxidative stress were investigated. The stress was caused by reactive oxygen species (ROS) produced under gamma irradiation of cell suspensions using doses of 10-150 krad at an intensity of 194 rad/s or by singlet oxygen generated in cells photosensibilized with chlorin e6 (10 micrograms/l). C7-AHB was found to exert a protective effect. The addition of 0.05-0.16 vol% of C7-AHB to cell suspensions 30 min before irradiation protected yeast cells from gamma radiation (50 krad). The protective effect of C7-AHB manifested itself both in the preservation of cell viability during irradiation and in the recovery of their capacity to proliferate after irradiation. In our studies on photodynamic cell inactivation, the fact that the phenolic antioxidant C7-AHB protects cells from intracellular singlet oxygen was revealed for the first time. The analysis of difference absorption spectra of oxidized derivatives of C7-AHB demonstrated that the protective mechanism of C7-AHB involves the scavenging of ROS resulting from oxidative stress. The fact that tyrosol failed to perform a photoprotective function suggests that the antioxidant properties of microbial C7-AHB are not related to their chaperon functions. The results obtained make an important addition to the spectrum of known antioxidant and antistress effects of phenolic compounds.  相似文献   

3.
The response of the gram-positive bacterium micrococcus luteus to heat shock (4°C, 15 min) and the adaptogenic activity of alkylhydroxybenzenes (AHBs), which are extracellular growth-regulating substances of these bacteria, were studied. The perception of stress and the postshock behavior of M. luteus cells proved to depend on the growth phase and medium. The magnitude of the stress response was more pronounced in cultures grown on synthetic medium than in cultures grown on rich medium (nutrient broth). During exponential or linear growth, the cells were more sensitive to the temperature effect than during decelerated growth. In linearly growing m. luteus cultures, the amount of total intra- and extracellular alkylhydroxybenzenes, the anabiosis inducers, increased in response to heat shock. AHB redistribution between cells and culture liquid occurred in the course of stress and after stress. In micrococci exposed to heat shock, an increase in the AHB concentration both in cells and in culture liquid is likely a defense reaction of stress resistance. This conclusion was confirmed in experiments with the addition 30 min before the heat shock of a chemical analogue of the anabiosis inducer, C7-AHB (12 mM), which protected M. luteus cells so that their intense growth was observed after shock without any lag. The protective effect of AHBs is a result of their ability to form complexes with enzyme macromolecules and stabilize them. The data obtained extend the knowledge of the stress-protective functions of low-molecular-weight autoregulators and of the role of intercellular communications in the stress response of bacterial cultures.Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 26–33.Original Russian Text Copyright © 2005 by Stepanenko, Mulyukin, Kozlova, Nikolaev, El-Registan.  相似文献   

4.
The investigation of the response of a batch culture of Staphylococcus aureus to exogenous alkyl-substituted hydroxybenzenes (AHBs), chemical analogues of anabiosis autoinducers, showed that C1-AHB at concentrations from 5 microM to 1.5 mM did not influence the culture growth, whereas the more hydrophobic C6-AHB inhibited it at concentrations of 0.5 mM and higher. Either of the AHBs drastically enhanced the phenotypic dissociation of staphylococcal cultures, which manifested itself in an increase in the fraction of cells producing small nonhemolyzing colonies of G type when plated on solid media with erythrocytes. In a submerged staphylococcal culture, the relative number of cells producing G-type colonies varied from 10 to 90%, depending on the concentration of the AHB added. The growth of S. aureus in the presence of AHBs also enhanced cell tolerance to heat shock (heating at 45 or 60 degrees C for 10 min). The role of AHBs, which are structural modifiers of membranes and possess chaperone activity, in the mechanisms responsible for cell tolerance and phenotypic dissociation of microbial populations is discussed.  相似文献   

