首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used flow linear dichroism (LD) and light scattering at 90 degrees to study the condensation of both DNA and calf thymus chromatin induced by spermine, triamines NH3+(CH2)iNH+(CH2)jNH3+, designated as much less than i, j much greater than: much less than 3, 4 much greater than (spermidine), much less than 3, 3 much greater than, much less than 2, 3 much greater than, much less than 2, 2 much greater than; the diamines putrescine and cadaverine and MgCl2. It is found that the different polyamines affected DNA and chromatin in a similar way. The degree of compaction of the chromatin fibers induced by spermine, triamines except much less than 2, 2 much greater than and Mg2+ has been found to be identical. The triamine much less than 2, 2 much greater than and the diamines studied do not condense either chromatin of DNA. Such a big difference in the action of the triamines indicates that not only the charge, but also the structure of the polycations are important for their interactions with DNA and chromatin. The stoichiometry of polyamine binding to chromatin at which condensation occurred is found to be 2 polyamine molecules per DNA helical turn. Polyamines are supposed to bind to the exposed sites of core DNA every 10 b.p. The extent of DNA phosphate neutralization by the histones is estimated to be about 55%. It has been shown that a mixture of mono- and multivalent cations affected DNA and chromatin condensation competitively and not synergistically, as claimed in a recent report by Sen and Crothers.  相似文献   

2.
Condensation of chromatin: role of multivalent cations   总被引:4,自引:0,他引:4  
D Sen  D M Crothers 《Biochemistry》1986,25(7):1495-1503
We have used electric dichroism to investigate the influence of multivalent cations upon the compaction of chicken erythrocyte chromatin from the unfolded, 10-nm fiber to the 30-nm solenoid and subsequent aggregation. The pattern of condensation, which consists of compaction plus aggregation, is found to be strikingly similar for a variety of cations of differing charge, including the physiologically important polyamines spermine and spermidine. With a few exceptions such as Cu2+ and Gd3+, an optimally compacted fiber with reproducible hydrodynamic properties is produced prior to the onset of aggregation. We report the concentrations of di-, tri-, and tetravalent cations required for optimal condensation; in addition, for tri- and tetravalent cations, we were able to estimate the extent of charge neutralization produced by their binding to the optimally compacted fiber. The results show that the multivalent ion concentration required for optimal compaction decreases as cationic charge increases. In addition, the effect of a mixture of dilute mono- and multivalent cations on chromatin condensation is synergistic, rather than competitive as has been found for the multivalent cation induced condensation of DNA or the B----Z conformational transition. A simple calculation indicates that the entropy of ion uptake in chromatin condensation is surprisingly constant for a range of ionic conditions; this factor may be a dominant one in determining the folding equilibrium.  相似文献   

3.
Polyamine-DNA interactions. Condensation of chromatin and naked DNA   总被引:2,自引:0,他引:2  
We have used flow linear dichroism (LD) and light scattering at 90 degrees to study the condensation of both DNA and calf thymus chromatin by polyamines, such as spermine, spermidine and its analogs designated by formula NH3+(CH2)iNH2+(CH2)jNH3+, where i = 2,3 and j = 2,3, putrescine, cadaverine and MgCl2. It has been found that the different polyamines affect DNA and chromatin in a similar way. The level of compaction of the chromatin fibers induced by spermine, spermidine and the triamines NH3+(CH2)3NH2+(CH2)3NH3+ and NH3+(CH2)3NH2+(CH2)2NH3+ and MgCl2 is found to be identical. The triamine NH3+(CH2)3NH2+(CH2)2NH3+ and the diamines studied condense neither chromatin nor DNA. This drastic difference in the action of the triamines indicates that not only the charge, but also the structure of the polycations might play essential roles in their interactions with DNA and chromatin. It is shown that a mixture of mono- and multivalent cations affect DNA and chromatin condensation competitively, but not synergistically, as claimed in a recent report by Sen and Crothers (Biochemistry 25, 1495-1503, 1986). We have also estimated the extent of negative charge neutralization produced by some of the polyamines on their binding to chromatin fibers. The stoichiometry of polyamine binding at which condensation of chromatin is completed is found to be two polyamine molecules per DNA turn. The extent of neutralization of the DNA phosphates by the histones in these compact fibers is estimated to be about 55%. The model of polyamine interaction with chromatin is discussed.  相似文献   

