首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electricity generation in microbial fuel cells (MFCs) has been a subject of significant research efforts. MFCs employ the ability of electricigenic bacteria to oxidize organic substrates using an electrode as an electron acceptor. While MFC application for electricity production from a variety of organic sources has been demonstrated, very little research on electricity production from carbon monoxide and synthesis gas (syngas) in an MFC has been reported. Although most of the syngas today is produced from non-renewable sources, syngas production from renewable biomass or poorly degradable organic matter makes energy generation from syngas a sustainable process, which combines energy production with the reprocessing of solid wastes. An MFC-based process of syngas conversion to electricity might offer a number of advantages such as high Coulombic efficiency and biocatalytic activity in the presence of carbon monoxide and sulfur components. This paper presents a discussion on microorganisms and reactor designs that can be used for operating an MFC on syngas.  相似文献   

2.
We examined whether and how pretreatment with carbon monoxide (CO) prevents apoptosis of cardioblastic H9c2 cells in ischemia-reperfusion. Reperfusion (6 h) following brief ischemia (10 min) induced cytochrome c release, activation of caspase-9 and caspase-3, and apoptotic nuclear condensation. Brief CO pretreatment (10 min) or a caspase-9 inhibitor (Z-LEHD-FMK) attenuated these apoptotic changes. Ischemia-reperfusion increased phosphorylation of Akt at Ser472/473/474, and this was enhanced by CO pretreatment. A specific Akt inhibitor (API-2) blunted the anti-apoptotic effects of CO in reperfusion. In normoxic cells, CO enhanced generation, which was inhibited by a mitochondrial complex III inhibitor (antimycin A) but not by a NADH oxidase inhibitor (apocynin). The CO-enhanced Akt phosphorylation was suppressed by an scavenger (Tiron), catalase or a superoxide dismutase (SOD) inhibitor (DETC). These results suggest that CO pretreatment induces mitochondrial generation of , which is then converted by SOD to H2O2, and subsequent Akt activation by H2O2 attenuates apoptosis in ischemia-reperfusion.  相似文献   

3.
Du Z  Li H  Gu T 《Biotechnology advances》2007,25(5):464-482
A microbial fuel cell (MFC) is a bioreactor that converts chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. It has been known for many years that it is possible to generate electricity directly by using bacteria to break down organic substrates. The recent energy crisis has reinvigorated interests in MFCs among academic researchers as a way to generate electric power or hydrogen from biomass without a net carbon emission into the ecosystem. MFCs can also be used in wastewater treatment facilities to break down organic matters. They have also been studied for applications as biosensors such as sensors for biological oxygen demand monitoring. Power output and Coulombic efficiency are significantly affected by the types of microbe in the anodic chamber of an MFC, configuration of the MFC and operating conditions. Currently, real-world applications of MFCs are limited because of their low power density level of several thousand mW/m2. Efforts are being made to improve the performance and reduce the construction and operating costs of MFCs. This article presents a critical review on the recent advances in MFC research with emphases on MFC configurations and performances.  相似文献   

4.
Polyether ether ketone was sulphonated polyether ether ketone (SPEEK) and utilized as a proton exchange membrane (PEM) in a single chamber MFC (SCMFC). The SPEEK was compared with Nafion? 117 in the SCMFC using Escherichia coli. The MFC with the SPEEK membrane produced 55.2% higher power density than Nafion? 117. The oxygen mass transfer coefficient (K(O)) for SPEEK and Nafion? 117 was estimated to be 2.4 × 10(-6)cm/s and 1.6 × 10(-5)cm/s, respectively resulting in reduced substrate loss and increased columbic efficiency (CE) in the case of SPEEK. When the dairy and domestic waste water was treated in SPEEK-SCMFC, fitted with a membrane electrode assembly (MEA), a higher maximum power density was obtained for dairy waste water (5.7 W/m(3)). The results of this study indicate that SPEEK membrane has the potential to greatly enhance the efficiency of MFCs.  相似文献   

