首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toth I  Lazar G  Goodman HM 《The EMBO journal》1987,6(7):1853-1858
An enzyme complex with dihydrofolate reductase (DHFR, E.C.1.5.1.3.) activity was purified to apparent homogenity from wild-carrot cells. The complex has a mol. wt of 286 kd and contains five polypeptide chains of 95, 70, 50, 45 and 26 kd. The DHFR enzyme activity and methotrexate-binding site are on the 45-kd subunit. Folate analogs (methotrexate, aminopterin and formylaminopterin) as well as SH-group inhibitors [p-hydroxymercuribenzoate, 5,5' -dithiobis(2-nitrobenzoic acid), or N-ethylmaleimide] inhibit DHFR. Thymidylate synthase (TS, E.C.2.1.1.45) activity co-purified with the enzyme complex through each of seven steps and co-eluted from gel filtration columns with the DHFR activity at the mol. wt of the enzyme complex. Further identification of TS within the complex was achieved using a Leishmania DHFR-TS antisera which specifically inhibited the carrot TS, although it immunoprecipitated both TS and DHFR. Polyclonal antisera, raised against and specific for the complex as judged by Ouchterlony double diffusion tests and Western blot analysis, inhibited and immunoprecipitated both DHFR and TS. The Leishmania antisera also identified the 70-kd polypeptide within the purified complex as TS in a Western blot experiment. The functions of the other three polypeptides have not yet been established.  相似文献   

2.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8–7.2 μM and for NADPH 6.5–8.0 μM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10–20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthethase and 10-formyltetra-hydrofolate synthetase (formate: tetrahydrofolate ligase (ADP)-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

3.
Cryptosporidium is the causative agent of a gastrointestinal disease, cryptosporidiosis, which is often fatal in immunocompromised individuals and children. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer, bacterial infections, and malaria. Cryptosporidium hominis has a bifunctional thymidylate synthase and dihydrofolate reductase enzyme, compared to separate enzymes in the host. We evaluated lead compound 1 from a novel series of antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines as an inhibitor of Cryptosporidium hominis thymidylate synthase with selectivity over the human enzyme. Complementing the enzyme inhibition compound 1 also has anti-cryptosporidial activity in cell culture. A crystal structure with compound 1 bound to the TS active site is discussed in terms of several van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate (TS), cofactor NADPH and inhibitor methotrexate (DHFR). Another crystal structure in complex with compound 1 bound in both the TS and DHFR active sites is also reported here. The crystal structures provide clues for analog design and for the design of ChTS–DHFR specific inhibitors.  相似文献   

4.
Dihydrofolate reductase from strain MB 1428 of Escherichia coli was shown to catalyze the oxidative cleavage of dihydrofolate at the C(9)N(10) bond. One of the products of the reaction was identified as 7,8-dihydropterin-6-carboxaldehyde through its proton magnetic resonance spectrum. The maximal enzymatic rate was 0.05 moles dihydrofolate cleaved per minute per mole enzyme at 25° and pH 7.2, and the KM for dihydrofolate was 17.5 ± 2.5 μM. The enzymatic reaction was fully inhibitable with methotrexate. The mechanism of enzyme action was proposed to be an apparent “acidification” of dihydrofolate upon binding to the enzyme. Folate underwent an analogous oxidative cleavage by enzyme with a turnover number of 0.0014, which produced pterin-6-carboxaldehyde. Methotrexate was also slowly degraded by the enzyme.  相似文献   