4.
Divalent metals associate with DNA in a site-selective manner, which can influence nucleosome positioning, mobility, compaction, and recognition by nuclear factors. We previously characterized divalent metal binding in the nucleosome core using hard (short-wavelength) X-rays allowing high-resolution crystallographic determination of the strongest affinity sites, which revealed that Mn2+ associates with the DNA major groove in a sequence- and conformation-dependent manner. In this study, we obtained diffraction data with soft X-rays at the Mn2+ absorption edge for a core particle crystal in the presence of 10 mM MnSO4, mimicking prevailing Mg2+ concentration in the nucleus. This provides an exceptional view of counterion binding in the nucleosome through identification of 45 divalent metal binding sites.In addition to that at the well-characterized major interparticle interface, only one other histone-divalent metal binding site is found, which corresponds to a symmetry-related counterpart on the ‘free’ H2B α1 helix C-terminus. This emphasizes the importance of the α-helix dipole in ion binding and suggests that the H2B motif may serve as a nucleation site in nucleosome compaction. The 43 sites associated with the DNA are characterized by (1) high-affinity direct coordination at the most electrostatically favorable major groove locations, (2) metal hydrate binding to the major groove, (3) direct coordination to phosphate groups at sites of high charge density, (4) metal hydrate binding in the minor groove, or (5) metal hydrate-divalent anion pairing. Metal hydrates are found within the minor groove only at locations displaying a narrow range of high-intermediate width and to which histone N-terminal tails are not associated or proximal. This indicates that divalent metals and histone tails can both collaborate and compete in minor groove association, which sheds light on nucleosome solubility and chromatin compaction behavior.  相似文献   

5.
6.
Thermodynamic parameters and stoichiometry for the formation of complexes of ATP with Mg2+, Ca2+, and Sr2+ were determined by titration calorimetry. In each case, 1:1 stoichiometry was observed and complex formation was entropy driven. Binding constants for formation of complexes decreased in the order of Mg2+ greater than Ca2+ greater than Sr2+, as expected from charge density considerations. Monovalent cations hindered complex formation with Mg2+, apparently by competing with the divalent cation for complexation with ATP. Analysis of this competitive effect provided estimates of the binding constants for complexes of ATP with monovalent cations, which decreased in the order expected from charge density considerations (Li+ greater than Na+ greater than K+).  相似文献   

7.
8.
General properties of ouabain-sensitive K+ binding to purified Na+,K+-ATPase [EC 3.6.1.3] were studied by a centrifugation method with 42K+. 1) The affinity for K+ was constant at pH values higher than 6.4, and decreased at pH values lower than 6.4. 2) Mg2+ competitively inhibited the K+ binding. The dissociation constant (Kd) for Mg2+ of the enzyme was estimated to be about 1 mM, and the ratio of Kd for Mg2+ to Kd for K+ was 120 : 1. The order of inhibitory efficiency of divalent cations toward the K+ binding was Ba2+ congruent to Ca2+ greater than Zn2+ congruent to Mn2+ greater than Sr2+ greater than Co2+ greater than Ni2+ greater than Mg2+. 3) The order of displacement efficiency of monovalent cations toward the K+ binding in the presence or absence of Mg2+ was Tl+ greater than Rb+ greater than or equal to (K+) greater than NH4+ greater than or equal to Cs+ greater than Na+ greater than Li+. The inhibition patterns of Na+ and Li+ were different from those of other monovalent cations, which competitively inhibited the K+ binding. 4) The K+ binding was not influenced by different anions, such as Cl-, SO4(2-), NO3-, acetate, and glycylglycine, which were used for preparing imidazole buffers. 5) Gramicidin D and valinomycin did not affect the K+ binding, though the former (10 micrograms/ml) inhibited the Na+,K+-ATPase activity by about half. Among various inhibitors of the ATPase, 0.1 mM p-chloromercuribenzoate and 0.1 mM tri-n-butyltin chloride completely inhibited the K+ binding. Oligomycin (10 micrograms/ml) and 10 mM N-ethylmaleimide had no effect on the K+ binding. In the presence of Na+, however, oligomycin decreased the K+ binding by increasing the inhibitory effect of Na+, whether Mg2+ was present or not. 6) ATP, adenylylimido diphosphate and ADP each at 0.2 mM decreased the K+ binding to about one-fourth of the original level at 10 microM K+ without MgCl2 and at 60 microM K+ with 5 mM MgCl2. On the other hand, AMP, Pi, and p-nitrophenylphosphate each at 0.2 mM had little effect on the K+ binding.  相似文献   