5.
The investigation of the response of a batch culture of Staphylococcus aureus to exogenous alkyl-substituted hydroxybenzenes (AHBs), chemical analogues of anabiosis autoinducers, showed that C1-AHB at concentrations from 5 M to 1.5 mM did not influence the culture growth, whereas the more hydrophobic C6-AHB inhibited it at concentrations of 0.5 mM and higher. Either of the AHBs drastically enhanced the phenotypic dissociation of staphylococcal cultures, which manifested itself in an increase in the fraction of cells producing small nonhemolyzing colonies of G type when plated on solid media with erythrocytes. In a submerged staphylococcal culture, the relative number of cells producing G-type colonies varied from 10 to 90%, depending on the concentration of the AHB added. The growth of S. aureus in the presence of AHBs also enhanced cell tolerance to heat shock (heating at 45 or 60°C for 10 min). The role of AHBs, which are structural modifiers of membranes and possess chaperone activity, in the mechanisms responsible for cell tolerance and phenotypic dissociation of microbial populations is discussed.  相似文献   

6.
We investigated the impact of bacterial regulators homoserine lactones (HSLs) and alkylhydroxybenzenes (AHBs) (which are present in human fluids at pico- and nanomolar concentrations) on neutrophile oxidative metabolism. The HSL and AHB effects were determined using a test based on induced luminol-dependent chemoluminescence of neutrophiles in human peripheral blood. In this test, neutrophiles were preincubated with chemical analogs of bacterial autoregulators with different lengths of the hydrocarbon radical, such as HSL · HCl, C6- and C12-HSL, and C1-, C6-, and C12-AHB. We revealed that they suppressed the chemoluminescence and, accordingly, the oxidative metabolism of neutrophiles. This effect was more significant with HSLs than with AHBs. Within each of the two groups, the effect increased with an increase in the length of the hydrocarbon chain of the homologues. High concentrations of long-chain autoregulators of both types produce a cytotoxic effect that is associated with apoptosis in the case of C12-HSL and with cell membrane damage in the case of C12-AHB. The effects of low HSL and AHB concentrations involve their protein-modifying properties and result in changes in the activities of neutrophile oxidative enzymes. To a lesser extent, these effects are due to the pro- and antioxidant activities of HSLs and AHBs, respectively. In light of the results obtained, the HSL and AHB effects are to be considered as a novel mechanism of regulating the activities of cell effectors of natural innate immunity. In symbiotic and parasitic systems, the mechanism involves the bimodal pattern of the effects of HSLs and AHBs that vary depending on their structure and concentrations.  相似文献   

7.
The adaptogenic effect of the chemical analogues of alkylhydroxybenzenes (AHBs), bacterial extracellular autoregulators (the individual compound C7-AHB and its technical preparation Sidovit), was demonstrated for two pseudomonad species, Pseudomonas aeruginosa and P. fluorescens. The protective effect of AHBs resulted in increased growth rate and biomass accumulation in bacteria grown under suboptimal conditions within the species tolerance range. The adaptogenic effect of AHBs (10–50 μmg/l) was more pronounced under more unfavorable growth conditions. In the case of P. fluorescens, the individual compound C7-AHB increased the biomass yield by 30% under alkaline conditions (pH 9.5), when the growth rate decreased by 80–90% compared to the optimum (pH 5.5–7.5). The Sidovit preparation, containing a mixture of natural AHBs with C7-AHB as the main component, increased the growth rate of P. aeruginosa by 40–60% at nonoptimal temperatures (45 and 10°C) or under enhanced salinity (1% NaCl). The action of AHBs as regulators of the rpoS and SOS response stress regulons was demonstrated to be among the mechanisms of their adaptogenic effect, as was demonstrated with the relevant reporter genes in the model strains E. coli C600 thi, thr, leuΔ(pro-lac) with the osmE-lacZ and umuD-lacZ hybrid operons, respectively. AHBs are technologically and economically acceptable as adaptogenic supplements for bacterial preparations used in soil bioremediation and oil spillage removal under conditions unfavorable for microbial growth, including increased salinity, extreme pH, and fluctuating sub- or supraoptimal temperatures.  相似文献   