5.
Microbial fuel cells (MFCs) are a technology that provides electrical energy from the microbial oxidation of organic compounds. Most MFCs use oxygen as the oxidant in the cathode chamber. This study examined the formation in culture of an unidentified bacterial oxidant and investigated the performance of this oxidant in a two-chambered MFC with a proton exchange membrane and an uncoated carbon cathode. DNA, FAME profile and characterization studies identified the microorganism that produced the oxidant as Burkholderia cenocepacia. The oxidant was produced by log phase cells, oxidized the dye 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), had a mass below 1 kD, was heat stable (121°C) and was soluble in ethanol. In a MFC with a 1000 Ω load and ABTS as a mediator, the oxidizer increased cell voltage 11 times higher than atmospheric oxygen and 2.9 times higher than that observed with ferricyanide in the cathode chamber. No increase in cell voltage was observed when no mediator was present. Organisms that produce and release oxidizers into the media may prove useful as bio-cathodes by improving the electrical output of MFCs.  相似文献   

6.
Development of highly efficient anode is critical for enhancing the power output of microbial fuel cells (MFCs). The aim of this work is to investigate whether modification of carbon paper (CP) anode with graphene (GR) via layer-by-layer assembly technique is an effective approach to promote the electricity generation and methyl orange removal in MFCs. Using cyclic voltammetry and electrochemical impedance spectroscopy, the GR/CP electrode exhibited better electrochemical behavior. Scanning electron microscopy results revealed that the surface roughness of GR/CP increased, which was favorable for more bacteria to attach to the anode surface. The MFCs equipped with GR/CP anode achieved a stable maximum power density of 368 mW m?2 under 1,000 Ω external resistance and a start time for the initial maximum voltage of 180 h, which were, respectively, 51 % higher and 31 % shorter than the corresponding values of the MFCs with blank anode. The anode and cathode polarization curves revealed negligible difference in cathode potentials but obviously difference in anode potentials, indicating that the GR-modified anode other than the cathode was responsible for the performance improvement of MFC. Meanwhile, compared with MFCs with blank anode, 11 % higher decolorization efficiency and 16 % higher the chemical oxygen demand removal rate were achieved in MFC with GR-modified anode during electricity generation. This study might provide an effective way to modify the anode for enhanced electricity generation and efficient removal of azo dye in MFCs.  相似文献   

7.

Objectives

Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source.

Results

This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m?3. At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m?3 and 18.8 g COD m?3 h?1, respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450–600 to 350–370 Ω.

Conclusions

Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.
  相似文献   

8.
Du F  Xie B  Dong W  Jia B  Dong K  Liu H 《Bioresource technology》2011,102(19):8914-8920
Microbial fuel cell (MFC) is an emerging technology in the energy and environment field. Its application is limited due to its high cost caused by the utilization of membranes and noble metal catalysts. In this paper, a membraneless MFC, with separated electrode chambers, was designed. The two separated chambers are connected via a channel and the continuous electrolyte flow from anode to cathode drives proton transfer. The proton mass transfer coefficiency in this MFC is 0.9086 cm/s, which is higher than reported MFCs with membranes, such as J-cloth and glass fiber. The maximum output voltage is 160.7 mV, with 1000 Ω resistor. Its peak power density is 24.33 mW/m3. SCOD removal efficiency can reach 90.45% via this MFC. If the connection between the two electrode chambers is blocked, the performance of MFC will decrease severely. All the above results prove the feasibility and advantages of this special MFC model.  相似文献   

9.
There are several interconnected metabolic pathways in bacteria essential for the conversion of carbon electron sources directly into electrical currents using microbial fuel cells (MFCs). This study establishes a direct exogenous method to increase power output from a Shewanella oneidensis MR-1 containing MFC by adding calcium chloride to the culture medium. The current output from each CaCl(2) concentration tested revealed that the addition of CaCl(2) to 1400 μM increased the current density by >80% (0.95-1.76 μA/cm(2)) using sodium lactate as the sole carbon source. Furthermore, polarization curves showed that the maximum power output could be increased from 157 to 330 μW with the addition of 2080 μM CaCl(2). Since the conductivity of the culture medium did not change after the addition of CaCl(2) (confirmed by EIS and bulk conductivity measurements), this increase in power was primarily biological and not based on ionic effects. Thus, controlling the concentration of CaCl(2) is a pathway to increase the efficiency and performance of S. oneidensis MR-1 MFCs.  相似文献   