5.
Fluorescein isothiocyanate coupled via a diaminopentyl-linking group to methotrexate (G.R. Gapski, J. M. Whiteley, J. I. Rader, P. L. Cramer, G. B. Henderson, V. Neef, and F. M. Huennekens, 1975, J. Med. Chem.18, 526–528) produces a fluorescent compound which is a strong inhibitor of dihydrofolate reductase (Ki = 60 nM) purified from L1210 murine leukemia cells. The fluorescent methotrexate derivative is preferentially taken up by methotrexate-resistant rather than wild-type L1210 cells grown in culture and acts as a visual marker for dihydrofolate reductase (KD = 50 nM) during both purification and polyacrylamide electrophoresis. Uptake, which is proportional to the level of dihydrofolate reductase (often an indicator of the degree of acquired cellular methotrexate resistance), occurs slowly and via a route that is distinct from the carrier-mediated system utilized by these cells to transport methotrexate.  相似文献   

6.
SYNOPSIS. Cell-free extracts of the rodent malaria parasite Plasmodium berghei synthesized dihydropteroate (H2pteroate) and dihydrofolate (H2folate) from 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine (hydroxymethyldihydropteridine) and p-aminobenzoate (pAB) or p-aminobenzoylglutamate (pABG). The reaction was demonstrated also in extracts of Plasmodium gallinaceum, Plasmodium lophurae and Plasmodium knowlesi, by the use of a microbiologic assay method and pABG as cosubstrate. Some of the properties of the enzymes involved were investigated in P. berghei preparations, utilizing a radioactive assay which measures the conversion of [7-14C]pAB to [14C]H2pteroate. Apparent Km values of 0.28 μM for [7-14C]pAB, 0.037 mM for pABG and 0.8 μM for hydroxymethyldihydropteridine were obtained. The reaction had absolute requirements for ATP and Mg++, and was stimulated by dithiothreitol. The enzymes required for the reaction were eluted together from Sephadex G-200 columns in a molecular weight range of 200,000–250,000. In bacteria hydroxymethyldihydropteridine is converted 1st by a pyrophosphokinase to pyrophosphorylmethyldihydropteridine, and this compound is then condensed with pAB to form H2pteroate by H2pteroate synthetase. Both enzymic activities were demonstrated in P. berghei preparations and separated by DEAE-Sephadex chromatography. The enzymic synthesis of H2pteroate by P. berghei is inhibited by several sulfonamides and diaminodiphenylsulfone (DDS). The latter compound is shown to be competitive with pAB, with a Ki value of 0.38 μM; pABG is also a competitive inhibitor. These data establish an enzymic basis of support for the evidence obtained in vivo which indicate that malaria synthesize their folate cofactors de novo. It is suggested that the antimalarial action of sulfonamides and DDS is due to their inhibition of plasmodial H2pteroate synthetase.  相似文献   

7.
  • 1.1. Covalent coupling of fluorescein to methotrexate (MTX) by a 5-carbon spacer yields a dihydrofolate reductase (DHFR) inhibitor (FMTX) with Ki = 11 nM.
  • 2.2. FMTX shows a fluorescence quenching with respect to fluorescein which is relieved by binding to the enzyme.
  • 3.3. The dissociation constants (Kd) of MTX, FMTX, NADPH and 7,8-dihydrofolate (DHF) from bovine liver DHFR have been determined by fluorometric titrations.
  • 4.4. The Kd values for NADPH, MTX and FMTX from the complementary binary complexes (MTX·DHFR, FMTX·DHFR and NADPH·DHFR) were also obtained; these show a 2- to 4-fold decrease with respect to those obtained by titration of the free enzyme.
  • 5.5. A competitive assay for MTX has been developed by exploiting the fluorescence enhancement of DHFR-bound FMTX. This assay may be useful for the routine determination of MTX in the concentration range from 10−9 to 10−7 M.
  相似文献   