8.
The mutagenic activity of chemical analogues of microbial anabiosis autoinducers (the autoregulatory d1 factors of cell differentiation), which act to inhibit cell proliferation, to enhance cell tolerance, and to induce the transition of cells to anabiotic state, was studied using the Ames test. In the range of concentrations studied (0.1 to 100 micrograms/ml), alkyl-substituted hydroxybenzenes (AHBs) differing in hydrophobicity, i.e., methylresorcinol (C1-AHB) and hexylresorcinol (C6-AHB), as well as unsubstituted resorcinol, showed different growth-inhibiting and mutagenic effects. C6-AHB was found to inhibit the growth of Salmonella typhimurium TA100 and to induce its mutagenesis at a rate of 1.8 revertants/nmol. C1-AHB taken at low concentrations not only failed to inhibit bacterial growth but even stimulated it and exerted an antimutagenic effect. Unsubstituted resorcinol virtually did not influence bacterial growth and showed weak mutagenic activity. The growth-inhibiting effect of elevated C6-AHB concentrations correlated with the degree of the transition of the original phenotype producing S-type colonies to a phenotype producing R-type colonies. The role of AHB homologues, as microbial autoregulators with mutagenic activity, in the regulation and correlation of two processes (the phenotypic dissociation of microbial populations and the formation of resting microbial forms) is discussed. The accumulation of AHBs in senescent microbial cultures may induce adaptive mutations, change the expression of genes, and promote the development of minor cell subpopulations (phenotypes), thus providing for the adaptation of these cultures to varying environmental conditions.  相似文献   

9.
The response of the gram-positive bacterium Micrococcus luteus to heat shock (45 degrees C, 15 min) and the adaptogenic activity of alkylhydroxybenzenes (AHB), which are extracellular growth-regulating substances of these bacteria, were studied. The perception of stress and the postshock behavior of M. luteus cells proved to depend on the growth phase and medium. The magnitude of stress response was more pronounced in cultures grown on synthetic medium than in cultures grown on rich medium (nutrient broth). During exponential or linear growth, the cells were more sensitive to the temperature effect than during decelerated growth. In linearly growing M. luteus cultures, the amount of total intra- and extracellular alkylhydroxybenzenes, the anabiosis inducers, increased in response to heat shock. AHB redistribution between cells and culture liquid occurred in the course of stress and after stress. In micrococci exposed to heat shock, an increase in the AHB concentration both in cells and culture liquid is likely a defense reaction of stress resistance. This conclusion was confirmed in the experiments with the addition 30 min before the heat shock of a chemical analogue of the anabiosis inducer, C7-AHB (12 mM), which protected M. luteus cells so that their intense growth was observed after shock without any lag. The protective effect of AHB is a result of their ability to form complexes with enzyme macromolecules and stabilize them. The data obtained extend the knowledge of the stress-protective functions of low-molecular-weight autoregulators and of the role of intercellular communications in the stress response of bacterial cultures.  相似文献   

10.
The mutagenic activity of chemical analogues of microbial anabiosis autoinducers (the autoregulatory d1 factors of cell differentiation), which act to inhibit cell proliferation, to enhance cell tolerance, and to induce the transition of cells to an anabiotic state, was studied using the Ames test. In the range of concentrations studied (0.1 to 100 g/ml), alkyl-substituted hydroxybenzenes (AHBs) differing in hydrophobicity, i.e., methylresorcinol (C1-AHB) and hexylresorcinol (C6-AHB), as well as unsubstituted resorcinol, showed different growth-inhibiting and mutagenic effects. C6-AHB was found to inhibit the growth of Salmonella typhimurium TA100 and to induce its mutagenesis at a rate of 1.8 revertants/nmol. C1-AHB taken at low concentrations not only failed to inhibit bacterial growth but even stimulated it and exerted an antimutagenic effect. Unsubstituted resorcinol virtually did not influence bacterial growth and showed weak mutagenic activity. The growth-inhibiting effect of elevated C6-AHB concentrations correlated with the degree of the transition of the original phenotype producing S-type colonies to a phenotype producing R-type colonies. The role of AHB homologues, as microbial autoregulators with mutagenic activity, in the regulation and correlation of two processes: the phenotypic dissociation of microbial populations and the formation of resting microbial forms, is discussed. The accumulation of AHBs in senescent microbial cultures may induce adaptive mutations, change the expression of genes, and promote the development of minor cell subpopulations (phenotypes), thus providing for the adaptation of these cultures to varying environmental conditions.  相似文献   

