首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
THE RENEWAL OF ROD AND CONE OUTER SEGMENTS IN THE RHESUS MONKEY   总被引:1,自引:0,他引:1       下载免费PDF全文
The renewal of retinal rod and cone outer segments has been studied by radioautography in rhesus monkeys examined 2 and 4 days after injection of leucine-3H. The cell outer segment consists of a stack of photosensitive, membranous discs. In both rods and cones some of the newly formed (radioactive) protein became distributed throughout the outer segment. Furthermore, in rods (but not in cones), there was a transverse band of concentrated radioactive protein slightly above the outer segment base 2 days after injection. This was due to the formation of new discs, into which labeled protein had been incorporated. At 4 days, these radioactive discs were located farther from the outer segment base. Repeated assembly of new discs had displaced them away from the basal assembly site and along the outer segment. Measurements of the displacement rate indicated that each retinal rod produces 80–90 discs per day, and that the entire complement of outer segment discs is replaced every 9–13 days. To compensate for the continual formation of new discs, groups of old discs are intermittently shed from the apical end of the cell and phagocytized by the pigment epithelium. Each pigment epithelial cell engulfs and destroys about 2000–4000 rod outer segment discs daily. The similarity between visual cells in the rhesus monkey and those in man suggests that the same renewal processes occur in the human retina.  相似文献   

2.
The retinal photoreceptors of the red-backed salamander (Plethodon cinerus) have been studied by light and electron microscopy. Rods and single cones are present in this duplex retina in a ratio of about 25:1. The photoreceptors in this amphibian species are much larger than is reported for most vertebrates. In the light-adapted state, rods reach deep into the retinal epithelial (RPE) layer. The rod outer segment is composed of discs of uniform diameter displaying several very deep incisors. The rod inner segment displays a distal elliposid of mitochondria and a short stout myoid region. Rod nuclei are electron dense and often protrude through the external limiting membrane. Rod synaptic spherules are large and display several invaginated synaptic sites as well as superficial synapses. It is felt that the rods do not undergo retinomotor movements. The cone photoreceptors are much smaller than the rods and display a tapering outer segment, an unusual modified ellipsoid and a large parabolid of glycogen in the inner segment. Cone nuclei are less electron dense than rods and are located at all levels within the outer nuclear layer. The synaptic pedicle of the cones is larger, more electron lucent and display more synaptic sites (both invaginated and superficial) than that of rods. It is felt that cone photomechanical responses are minimal.  相似文献   

3.
The renewal of glycerol in the visual cells and pigment epithelium of the frog retina was studied by autoradiographic analysis of animals injected with [2-3H]glycerol. Assay of chloroform:methanol extracts showed that the labeled precursor was used mainly in lipid synthesis, although there was also some utilization in the formation of protein. Radioactive glycerol was initially concentrated in the myoid portion of rods and cones, indicating that this is the site of phospholipid synthesis in visual cells. The glycogen bodies (paraboloids) of accessory cones were also heavily labeled, suggesting the diversion of some glycerol into glycogenic pathways. In the pigment epithelium, only the oil droplets became significantly radioactive. The outer plexiform layer (which contains the visual cell synaptic bodies) and the cone oil droplets gradually accumulated considerable amounts of labeled material. Within 1–4 h, labeled molecules began to appear in the visual cell outer segments, evidently having been transported there from the myoid portion of the inner segment. Most of these were phospholipid molecules which became distributed throughout the outer segments, presumably replacing comparable constituents in existing membranes. In rods only, there was also an aggregation of labeled material at the base of the outer segment due to membrane biogenesis. These highly radioactive membranes, containing labeled molecules of lipid and protein, were subsequently displaced along the rod outer segments due to repeated membrane assembly at the base. The distribution of radioactivity supported the conclusion that membrane renewal by molecular replacement is more rapid for lipid than it is for protein.  相似文献   