8.
Thymidylate synthetase (TS) and dihydrofolate reductase (DHFR) in Leishmania tropica exist as a bifunctional protein. By use of a methotrexate-resistant strain, which overproduces the bifunctional enzyme, the protein was purified 80-fold to apparent homogeneity in two steps. The native protein has an apparent molecular weight of 110 000 and consists of two subunits with identical size and charge. Available data indicate that each of the subunits possesses TS and DHFR. The TS of the bifunctional protein forms a covalent 5-fluoro-2'-deoxyuridylate (FdUMP)-(+/-)-5,10-methylenetetrahydrofolate-enzyme complex in which 2 mol of FdUMP is bound per mole of enzyme. In contrast, titration of DHFR with methotrexate indicated that only 1 mol of the inhibitor is bound per mole of dimeric enzyme. Both TS and DHFR activities of the bifunctional enzyme were inactivated by the sulfhydryl reagent N-ethylmaleimide. Substrates of the individual enzymes afforded protection against inactivation, indicating that each enzyme requires at least one cysteine for catalytic activity. Kinetic evidence indicates that most, if not all, of the 7,8-dihydrofolate produced by TS is channeled to DHFR faster than it is released into the medium. Although the mechanism of channeling is unknown, the possibility that the two enzymes share a common folate binding site has been ruled out.  相似文献   

9.
A photoreactive analog of aminopterin, 2′-azidoaminopterin (VI), was synthesized and evaluated as a potential inhibitor and photoaffinity label of folate-utilizing enzymes. The compound was tightly bound to dihydrofolate reductase (DHFR) from escherichia coli (MB 1428) with K1 equal to 3 × 10?11M and to the enzyme from mouse (S-180) cells with K1 approximately equal to 2 × 10?10M. Dissociation constants measured by equilibrium dialysis using radioactive 2′-azidoaminopterin gave a value of KD = 3.2 × 10?9M for the bacterial enzyme. The presence of NADPH enhanced the affinity by more than an order of magnitude. Azidoaminopterin is also an inhibitor of thymidylate synthetase from Lactobacillus casei, competitive with methylene-tetrahydrofolate (Ki 7 × 10?7M). Photolysis of the radioactive inhibitor in complex with DHFR from E. coli led to approximately 3% covalent incorporation of label into protein. The greater part of this attachment was nonspecific as shown by the lack of protection in the presence of methotrexate. Thymidylate synthetase from L. casei was not significantly inactivated upon photolysis in the presence of the inhibitor and deoxyuridylate. Model studies showed that photoreaction of the inhibitor led to covalent linkages with thiol, lysyl amino groups, and the hydroxyl groups of alcohols. Azidoaminopterin may be useful in labeling other enzymes of folate metabolism, although a minor photoproduct reacts nonspecifically with many proteins. The antifolate can be photoconjugated to polylysine as well as to proteins. The polylysine conjugates inhibit DHFR. Difference spectrum analysis of the photoproducts from the irradiation of the DHFR I complex indicates that water reacts efficiently with the enzyme-bound nitrene and must therefore have access to at least part of the bound p-aminobenzoyl group. This analysis suggests that azide analogs of protein ligands may be useful as reporter groups in probing the hydrophobicity of binding sites.  相似文献   

10.
Dihydrofolate reductase from soybean seedlings has been purified by agarose-formylaminopterin affinity chromatography. The enzyme is homogeneous as judged by disc gel electrophoresis and immunodiffusion. Analysis by both Sephadex G-200 column chromatography and Sephadex (superfine) G-200 thin-layer gel filtration gives a molecular weight of about 140,000 for the enzyme. Sodium dodecyl sulfate-gel electrophoresis reveals the presence of nonidentical subunits. The enzyme contains nine sulfhydryl groups and is inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and 5,5-dithiobis(2-nitrobenzoic acid). Folate analogs methotrexate, aminopterin, and formylaminopterin cause potent inhibition of the enzyme, with I50 values (concentration required for 50% inhibition) of 0.25, 0.63, and 1.78 μm respectively. The turnover number of the enzyme is 57. Km values for dihydrofolate and NADPH are 35 and 415 μm, respectively. Dihydrofolate, but not NADPH, affords protection against heat inactivation and the protection constant, Kp (concentration of dihydrofolate at which half the original activity is retained), is 81 μm.  相似文献   