11.
The effects of C7-alkylhydroxybenzene (7-AHB) and p-hydroxyethylphenol (tyrosol), chemical analogs of microbial anabiosis autoregulators, on the viability of yeast cells under oxidative stress were investigated. The stress was caused by reactive oxygen species (ROS) produced under irradiation of cell suspensions using doses of 10–150 krad at an intensity of 194 rad/s or by singlet oxygen generated in cells photosensitized with chlorin e 6 (10 g/l). C7-AHB was found to exert a protective effect. The addition of 0.05–0.16 vol % of C7-AHB to cell suspensions 30 min before irradiation protected yeast cells from radiation (50 krad). The protective effect of C7-AHB manifested itself both in the preservation of cell viability during irradiation and in the recovery of their capacity to proliferate after irradiation. In our studies on photodynamic cell inactivation, the fact that the phenolic antioxidant C7-AHB protects cells from intracellular singlet oxygen was revealed for the first time. The analysis of difference absorption spectra of oxidized derivatives of C7-AHB demonstrated that the protective mechanism of 7-AHB involves the scavenging of ROS resulting from oxidative stress. The fact that tyrosol failed to perform a photoprotective function suggests that the antioxidant properties of microbial 7-AHB are not related to its chaperon functions. The results obtained make an important addition to the spectrum of known antioxidant and antistress effects of phenolic compounds.  相似文献   

12.
In our study, we investigated the capacity of alkylhydroxybenzenes (AHB), which are microbial anabiosis autoinducers, for alteration of the enzymatic activity of the hen egg-white lysozyme, as well as the efficiency of hydrolysis of specific (peptidoglycan) and nonspecific (chitin) substrates catalyzed by lysozyme. AHB homologues (C7-AHB and C12-AHB), which differ in their hydrophobicity and effects in their interaction with lysozyme, were used as modifying agents. C7-AHB stimulated enzymatic activity within the whole range of concentrations used (10?7?10?3 M). More hydrophobic C12-AHB exhibited this ability only at low concentrations and inhibited fermentative activity at high concentrations, acting as a mixed-type inhibitor. Both AHB homologues caused changes in the hydrophobicity of lysozyme molecules. An increase in the affinity level between the C7-AHB-modified enzyme and the nonspecific substrate (colloidal chitin or cell wall polymers of Saccharomyces sp.) was observed, which manifested itself in the enhancement of the hydrolysis rate by 200–500% (as compared to the native enzyme). A significant effect on the efficiency of the lysozyme-catalyzed modifications of the substrate (peptidoglycan, colloidal chitin) structure as a result of its complexation with AHB was demonstrated. A stabilizing effect of C7-AHB and C12-AHB was revealed, which ensured a high level of activity of the AHB-modified enzyme (as compared to the control) after heat treatment (functional stability), as well as at nonoptimal temperatures of catalysis (operational stability). The biological significance of lysozyme modification with AHB and the practical aspects of its application are discussed.  相似文献   