9.
10.
11.
The cation-induced refolding of the 100 A nucleosome filament into the 300 A filament has been studied over a wide range of concentrations of Na+, Mg2+, Co(NH3)3+6 and other cations. X-ray diffraction, electron microscopy and analytical ultracentrifugation have been used to determine the conditions under which the 300 A filament is formed. It is shown that cations induce chromatin refolding by acting as general DNA counterions. The concentration of any cation required to induce refolding is greatly dependent on the valence of that cation. Na+ (and, presumably, other monovalent cations) has dual effects: at high concentrations (greater than 45 to 65 mM) it stabilizes the 300 A filament state of chromatin; however, at low concentrations (less than approximately equal to 45 mM), when cations of higher valence are present and stabilizing the 300 A filament state, Na+ has the opposite effect, competing with the higher-valence cation for binding to the chromatin and destabilizing the 300 A filament state. It is shown that further addition of cations to chromatin in the 300 A filament state causes a further folding of the chromatin in which the sedimentation coefficient increases and the X-ray diffraction bands resulting from nucleosomal packing sharpen. This may reflect subtle structural changes within the 300 A filament, or it may reflect a shift in equilibrium constant for chromatin fluctuating between the 100 A and 300 A filament states. It is also shown that, with continued addition of cation, the 300 A filaments precipitate before any "endpoint" is reached in this further folding. The tendency of 300 A filaments to aggregate in vitro appears to be a built-in property, and may reflect the packing of 300 A filaments within metaphase chromosomes in vivo.  相似文献   

12.
Previous work suggests that noncompetitive inhibitor (NCI) ligands and channel permeant cations bind to sites within the nicotinic acetylcholine receptor ion channel. We have used ethidium as a fluorescent probe of the NCI site to investigate interactions between NCI ligands and channel permeant cations. We found that ethidium can be completely displaced from the receptor by a variety of inorganic monovalent and divalent cations. The rank order of monovalent cation affinities was found to be Tl+ greater than Rb+ greater than or equal to K+ greater than Cs+ greater than Na+ greater than Li+. The monovalent cation Kd values vary markedly over a 40-fold range, from 3 to 121 mM. The Kd values and rank order correspond to values determined previously from electrophysiological data. Hill plots of the back titrations yield slopes of 1.0 for all monovalent cations, indicating a single class of independent sites, as shown previously for NCI ligands. Scatchard analysis of ethidium binding in the presence of Tl+ reveals a reduction in affinity and no changes in the maximal number of sites. In the presence of agonist the kinetics of ethidium dissociation induced by the addition of phencyclidine or cations alone or the simultaneous addition of both are nearly identical. The ethidium dissociation rate induced by either phencyclidine or cations is regulated by the occupation of the agonist sites in a similar manner. These results indicate that the effect of cations on NCI ligand binding occurs by mutually exclusive competition. We suggest that NCIs can regulate cation binding at a physiological cation recognition site that is likely part of the cation permeation path through the receptor channel.  相似文献   

13.
The rat mesenteric vasculature contains high affinity binding sites specific for [3H]Arg8-vasopressin which mediate its vasoconstrictor action. We have investigated the in vitro effect of monovalent and divalent cations and guanine nucleotides on the interactions between [3H]Arg8-vasopressin and its receptor in this preparation. Binding was increased by divalent cations from fourfold in the presence of Mg2+ at 5 mM to ninefold in the presence of Mn2+ at 5 mM. The potency order of divalent cations to increase binding was Mn2+ greater than Co2+ greater than Ni2+ greater than Mg2+ greater than Ca2+ approximately equal to control without cations. Addition of Na2+ or other monovalent cations (K+, Li+, and NH4+) in the presence or absence of divalent cations reduced binding significantly. Analysis of saturation binding curves showed a single high affinity site. In the presence of 5 mM Mn2+, binding capacity (Bmax) increased to 139 +/- 23 fmol/mg protein. Receptor affinity was enhanced (KD decreased to 0.33 +/- 0.07 nM). In presence of 5 mM Mg2+ or 150 mM Na+, Bmax and affinity were reduced. The addition of 100 microM GTP or its nonhydrolyzable analogue, Gpp(NH)p, reduced receptor affinity in the presence of Mn2+ + Na+, Mg2+, and Mg2+ + Na+, but not in the presence of Mn2+ alone. Computer modeling of competition binding curves demonstrated that in contrast with saturation studies, the data were best explained by a two-site model with high affinity, low capacity sites and low affinity, high capacity sites. Mn2+ or Mn2+ + Na+ with or without guanine nucleotides resulted in a predominance of high affinity sites. GTP or Gpp(NH)p in the presence of Mg2+ or Mg2+ + Na+ induced a reduction of affinity of the high affinity binding sites and the number of these sites. In the presence of Mg2+ + Na+ and guanine nucleotides, high affinity sites were maximally decreased. An association kinetic study indicated that the association rate constant (K+1) was increased by divalent cations and reduced by guanine nucleotides, without change in the dissociation rate constant (K-1). The equilibrium dissociation constant (KD) calculated with these rate constants (K-1/K+1) was similar to that obtained in saturation experiments at steady state. Dissociation kinetics were biphasic, indicating the presence of two receptor states, one of high and one of low affinity, associated with a slow and a rapid dissociation rate. Cations and guanine nucleotides interact with one or more sites closely associated with vasopressin receptors, including possibly with a GTP-sensitive regulatory protein, to modulate receptor affinity for vasopressin.  相似文献   