4.
The fine structure of the retinal photoreceptors has been studied by light and electron microscopy in the southern fiddler ray or guitarfish (Trygonorhina fasciata). The duplex retina of this species contains only rods and single cones in a ratio of about 40:1. No multiple receptors (double cones), no repeating pattern or mosaic of photoreceptors and no retinomotor movements of these photoreceptors were noted. The rods are cylindrical cells with inner and outer segments of the same diameter. Cones are shorter, stouter cells with a conical outer segment and a wider inner segment. Rod outer segment discs display several irregular incisures to give a scalloped outline to the discs while cone outer segment discs have only a single incisure. In all photoreceptors a non-motile cilium joins the inner and outer segments. The inner segment is the synthetic centre of photoreceptors and in this compartment is located an accumulation of mitochondria (the ellipsoid), profiles of both rough and smooth endoplasmic reticulum, prominent Golgi zones and frequent autophagic vacuoles. The nuclei of rods and cones have much the same chromatin pattern but cone nuclei are invariably located against or particularly through the external limiting membrane (ELM). Numerous Landolt's clubs which are ciliated dendrites of bipolar cells as well as Müller cell processes project through the ELM, which is composed of a series of zonulae adherentes between these cells and the photoreceptors. The synaptic region of both rods (spherules) and cones (pedicles) display both invaginated (ribbon) synapses and superficial (conventional) synapses with cones showing more sites than the rods.  相似文献   

5.
The morphology of the retinal pigment epithelium and photoreceptor cells has been studied in the common newt Triturus viridescens dorsalis by light, conventional transmission and scanning electron microscopy. The pigment epithelium is formed by a single layer of low rectangular cells, separated by a multilayered membrane (Bruch's membrane) from the vessels of the choriocapillaris. The scleral border of the pigment epithelium is highly infolded and each epithelial cell contains smooth endoplasmic reticulum, myeloid bodies, mitochondria, lysosomes, phagosomes and an oval nucleus. Inner, pigment laden, epithelial processes surround the photoreceptor outer and inner segments. The three retinal photoreceptor types, rods, single cones and double cones, differ in both external and internal appearance. The newt, rod, outer segments appear denser than the cones in both light and electron micrographs, due to a greater number of rod lamellae per unit distance of outer segment and to the presence of electron dense intralamellar bands. The rod outer segments possess deep incisures in the lamellae while the cone lamellae lack incisures. Both rod and cone outer segments are supported by a peripheral array of dendritic processes containing longitudinal filaments which originate in the inner segment. The inner segment mitochondria, forming the rod ellipsoid, arelong and narrow while those in the cone are spherical to oval in shape. The inner segments of all three receptor cell types also contain a glycogen-filled paraboloid and a myoid region, just outside the nucleus, rich in both rough and smooth endoplasmic reticulum. The elongate, cylindrical nuclei differ in density. The rod nuclei are denser than those of the cones, contain clumped chromatin and usually extend further vitreally. Similarly, the cytoplasm of the rod synaptic terminal is denser than its cone counterpart and contains synaptic vesicles almost twice as large as those of the cones. Photoreceptor synapses in rods and cones are established by both superficial and invaginated contacts with bipolar or horizontal cells.  相似文献   

6.
王艺磊  郑微云 《动物学报》1994,40(2):119-124
对真鲷光感受细胞的超微结构进行观察,结果表明:视杆外段膜盘为游离膜盘,视锥外段膜盘则为连续的膜结构,视锥和视杆均含有连接纤毛和辅助外段。花萼状突起起源于内段。椭体内充满线粒体,无球状小体。双锥椭圆体并生膜为六层,视锥内段无鳍状突起,视锥突触带,在明适应视网膜中数量增多,在暗适应视网中数量减少,视杆突触带在这两种适应网膜中数量不变,每一杆小球只有一个突触带,而锥小足有4-6个突触带。  相似文献   