10.
The reactions of Re(CO)5Cl with the chelating ligands 2-(2-pyridyl)-N-methylbenzimidazole, 2-(2-pyridyl)benzoxazole and 2-(2-pyridyl)benzothiazole afforded neutral fac-Re(CO)3(L)Cl and ionic complexes with structures confirmed by means of X-ray measurements. UV-vis absorption and emission properties have been studied at room and 77 K temperatures in order to determine the nature of the lowest electronically excited states. Electrochemical behaviour of the investigated fac-Re(CO)3(L)Cl and complexes has been studied using cyclic and square-wave voltammetry. Preliminary results from the electrogenerated chemiluminescence studies of the ionic and the neutral fac-Re(CO)3(MPBI)Cl complexes are briefly presented.  相似文献   

11.
Liu Z  Liu J  Zhang S  Su Z 《Biotechnology letters》2008,30(6):1017-1023
This paper reports a novel configuration of stacked microbial fuel cells (MFCs) bridged internally through an extra cation exchange membrane (CEM). The MFC stack (MFCstack), assembled from two single MFCs (MFCsingle), resulted in double voltage output and half optimal external resistance. COD removal rate was increased from 32.4% to 54.5%. The performance improvement could be attributed to the smaller internal resistance and enhanced cations transfer. A result from a half cell study further confirmed the important role of the extra CEM. This study also demonstrated MFCs where the anode and cathode were sandwiched between two CEMs possessed significantly high power outputs  相似文献   

12.
The metabolic flux in microbial fuel cells (MFCs) is significantly different from conventional fermentation because the electrode in MFCs acts as a terminal electron acceptor. In this study, the difference in the carbon metabolism of Klebsiella pnuemoniae L17 (Kp L17) during growth in MFCs and conventional bioreactors was studied using glucose as the sole carbon and energy source. For metabolic flux analysis (MFA), the in silico metabolic flux model of Kp L17 was also constructed. The MFC bioreactor operated in oxidative mode, where electrons are removed by the anode electrode, generated a smaller quantity of reductive metabolites (e.g., lactate, 2,3-butanediol and ethanol) compared to the conventional fermentative bioreactor (non-MFC). Stoichiometric analysis indicated that the cellular metabolism in MFC had partially (or significantly) shifted to anaerobic respiration from fermentation, the former of which was similar to that often observed under micro-aerobic conditions. Electron balance analysis suggested that 30% of the electrons generated from glucose oxidation were extracted from the microbe and transferred to the electrode. These results highlight the potential use of MFCs in regulating the carbon metabolic flux in a bioprocess.  相似文献   

13.
《Process Biochemistry》2010,45(6):929-934
The aim of this study is to compare the performance of different membrane cathode assembly (MCA) and cloth-cathode assembly (CCA) in air-chamber microbial fuel cells (MFCs) and provide an optimum cathode configuration for MFC scaling up. Two MCAs were prepared by hot-pressing carbon cloth containing cathodic catalyst to anion exchange membrane (AEM) and cation exchange membrane (CEM), respectively. A CCA was built by coating GORE-TEX® cloth with a mixture of nickel-based conductive paint and cathodic catalyst. Under the fed-batch mode using brewery wastewater, the MFCs were compared with respect to power production, coulombic efficiency, COD removal, internal resistance and material cost. The experimental results show that CCA is a more favorable alternative than MCAs due to its easier preparation, higher maximum power density and COD removal, and lower internal resistance and cost. The optimum cathode assembly of CCA is cost-effective and mechanically robust enough to meet the important requirements for MFC scalability.  相似文献   

14.
The reaction of (Cp′ = t-BuC5H4) with CH3Li in THF was examined by variable temperature 1H NMR, ESR and mass spectroscopic means. From these methods it is evident that the diamagnetic compounds and as well as the paramagnetic compound form simultaneously. In the subsequent reaction of the intermediate solution with [Co2(CO)8] compound 4 was consumed and the compound (5) formed in good yield. Complex 5 was characterized by IR and variable temperature 1H NMR spectroscopies. Electrochemical two-electron reduction of 1 leads, in a quasi-reversible process, to products that are not stable in solution.  相似文献   