11.
In various malaria-endemic regions, the appearance of resistance has precluded the use of pyrimidine-based antifolate drugs. Here, a three-step fragment screening was used to identify new non-pyrimidine Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors. Starting from a 1163-fragment commercial library, a two-step differential scanning fluorimetry screen identified 75 primary fragment hits. Subsequent enzyme inhibition assay identified 11 fragments displaying IC50 in the 28-695 μM range and selectivity for PfDHFR. In addition to the known pyrimidine, three new anti-PfDHFR chemotypes were identified. Fragments from each chemotype were successfully co-crystallized with PfDHFR, revealing a binding in the active site, in the vicinity of catalytic residues, which was confirmed by molecular docking on all fragment hits. Finally, comparison with similar non-hit fragments provides preliminary input on available growth vectors for future drug development.  相似文献   

12.
Guanylthiourea (GTU) has been identified as an important antifolate antimalarial pharmacophore unit, whereas, 4-amino quinolones are already known for antimalarial activity. In the present work molecules carrying 4-aminoquinoline and GTU moiety have been designed using molecular docking analysis with PfDHFR enzyme and heme unit. The docking results indicated that the necessary interactions (Asp54 and Ile14) and docking score (−9.63 to −7.36 kcal/mmol) were comparable to WR99210 (−9.89 kcal/mol). From these results nine molecules were selected for synthesis. In vitro analysis of these synthesized compounds reveal that out of the nine molecules, eight show antimalarial activity in the range of 0.61–7.55 μM for PfD6 strain and 0.43–8.04 μM for PfW2 strain. Further, molecular dynamics simulations were performed on the most active molecule to establish comparative binding interactions of these compounds and reference ligand with Plasmodium falciparum dihydrofolate reductase (PfDHFR).  相似文献   

13.
Dihydrofolate reductase activity in fertilized eggs of the sea urchin, Hemicentrotus pulcherrimus, was almost the same as in unfertilized eggs. Aminopterin inhibited the enzyme competitively with dihydrofolate (FH2). The apparent Km value for FH2 in the dihydrofolate reductase reaction was about 0.1 μM in the crude homogenate of both unfertilized and fertilized eggs. Dihydrofolate reductase in the eggs was also inhibited by palmitoyl-CoA. The inhibition was canceled by polyamines, especially by spermine, but putrescine failed to prevent the enzyme from the inhibition. The change in long-chain acyl-CoA and polyamine concentrations during fertilization are discussed as possible regulatory factors of the enzyme.  相似文献   

14.
Mouse EL4 lymphoma cells have been selected in vitro for resistance to methotrexate. Four independently derived resistant cell lines are described. Each has amplified dihydrofolate reductase (DHFR) genes, and overproduces DHFR RNA and DHFR protein. In three of the four cell lines DNA rearrangement has occurred near the ends of the DHFR gene. The rearrangement is different in each case, but always involves only a proportion of the DHFR genes.  相似文献   

15.
The parasite Toxoplasma gondii can lead to toxoplasmosis in those who are immunocompromised. To combat the infection, the enzyme responsible for nucleotide synthesis thymidylate synthase–dihydrofolate reductase (TS–DHFR) is a suitable drug target. We have used virtual screening to determine novel allosteric inhibitors at the interface between the two TS domains. Selected compounds from virtual screening inhibited TS activity. Thus, these results show that allosteric inhibition by small drug-like molecules can occur in T. gondii TS–DHFR and pave the way for new and potent species-specific inhibitors.  相似文献   