7.
1. Posttranslational modifications of tubulin by acetylation and detyrosination have been correlated previously with microtubule stability in numerous cell types. 2. In this study, posttranslational modifications of tubulin and their regional distribution within teleost photoreceptor cones and rods are demonstrated immunohistochemically using antibodies specific for acetylated, detyrosinated, or tyrosinated tubulin. 3. Immunolocalization was carried out on isolated whole cones and mechanically detached rod and cone inner/outer segments. 4. Acetylated tubulin within rods and cones is found only in microtubules of the ciliary axoneme of the outer segment. Detyrosinated tubulin is also enriched in axonemes of both rod and cone outer segments. 5. Distributions of tyrosinated and detyrosinated cytoplasmic microtubules differ within cones and rods. In cones, detyrosinated and tyrosinated tubulins are both abundant throughout the cell body. In rods, the ellipsoid and myoid contain much more tyrosinated tubulin than detyrosinated tubulin. Comparisons between whole cones and cone fragments suggest that detyrosinated microtubules are more stable than tyrosinated microtubules in teleost photoreceptors. 6. Our findings provide further evidence that microtubules of teleost cones differ from rod microtubules in their stabilities and rapidity of turnover within the photoreceptor inner segment.  相似文献   

8.
The disposal phase of the retinal rod outer segment renewal process has been studied by radioautography in adult frogs injected with tritiated amino acids. Shortly after injection, newly formed radioactive protein is incorporated into disc membranes which are assembled at the base of the rod outer segment. During the following 2 months, these labeled discs are progressively displaced along the outer segment owing to the repeated formation of newer discs. When the labeled membranes reach the end of the outer segment, they are detached from it. They subsequently may be identified in inclusion bodies within the pigment epithelium by virtue of their content of radioactivity. These inclusions have been termed phagosomes. Disc membrane formation is a continuous process, but the detachment of groups of discs occurs intermittently. The detached outer segment fragments become deformed, compacted, undergo chemical changes, and are displaced within the pigment epithelium. Ultimately, the material contained in the phagosomes is eliminated from the cell. In this manner the pigment epithelium participates actively in the disposal phase of the rod outer segment renewal process.  相似文献   

9.
Abstract A previous light microscopic study of the retina of Telescopus fallax has showed the presence of three types of photoreceptors: large single cones (type A), large double cones (type B), and small single rods (type D). The present electron microscopic study has demonstrated that the small single rod is a morphological cone characterized by possessing a slightly tapering outer segment and a very extensive zone of continuity between the discs and the plasma membrane of the outer segment.  相似文献   

10.
The eye of Rhinomugil corsula has a duplex retina differentiated into dorsal and ventral halves, with the ventral retina 116·4 μm thicker than the dorsal retina. The rods of the ventral retina are relatively longer, with longer outer segments. The nuclei of the outer nuclear layer of the dorsal and ventral halves are in four and six to seven rows respectively. The rod outer segment bears a single incision. The mitochondria of cone and rod inner segments has a vitreal-scleral gradient. Single and double cones are present in both halves, with triple cones in the dorsal half only. The outer segments of double cones are equal and united. The single cones have two connecting cilia. The cone cells are arranged in a square mosaic with four double cones and five single cones to each unit in the dorsal half, and in a rhombic pattern in the ventral half.  相似文献   

11.
Summary The photoreceptor layer in the retina of Haplochromis burtoni (Cichlidae, Teleostei) was studied by scanning electron microscopy. Three types of receptors were identified: rods, single-cones and double-cones. The three-dimensional arrangement of these photoreceptors is described in the light- and dark-adapted retina. The surface of the inner segment of the photoreceptor cells displays fine vertical fissures which give rise to slender processes. These so called calycal processes which are of different lengths in rods and cones, surround the beginning of the smooth-surfaced outer segment. The myoid, the contractile part of the receptor, which is located beneath the ellipsoid, was examined in the single-cones of the dark-adapted retina. It is a slender structure with surface infoldings. The myoid, studied by transmission electron microscopy, contains bundles of parallel myofilaments, which are thought to be contractile.This investigation was supported by grants of the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 51-E/10)  相似文献   