14.
The ionophoretic activity of PGBx, an oligomeric mixture synthesized from 15-dehydro PGB1, with different cations was measured using arsenazo III-entrapped liposomes. The order of ionophoretic activity was Zn2+ greater than Co2+ greater than Mn2+ greater than Cu2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. The intrinsic fluorescence of PGBx was quenched by the binding of divalent cations as well as by La3+ and H+. Quenching by K+ and Na+ was minimal. The order of quenching strength of divalent cations was Zn2+ greater than Co2+ greater than Cu2+ = Mn2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. Binding affinities of these cations determined by a murexide indicator method were in good agreement with that determined by the fluorescence quenching reaction. The cation binding affinity of PGBx in aqueous solutions correlates with the ionophoretic activity in liposomes. The binding affinity for K+ was estimated from the inhibition by K+ of Ca2+ binding by PGBx. Although PGBx has a lower selectivity for divalent cation binding than the ionophore A23187, the characteristics of the binding affinity of these two compounds for various ions were similar. The pK of PGBx as determined by fluorescence quenching was 6.7. The molecular weight of the divalent cation binding unit was estimated to be about 680, with each PGBx molecule having three such binding sites. The binding of Ca2+ to such a site is one-to-one.  相似文献   

15.
Electrostatic mechanism of chromatin folding   总被引:16,自引:0,他引:16  
  相似文献   

16.
The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA.  相似文献   

17.
The selectivity of ion channels produced by latrotoxin obtained from a black widow spider venom and by venom from the spider Steatoda paykulliana in bilayer phospholipid membrane was studied. Experimental current-voltage curves of these channels were used for the estimation of parameters of a two barrier model of their energy profiles. Selectivities of both types of channels are similar. Alkaline earth cations are permeable, the permeability increasing in the order Mg2+ less than Ca2+ less than Sr2+ less than Ba2+. In contrast transition metal cations block the channel, their efficiency decreases in the order: Cd2+ greater than or equal to Ni2+ greater than Zn2+ greater than Co2+ greater than Mn2+ (Steatoda paykulliana spider venom) and Cd2+ greater than Co2+ greater than Ni2+ greater than Zn2+ greater than Mn2+ (latrotoxin). Amplitudes of current carried by corresponding ions are mainly determined by the depth of the potential well for this ion, i.e., by its affinity to the cation binding site in the channel. The channels are also permeable to monovalent cations but they do not bind them. Selectivity for monovalent cations depends on Ca2+ concentration at the cis-side of membrane in the micromolar range. However, the addition of Ca2+ to the trans-side up to 10 mM does not affect currents carried by monovalent ions. It is suggested that venom-induced calcium channels have two conformational states with different selectivities which interconvert upon binding one calcium ion. Possible general schemes for the organisation of calcium channels in excitable membranes are also discussed. Finally, using a mathematical model of synaptic transmission, possible mechanisms of toxic action of spider venoms are considered.  相似文献   