13.
Formation of virulence-associated type I pili in Escherichia coli should be considered as one of the most efficient models for investigating the mechanisms of regulating the heterogeneity of populations of genetically identical microbial cells. The present work focused on the role of alkylhydroxybenzenes (AHBs), density-dependent intercellular regulators, in controlling phase variations in type I pili formation (fimbriogenesis). The tested AHB homologue was C12-AHB; a genetically constructed strain E. сoli dsp250 containing the fimA-lacZ hybrid operon was used. In this operon, the fimA gene encodes the main subunit of the pili protein, and its expression results in β-galactosidase synthesis; pili-forming cells, therefore, become blue on the medium with the Х-gal substrate. Expression of fimA depends on the inversion of the fimS region that is located upstream of it. If the inversion is on, pili formation takes place, if it is off, no pili are formed. An increase in C12-AHB concentration (within the 5 × 10–5–2 × 10–4 M range) in the exponential-phase culture of strain dsp250 causes a dose-dependent change in the dominant phenotype that is displayed by up to 98–99% of the cells. Cells with this phenotype form colonies with a blue center and white edges. Up to 60% of the cells with this phenotype assume a metastable state and up to 11% and 44% of them transition to the alternative phenotypes of pili-forming and pili-less cells, respectively. The influence of C12-AHB on off-switching, i.e. the formation of the avirulent phenotype, was observed irrespective of the growth conditions of strain dsp250. Addition of glucose to the LB medium (5 or 10 mg/mL) resulted in catabolic repression via regulation by the cAMP-CNR complex and predictably induced pili formation in 49 and 75% of the cells, respectively. Against this background, C12-AHB caused a dose-dependent decrease in the share of pili-forming cells to 33–61% and an increase in the share of pili-less cells to 32–61%. If glucose was added in excess (2.5, 5 or 10 mg/mL) to the diluted LB/2 medium, pili formation was completely repressed, while C12-AHB still induced the off inversion to the pili-less phenotype in up to 30% of the cells. The conclusion can be drawn that C12-AHB is not involved in the pathway of fimbriogenesis regulation via cAMP. Since C12-AHB functions as an extracellular alarmon (activating the rpoS regulon and the SOS response as shown earlier, see Golod et al., 2009), its mechanism of action apparently involves stress signal transduction. It induces the synthesis of global regulators RpoS and H-NS and of intracellular alarmon (p) ppGpp; these factors are responsible for the on → off inversion and the proliferation of pili-less cells.  相似文献   

14.
The effects of four alkylhydroxybenzene (AHB) homologs with different hydrocarbon chain lengths on the synthesis of violacein pigment induced by C6-homoserine lactone (HSL) and biofilm formation by Chromobacterium violaceum NCTC 13274 and on Escherichia coli pAL103 bioluminescence in the presence of C6-oxo-HSL were studied. Alkylhydroxybenzenes inhibit the growth of C. violaceum increased in the C5-AHB → C12-AHB series in the absence of this activity in C1-AHB. Subinhibitory AHB concentrations reduced violacein production and suppressed biofilm formation. These effects were presented as individual and group regression dependencies between the analysed parameters. Using the bioluminescent model, the regulatory effects of AHBs were not associated with their direct competition with HSL and that they develop as a result of changes in the sensitivity of bacterial cells to the respective quorum sensing inducer.  相似文献   

15.
Ability to produce dormant forms (DF) was demonstrated for non-spore-forming bacteria Staphylococcus aureus (a nonpathogenic strain) and Corynebacterium pseudodiphtheriticum (an organism of the normal oropharyngeal flora). The salient features of the sthaphylococcal and corynebacterial DF were (1) prolonged (4 months) preservation of viability; (2) resistance to damaging factors (heat treatment); and (3) specific morphology and ultrastructure. The optimal conditions for DF formation were (1) transfer of stationary-phase cultures into saline solution with CaCl2 (10–300 mM) (for S. aureus); (2) growth in SR1 synthetic medium with fivefold nitrogen limitation (for C. pseudodiphtheriticum); and (3) incubation with (1–5) × 10?4 M of C12-AHB, an alkylhydroxybenzene akin to microbial anabiosis autoinducers. Increase of C12-AHB concentration to 7 × 10?4–2 × 10?3 M resulted in “mummification” of cells with irreversible loss of viability without autolytic processes. Germination of dormant forms was followed by increasing of phenotypic variability, as seen from (1) diversity of colony types and (2) emergence of antibiotic-resistant clones on selective media. The share of kanamycin-resistant S. aureus variants was most numerous (0.002–0.01%) in 4-month DF suspensions in SALINE with CaCl2. In the C. pseudodiphtheriticum DF produced under the effect of C12-AHB, the share of kanamycin-resistant variants was also found to increase. These data point to an association between the emergence of antibiotic-resistant variants of bacteria and their persistence in dormant state mediated by starvation stress and regulated by AHB.  相似文献   