12.
Summary Ultrastructural analyses of retinal development in the guppy embryo show that at midgestation all types of photoreceptors are differntiated in the fundus, and at birth differentiation extends over the whole retina. Formation of discs of outer segments is more rapid in rods than in cones. Double cones differentiate simultaneously with long single cones and are formed by the adhesion of two primordial inner segments; short single cones develop last. Wherever cones are differentiated, they are arranged in an adult-type square mosaic. The rods in the embryo, as opposed to the adult, are likewise regularly arranged within the mosaic unit.These results are at variance with the generally held opinion that adult teleosts which possess duplex retinae have larvae with pure cone retinae, and that rods, double cones and mosaics appear in late larval life or only at metamorphosis.In the double cones of the guppy embryo subsurface cisternae develop along the adjoining primordial inner segments. Additionally, regularly distributed subsurface cisternae are formed in the regions of intimate contact of long single cones with double cones and rods.We suggest that the early development of rods and double cones, and a square-mosaic with regular distribution of rods and subsurface cisternae, provide the newly born with a fully functional optical apparatus, especially suited to perception of movements. This is necessary for its survival against predatory, especially maternal, attacks.This work was in part subsidized by a grant from the Medical Research Council of Ireland to Y.W.K.  相似文献   

13.
The presence of cones in potto's retina has been proved beyond doubt although they are very restricted in number (1 cone for 300 rods). Morphologically, speaking there is no point in calling these cones "rudimentary" except for their slender outer segment. There are red sensitive elements in that retina at wavelengths beyond the spectral sensitivity of visual purple and it is tempting to assume that these elements are cones. The ERG evoked from these elements by red light differs from that in response to white and blue light. They dark-adapt faster than the receptors sensitive to blue and white flashes. However in some of their properties, for example fusion frequency, these cones behave like rods in other species. As these few cones seem to activate the bipolar cells nearly as effectively as the numerous rods, it is suggested that these cones may be responsible for day vision in the potto.  相似文献   

14.
A cadherin family member, prCAD, was identified in retina cDNA by subtractive hybridization and high throughput sequencing. prCAD is expressed only in retinal photoreceptors, and the prCAD protein is localized to the base of the outer segment of both rods and cones. In prCAD(-/-) mice, outer segments are disorganized and fragmented, and there is progressive death of photoreceptor cells. prCAD is unlikely to be involved in protein trafficking between inner and outer segments, since phototransduction proteins appear to be correctly localized and the light responses of both rods and cones are only modestly compromised in prCAD(-/-) mice. These experiments imply a highly specialized cell biological function for prCAD and suggest that localized adhesion activity is essential for outer segment integrity.  相似文献   

15.
The retinal photoreceptors of Channa punctatus include rods, single cones and the double cones. The double cones have the outer segments having lamellae which are distorted into tubules and vesicles, and the inner segments with hypertrophied mitochondria.  相似文献   

16.
The structure of the photoreceptors of the vervet monkey (Cercopithecus aethiops) has been investigated by light and electron microscopy. In this species the photoreceptors can be readily differentiated and adequately described by the classical terminology of rods and cones, with rods being the more numerous. Rods are long, slender cells while cones are shorter and stouter. Both rods and cones are highly differentiated cells and consist of an outer segment, a connecting cilium, and inner segment, a nuclear region and a synaptic process leading to a synaptic ending. Morphological differences are noted between rods and cones for the various regions of these cells.  相似文献   