18.
The mechanism of block of voltage-dependent Na+ channels by extracellular divalent cations was investigated in a quantitative comparison of two distinct Na+ channel subtypes incorporated into planar bilayers in the presence of batrachotoxin. External Ca2+ and other divalent cations induced a fast voltage-dependent block observed as a reduction in unitary current for tetrodotoxin-sensitive Na+ channels of rat skeletal muscle and tetrodotoxin-insensitive Na+ channels of canine heart ventricular muscle. Using a simple model of voltage-dependent binding to a single site, these two distinct Na+ channel subtypes exhibited virtually the same affinity and voltage dependence for fast block by Ca2+ and a number of other divalent cations. This group of divalent cations exhibited an affinity sequence of Co congruent to Ni greater than Mn greater than Ca greater than Mg greater than Sr greater than Ba, following an inverse correlation between binding affinity and ionic radius. The voltage dependence of fast Ca2+ block was essentially independent of CaCl2 concentration; however, at constant voltage the Ca2+ concentration dependence of fast block deviated from a Langmuir isotherm in the manner expected for an effect of negative surface charge. Titration curves for fast Ca2+ block were fit to a simplified model based on a single Ca2+ binding site and the Gouy-Chapman theory of surface charge. This model gave similar estimates of negative surface charge density in the vicinity of the Ca2+ blocking site for muscle and heart Na+ channels. In contrast to other divalent cations listed above, Cd2+ and Zn2+ are more potent blockers of heart Na+ channels than muscle Na+ channels. Cd2+ induced a fast, voltage-dependent block in both Na+ channel subtypes with a 46-fold higher affinity at 0 mV for heart (KB = 0.37 mM) vs. muscle (KB = 17 mM). Zn2+ induced a fast, voltage-dependent block of muscle Na+ channels with low affinity (KB = 7.5 mM at 0 mV). In contrast, micromolar Zn2+ induced brief closures of heart Na+ channels that were resolved as discrete substate events at the single-channel level with an apparent blocking affinity of KB = 0.067 mM at 0 mV, or 110-fold higher affinity for Zn2+ compared with the muscle channel. High-affinity block of the heart channel by Cd2+ and Zn2+ exhibited approximately the same voltage dependence (e-fold per 60 mV) as low affinity block of the muscle subtype (e-fold per 54 mV), suggesting that the block occurs at structurally analogous sites in the two Na+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The lengths of the DNA molecules of eukaryotic genomes are much greater than the dimensions of the metaphase chromosomes in which they are contained during mitosis. From this observation it has been generally assumed that the linear packing ratio of DNA is an adequate measure of the degree of DNA compaction. This review summarizes the evidence suggesting that the local concentration of DNA is more appropriate than the linear packing ratio for the study of chromatin condensation. The DNA concentrations corresponding to most of the models proposed for the 30-40 nm chromatin fiber are not high enough for the construction of metaphase chromosomes. The interdigitated solenoid model has a higher density because of the stacking of nucleosomes in secondary helices and, after further folding into chromatids, it yields a final concentration of DNA that approaches the experimental value found for condensed chromosomes. Since recent results have shown that metaphase chromosomes contain high concentrations of the chromatin packing ions Mg2+ and Ca2+, it is discussed that dynamic rather than rigid models are required to explain the condensation of the extended fibers observed in the absence of these cations. Finally, considering the different lines of evidence demonstrating the stacking of nucleosomes in different chromatin complexes, it is suggested that the face-to-face interactions between nucleosomes may be the driving force for the formation of higher order structures with a high local concentration of DNA.  相似文献   

20.
The two-phase extraction technique has been used to study the equilibrium between A23187, metal cations, and H+. Under these conditions the ionophore forms charge neutral isostoichiometric complexes with divalent cations in which both carboxylate groups of the 2:1 A23187:M2+ complexes are deprotonated. In ethanol, however, the methyl ester of A23187 also binds divalent cations indicating that protonated complexes between A23187 and cations should also exist. With monovalent cations, A23187 forms two charge-neutral complexes of stoichiometries and relative stabilities: A2HM greater than AM. Examination of energy utilization K+ and H+ movements, and light scattering capacity of mitochondria in the presence of divalent cation chelators, A23187, and valinomycin demonstrates that A23187 can act as a nigericin type K+ ionophore under appropriate conditions. Formation constants for the A2HM complexes with monovalent cations indicate that with appropriate conditions transport of Li+ and Na+ mediated by A23187 would also be expected. The binding constant data and associated free energies of complex formation are compared as a function of ionic radius and of cation charge. The data indicate that lack of conformational mobility in A23187 is responsible for the high cation size selectivity of this compound. To explain the transport selectivity of A23187 for divalent cations, it is proposed that this ionophore forms a family of five complexes, isostoichiometric between cations of different valence but of which only charge-neutral species are permeant to membranes. The charge of a given complex is in turn determined by that of the cation. The concept is consistent with the divalent cation transport specificity of A23187, explains the observed monovalent cation transport, and is useful in rationalizing the differences in charge selectivity between A23187 and X-537A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号