16.
17.
Enzymes involved in thymidylate biosynthesis, thymidylate synthase (TS), and dihydrofolate reductase (DHFR) are well-known targets in cancer chemotherapy. In this study, we demonstrated for the first time, that human TS and DHFR form a strong complex in vitro and co-localize in human normal and colon cancer cell cytoplasm and nucleus. Treatment of cancer cells with methotrexate or 5-fluorouracil did not affect the distribution of either enzyme within the cells. However, 5-FU, but not MTX, lowered the presence of DHFR-TS complex in the nucleus by 2.5-fold. The results may suggest the sequestering of TS by FdUMP in the cytoplasm and thereby affecting the translocation of DHFR-TS complex to the nucleus. Providing a strong likelihood of DHFR-TS complex formation in vivo, the latter complex is a potential new drug target in cancer therapy. In this paper, known 3D structures of human TS and human DHFR, and some protozoan bifunctional DHFR-TS structures as templates, are used to build an in silico model of human DHFR–TS complex structure, consisting of one TS dimer and two DHFR monomers. This complex structure may serve as an initial 3D drug target model for prospective inhibitors targeting interfaces between the DHFR and TS enzymes.  相似文献   

18.
The single glutathione S-transferase (EC 2.5.1.18) present in rat erythrocytes was purified to apparent homogeneity by affinity chromatography on glutathione-Sepharose and hydroxyapatite chromatography. Approx. 1.86 mg enzyme is found in 100 ml packed erythrocytes and accounts for about 0.01% of total soluble protein. The native enzyme (Mr 48 000) displays a pI of 5.9 and appears to possess a homodimeric structure with a subunit of Mr 23 500. Enzyme activities with ethacrynic acid and cumene hydroperoxide were 24 and 3%, respectively, of that with 1-chloro-2,4-dinitrobenzene. The Km values for 1-chloro-2,4-dinitrobenzene and glutathione were 1.0 and 0.142 mM, respectively. The concentrations of certain compounds required to produce 50% inhibition (I50) were as follows: 12 μM bromosulphophthalein, 34 μM S-hexylglutathione, 339 μM oxidized glutathione and 1.5 mM cholate. Bromosulphophthalein was a noncompetitive inhibitor with respect to 1-chloro-2,4-dinitrobenzene (Ki = 8 μM) and glutathione (Kis = 4 μM; Kii = 11.5 μM) while S-hexylglutathione was competitive with glutathione (Ki = 5 μM).  相似文献   

19.
A quantitative comparison of the incorporation of methyl-3H-thymidine and 6-3H-deoxyuridine into the DNA of Drosophila melanogaster in the presence and in the absence of 5-fluorouracil indicated that 5-fluorouracil inhibits the reaction converting dUMP to dTMP catalysed by thymidylate synthetase (methylenetetrahydrofolate:dUrd-5′-P C-methyltransferase, E.C. 2.1.1.b). The enzyme exhibits maximal activity at pH 7·5 to 8·0 and is protected from heat inactivation by deoxyuridine monophosphate. The addition of thiol compounds to the homogenization buffer results in the enhancement of synthetase activity. The Km values for deoxyuridine monophosphate and 5,10-methylenetetrahydrofolate are 6·8 × 10?6 M and 8·3 × 10?5 M, respectively. Fluorodeoxyuridine monophosphate, trifluoromethyldeoxyuridine monophosphate, and methotrexate are inhibitors of the enzyme. 5-Bromodeoxyuridine and 5-iododeoxyuridine have no inhibitory effect. The results support the contention that, under conditions which induce morphological lesions in Drosophila, fluorinated pyrimidines and methotrexate inhibit the de novo synthesis of thymidylate whereas thymidine analogues function in some other manner.  相似文献   

20.
The dihydrofolate reductase inhibitor 2,4-diamino-6-(2-naphthyl-sulfonyl)-quinazoline and its tetrahydro analog 2,4-diamino-6-(2-naphthyl-sulfonyl)-5,6,7,8-tetrahydroquinazoline were evaluated for possible synergism in treating trophozoite-induced Plasmodium cynomolgi var. bastianellii malaria of rhesus monkeys. The degree of synergism, if it exists, was found to be not nearly as great as observed previously with this combination of drugs against Plasmodium berghei infections of mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号