17.
Vision begins in photoreceptor outer segments with light captured by opsins in continually synthesized disc membranes. The process by which rod photoreceptor discs are formed has been controversial. In this issue, Ding et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201508093) show conclusively that rod discs are formed by plasma membrane evagination.The vertebrate retina contains two types of photoreceptors, rod cells and cone cells, whose outer segments initiate phototransduction under night and daytime conditions, respectively. The outer segments of these cells lack ER, Golgi, and mitochondria and are filled with hundreds to a few thousand flattened membrane organelles, called photoreceptor discs, which are loaded with the molecular machinery of phototransduction. The structural organization of outer segments differs between rods and cones. Although cone outer segments contain “open” discs that are infoldings of the plasma membrane, rod outer segments possess “closed” discs that are completely separated from the plasma membrane.In 1967, in a paper that has been cited nearly 800 times, Richard Young reported the seminal finding that rod and cone outer segments are continually renewed (Young, 1967). Young’s classic experiment was elegantly simple: he injected [3H]methionine into a rat, mouse, and frog and performed autoradiograms of the excised retina on various days after the injection. He observed that the radiolabeled band moved along the outer segment as time after injection increased and ultimately disappeared at the apex of the cell (Fig. 1, republished from Young, 1967). (As Young was at the University of California, Los Angeles, this result was given the memorable moniker of “the UCLA marching band.”) Young’s seminal insight that outer segments are continually rebuilt posed a problem that has challenged photoreceptor cell biologists ever since: How are rod disc membranes initially formed? In this issue, Ding et al. present a compelling resolution to this question. Specifically, their work differentiates between currently competing models to determine whether rod discs are formed by evagination of plasma membrane at the base of the outer segment or by fusion of intracellular vesicles transported to the outer segment.Open in a separate windowFigure 1.Photoreceptor outer segments are continually renewed. Rats were injected with [3H]methionine, and radioautographs of photoreceptor cells were performed on various days after the injection. As time after injection increases (images 2–7), the radiolabel components are displaced from the inner segment along the outer segment toward the apex of the cell, revealing that the outer segment is continually renewed (figure republished from Young, 1967).The classic hypothesis of disc morphogenesis is that they are formed by evagination of basal outer segment plasma membrane (Steinberg et al., 1980). This hypothesis is based largely on evidence that one surface of the most basal discs of rods is open to the extracellular space, as shown by EM (Carter-Dawson and LaVail, 1979; Steinberg et al., 1980), with lipophilic dye fluorescence (Laties et al., 1976), and by analysis of membrane capacitance (Rüppel and Hagins, 1973). In addition, rods and cones might be expected to share a common machinery of disc formation. Because most cone discs are well established by EM, lipophilic dye imaging, and electrophysiology to be continuous with the plasma membrane, nascent rod discs would seem likely to also be part of the plasma membrane. Thus, according to the classic hypothesis, new discs in both photoreceptor types are formed from outgrowths (evaginations) of the plasma membrane at the outer segment base. In both photoreceptor types, discs would begin life with one face exposed to the extracellular space, but at some point after formation, rod discs would pinch off from the outer segment plasma membrane to become self-contained and fully separated from the plasma membrane, whereas cones discs remain open. On the contrary, the vesicle fusion hypothesis postulates that nascent discs are born completely internalized in rods. Photoreceptor outer segments are now understood to be the plus end of a modified primary cilium (Bloodgood, 2009) and are joined to their inner segments by a narrow ciliary tube called the connecting cilium. This realization, combined with evidence of vesicles in the connecting cilium seen in electron micrographs, has been taken to support the model that vesicles are actively transported through the connecting cilium and generate nascent discs by membrane fusion at the base of the outer segment (Chuang et al., 2007, 2015).Ding et al. (2015) addressed these competing hypotheses with two distinct approaches. First, they treated sections of retinas of mice perfused with a membrane-staining mixture of tannic acid and uranyl acetate and performed EM. Because tannic acid penetrates intact membranes poorly, this treatment distinguishes between membranes exposed to the extracellular space and intracellular membrane structures. The researchers found that, like the plasma membrane, a small number of basal rod discs were intensely stained by tannic acid, whereas the staining of fully internalized discs was weak, confirming that newly formed rod discs are open to the extracellular space. Consistently and strikingly, EM analysis also revealed a single basal disc face (approximately five to seven discs north of the most basal disc) that is contiguous with the plasma membrane. Second, Ding et al. (2015) performed EM with an immunogold-tagged antibody raised against an intracellular epitope of peripherin, a protein that plays an essential role in disc stacking (Arikawa et al., 1992; Goldberg, 2006). Quantification of gold particle counts showed that the peripherin antibody closely associated intracellularly with the edges of fully internalized discs but was negligibly associated with the surface of nascent discs identified as facing the extracellular space, suggesting that peripherin redistributes along the rod disc edge upon its separation from the plasma membrane and enclosure into the outer segment. Finally, Ding et al. (2015) performed experiments using the fixation techniques reported by other investigators and demonstrated that artifacts of tissue fixation were responsible for the erroneous interpretation that basal discs are fully internalized and for the evidence supporting the vesicular fusion hypothesis.Other tools, such as superresolution microscopy of living rods stained with lipophilic dyes or fluorescent antibodies raised against epitopes on the extracellular face of the rod plasma membrane, could further test aspects of the evagination model of disc formation. Nonetheless, the work of Ding et al. (2015) unequivocally shows that basal rod discs are open to the extracellular space and provides a new system and conceptual framework for the investigation of the fundamental biological mechanism of plasma membrane evagination. As outer segment discs exhibit a specialized composition of lipids and phototransduction proteins, further work will also focus on how disc lipids and proteins are transported from the inner segment to the basal outer segment. The current hypotheses about such transport include (a) vesicular transport through the connecting cilium followed by fusion with the outer segment plasma membrane; (b) directed transport through the connecting cilium membrane after vesicle fusion at the base of the connecting cilium in the inner segment; and (c) exocytotic release from the inner segment followed by endocytotic capture in the outer segment. As the molecular details of disc formation and specialization become clearer, Richard Young’s “UCLA marching band” (Young, 1967) will continue to have a broad conceptual impact on the cell biology of photoreceptor development and cilia.  相似文献   