15.
A bacterial strain was isolated from a river sediment in Buenos Aires, Argentina, owing to its ability to utilize 2,4-dinitrophenol (2,4-DNP) as the sole carbon, nitrogen and energy source. The strain was identified as Rhodococcus opacus on the basis of its 16S rRNA gene sequence. R. opacus degrades aerobically 0.27 and 0.54 mM within 22 and 28 h, respectively, and releases the nitro groups from 2,4-DNP as nitrites. Aerobic biodegradation processes were performed using a 2-l volume microfermentor at with agitation (200 rpm), and were evaluated by spectrophotometry, high performance liquid chromatography (HPLC) and microbial growth. The absence of 2,4-DNP transformation products was also confirmed by gas chromatography mass spectrometry (GC–MS). As the nitrite released during 2,4-DNP degradation is in addition an environmental toxic agent it was removed by denitrification in an anoxic process. Detoxification was assessed by using luminescent bacteria, algae and seeds toxicity tests. Toxicity was not detected after combining both the aerobic and anoxic processes.  相似文献   

16.
Alexander Galkin 《BBA》2006,1757(12):1575-1581
NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of aerobic electron transfer. The mechanism how it uses redox energy to pump protons across the bioenergetic membrane is still not understood. Here we determined the pumping stoichiometry of mitochondrial complex I from the strictly aerobic yeast Yarrowia lipolytica. With intact mitochondria, the measured value of indicated that four protons are pumped per NADH oxidized. For purified complex I reconstituted into proteoliposomes we measured a very similar pumping stoichiometry of . This is the first demonstration that the proton pump of complex I stayed fully functional after purification of the enzyme.  相似文献   

17.
18.
Microbial fuel cells (MFC) with 30% wet-proofed air cathodes have previously been optimized to have 4 diffusion layers (DLs) in order to limit oxygen transfer into the anode chamber and optimize performance. Newer MFC designs that allow close electrode spacing have a separator that can also reduce oxygen transfer into the anode chamber, and there are many types of carbon wet-proofed materials available. Additional analysis of conditions that optimize performance is therefore needed for separator-coupled MFCs in terms of the number of DLs and the percent of wet proofing used for the cathode. The number of DLs on a 50% wet-proofed carbon cloth cathode significantly affected MFC performance, with the maximum power density decreasing from 1427 to 855 mW/m2 for 1–4 DLs. A commonly used cathode (30% wet-proofed, 4 DLs) produced a maximum power density (988 mW/m2) that was 31% less than that produced by the 50% wet-proofed cathode (1 DL). It was shown that the cathode performance with different materials and numbers of DLs was directly related to conditions that increased oxygen transfer. The coulombic efficiency (CE) was more affected by the current density than the oxygen transfer coefficient for the cathode. MFCs with the 50% wet-proofed cathode (2 DLs) had a CE of >84% (6.8 A/m2), which was substantially larger than that previously obtained using carbon cloth air-cathodes lacking separators. These results demonstrate that MFCs constructed with separators should have the minimum number of DLs that prevent water leakage and maximize oxygen transfer to the cathode.  相似文献   

19.
Successful organ cryopreservation will significantly benefit human health and biomedical research. One of the major challenges to this accomplishment is the need for optimization of cryoprotectant agent (CPA) perfusion procedures that involve highly complicated mass transfer processes in organs. The diffusivity of CPA is of critical importance for designing perfusion procedures to minimize the associated toxicity and osmotic damage. However, to date there have been no attempts to measure the CPA diffusivity in organs. In this study, we established a simple CPA diffusion model for relatively small organs, e.g., mouse ovaries, defined the apparent diffusivity () of CPA for these organs, and established a practical approach to measure the value of through magnetic resonant imaging (MRI). Using rapid MRI techniques and water saturation analyses, the distribution of ethylene glycol (EG) concentration in the centric cross-section of mouse ovaries was measured at a series of time points during perfusion, and these data were fit to the integral form of the mass transfer equation in the established model. These fits resulted in a value of for EG in mouse ovaries of 6.1 ± 1.4 × 10−7 cm2/s (mean ± SD). Based on these results, we proposed a modified perfusion procedure that may improve the survival of small organs or thin tissues during equilibrium cooling processes and assessed its efficiency through theoretical analyses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号