16.
Alkyl-substituted hydroxybenzenes (AHBs), which are auto-inducers of microbial dormancy (d1 factors), were found to stabilize the structure of protein macromolecules and modify the catalytic activity of enzymes. In vitro experiments showed that C6-AHB at concentrations from 10(-4) to 10(-2) M, at which it occurs in the medium as a true solution and a micellar colloid, respectively, nonspecifically inhibited the activity of chymotrypsin, RNase, invertase, and glucose oxidase. C6-AHB-induced conformational alterations in protein macromolecules were due to the formation of complexes, as evidenced by differences in the fluorescence spectra of individual RNase and C6-AHB and their mixtures and in the surface tension isotherms of C6-AHB and trypsin solutions. Data on the involvement of dormancy auto-inducers in the post-translational modification of enzymes and their inhibition will provide further insight into the mechanisms of development and maintenance of dormant microbial forms.  相似文献   

17.
18.
This study has highlighted the role of magnesium ions in the amelioration of the detrimental effects of ethanol toxicity and temperature shock in a winemaking strain of Saccharomyces cerevisiae. Specifically, results based on measurements of cellular viability and heat shock protein synthesis together with scanning electron microscopy have shown that, by increasing the bioavailability of magnesium ions, physiological protection is conferred on yeast cells. Elevating magnesium levels in the growth medium from 2 to 20 mM results in repression of certain heat shock proteins following a typical heat shock regime (30–42°C shift). Seed inocula cultures prepropagated in elevated levels of magnesium (i.e. ‘preconditioned’) also conferred thermotolerance on cells and repressed the biosynthesis of heat shock proteins. Similar results were observed in response to ethanol stress. Extra- and intracellular magnesium may both act in the physiological stress protection of yeast cells and this approach offers potential benefits in alcoholic fermentation processes. The working hypothesis based on our findings is that magnesium protects yeast cells by preventing increases in cell membrane permeability elicited by ethanol and temperature-induced stress.  相似文献   

19.
We demonstrated for the first time that alkylhydroxybenzenes (the d1 microbial autoregulatory factors involved in stress responses of cells) are capable of stabilizing enzymes in aqueous media and increasing their catalytic activity. The stabilizing effect of a chemical analogue of alkylhydroxybenzenes, C7-AHB, was established in in vitro studies with enzymes of microbial origin: a protease produced by Bacillus licheniformis, cellulase produced by Trichoderma viride, and alpha-amylase produced by Bacillus subtilis. This effect manifested itself in considerable extension of the temperature and pH ranges of the enzymatic activity. The modulation of the catalytic activities of the stabilized enzymes depended on the C7-AHB concentration and on the time of preincubation of the complexes obtained. We demonstrated that not only enzymes but also their polymeric substrates formed complexes with C7-AHB, and this also significantly influenced the efficiency of hydrolytic reactions. We also conducted comparative studies on the efficiency of hydrolytic reactions in systems in which the structure of enzymes and/or substrates was modified with C7-AHB.  相似文献   

20.
This work is concerned with the role of alkylhydroxybenzenes (AHBs), chemical analogs of the autoregulatory microbial d 1 factors, on the development of the stress response of bacterial cells to UV irradiation, including SOS system induction, preservation of cell viability, and S → R phase transitions of the Escherichia coli test strain with the bioluminescence genes cloned under the control of the recA gene promoter. UV irradiation, a natural stress factor, and an increase in AHB concentrations were found to elicit uniform responses in bacteria, indicating that AHBs function as alarmones, i.e., alarm signals. It was revealed that preincubating bacteria with alkylhydroxybenzenes considerably enhanced their viability upon irradiation with lethal UV doses; this was accompanied by a relative decrease in the SOS response activity and a concomitant increase in the frequency of phase transitions. The efficiency of the protective action of AHBs increased with an increase in their hydrophobicity degree. The probable mechanism of the protective effect of AHBs is discussed, based on their capacity for the interaction with biopolymers, which results in changing their structural organization and conferring resistance to a broad spectrum of stress factors. Such a “passive” protective mechanism reduces the susceptibility of DNA to UV irradiation, causing a decrease in the parameters related to the SOS system induction that is responsible for the “active” protective mechanism in bacterial cells. As a result, viability retention under the lethal influence of UV irradiation is possible at minimal values of repair activity and is accompanied by an increase in the phenotypic variability of the surviving part of a bacterial population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号