18.
The renewal of fatty acids in the visual cells and pigment epithelium of the frog retina was studied by autoradiographic analysis of animals injected with tritiated palmitic, stearic, or arachidonic acids. Most of the radioactive material could be extracted from the retina with chloroform-methanol, indicating that the fatty acids had been esterified in lipids. Analysis of the extracts, after injection of [3H]palmitic acid, revealed that the radioactivity was predominantly in phospholipid. Palmitic acid was initially concentrated in the pigment epithelium, particularly in oil droplets which are storage sites for vitamin A esterified with fatty acid. The cytoplasm, but not the nucleus of these cells, was also heavily labeled. Radioactive fatty acid was bound immediately to the visual cell outer segment membranes, including detached rod membranes which had been phagocytized by the pigment epithelium. This is believed to be due to fatty acid exchange in phospholipid molecules already situated in the membranes. Gradually, the concentration of radioactive material in the visual cell outer segment membranes increased, apparently as a result of the addition of new phospholipid molecules, possibly augmented by the transfer from the pigment epithelium of esterified vitamin A. Injected fatty acid became particularly concentrated in new membranes which are continually assembled at the base of rod outer segments. This localized concentration was short-lived, apparently due to the rapid renewal of fatty acid. The results support the conclusion that rods renew the lipids of their outer segments by membrane replacement, whereas both rods and cones renew the membrane lipids by molecular replacement, including fatty acid exchange and replacement of phospholipid molecules in existing membranes.  相似文献   

19.
The structure of the retinal photoreceptors of the ranch mink (Mustela vison) has been investigated by light and electron microscopy. In this mammalian species, the photoreceptors can be readily differentiated and adequately described by the classical terminology of rods and cones, with the rods being the more numerous. Rods are long slender cells while cones are shorter and stouter in appearance. Both rods and cones are highly differentiated and extremely polarized cells consisting of an outer segment, a non-motile connecting cilium, an inner segment, a nuclear region and a synaptic process extending to an expanded synaptic ending. Morphological differences are noted between rods and cones for most of the various regions of these cells. While rods reach to the cell body of the retinal pigment epithelial (RPE) cells, larger apical processes from the RPE extend to the shorter cone cells, so that both photoreceptor types are in intimate contact with the retinal epithelial cells.  相似文献   

20.
Goldfish were placed on a daily light cycle of 12 h light and 12 h darkness for 18 days or longer. The visual cells and pigment epithelium of the retina were then examined by microscopy at many intervals throughout the cycle. Goldfish rods and cones follow a rhythmic pattern in eliminating packets of photosensitive membranes from their outer segments. Rods shed membranes early in the light period. The detached membranes are ingested by pigment epithelial cells or by ameboid phagocytes, which degrade them during the remainder of the light period. Cones discard membranes from the ends of their outer segments early in the dark period. During the next several hours, this debris is digested by the pigment epithelium or by ameboid phagocytes. Thus, the disposal phase of the outer-segment renewal process is similar in rods and cones, but is displaced in time by about 12 h. There is evidence that this daily rhythm of membrane disposal in rods and cones is a general property of vertebrate visual cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号