首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W. Jessup  M. W. Fowler 《Planta》1976,132(2):119-123
Summary The effect of the nature and concentration of the nitrogen source on respiratory activity and removal of carbohydrate from the medium in suspension cultured sycamore (Acer pseudoplatanus L.) cells was determined. Comparison was also made of the rates of uptake of the two alternative nitrogen sources, nitrate and glutamate, at differing initial nitrogen concentrations within the range 7–14 mM. The initial pH of the culture medium before inoculation was 5.2; after inoculation the pH of both nitrate and glutamate cultures rose to reach an eventual level in the range 7.0–7.1. Glutamate was removed from the medium more slowly than nitrate. Under the particular conditions of culture used the growth of the cells was nitrogen limited. Sugar uptake from the medium continued for some time after the nitrogen in the medium was depleted. The data show that although cell division and protein content are nitrogen-limited, dry weight and fresh weight yields may also be determined in a complex interaction through carbohydrate availability. There were no obvious differences in respiratory activity between cultures grown on nitrate or glutamate.  相似文献   

2.
Information concerning the sugar status of plant cells is of greatimportance during all stages of the plant life cycle. The aim of this work wasto study primary carbohydrate metabolism in hairy roots of red beet. Growth ofhairy roots of red beet in vitro and changes in concentration of major nutrientsand sugar in the media were measured over a growth cycle of 16 days. We havealso determined the levels of key enzymes in the pathways of sucrose metabolism.Sucrose concentration decreased as hairy root growth proceeded while no changein glucose and fructose levels in the medium was found during the first 3 daysindicating that external sucrose is preferably taken to the cell before it ishydrolyzed by extracellular invertase. The increase in glucose and fructoselevels in the media after 5 days of culture indicates extracellular hydrolysisof sucrose which was further supported by the activity of acid invertaseobserved during that time in the culture medium. The uptake of mineral nutrientsby hairy root of red beet was monitored continuously during the culture cycle.The preferential use of NH4 + overNO3 at the beginning of the culture andacidification of culture media were the two most notable results concerningnitrogen nutrition during hairy root growth of red beet.  相似文献   

3.
Abstract— A neuroblastoma adrenergic clone M1, which multiplies rapidly in vitro, can be induced to differentiate by addition of bromodeoxyuridine to the proliferating cells. In parallel to higher oxygen uptake, a progressive decrease of the activities of aldolase and lactate dehydrogenase is observed in BrdU treated cells. Other enzymic activities involved in carbohydrate metabolism are not substantially modified. The change in the lactate dehydrogenase isoenzyme pattern usually observed in neuroblastoma M1 cells during the different growth phases is abolished by the bromodeoxyuridine treatment. The mechanism of the inhibitory effect of bromodeoxyuridine is discussed.  相似文献   

4.
The enzyme pattern of Saccharomyces cerevisiae was followed during batch growth and in continuous culture in a synthetic medium limited for glucose under aerobic conditions. Seven enzymes were measured: succinate-cytochrome c oxidoreductase, malate dehydrogenase, nicotinamide adenine dinucleotide-linked glutamate dehydrogenase, malate synthase, isocitrate lyase, aldolase, and nicotinamide adenine dinucleotide phosphate (NADP(+))-linked glutamate dehydrogenase. During fermentation of glucose and high growth rate (mu) during the first log phase in batch experiments, the first five enzymes (group I) were repressed, and aldolase and NADP(+)-linked glutamate dehydrogenase (group II) were derepressed. During growth on the accumulated ethyl alcohol and lower mu, the group I enzymes were preferentially formed and the other two were repressed. A sequence of derepression of the group I enzymes was found during the shift from glucose to ethyl alcohol metabolism, which can be correlated with a strong increase in the percentage of single (nonbudding) cells in the population. A correlation between the state of cells in the budding cycle and enzyme repression and derepression is suggested. In continuous culture, the enzyme pattern was shown to be related to the growth rate. The group I enzymes were repressed at high growth rates, while the group II enzymes were derepressed. Each enzyme exhibits a different dependence. The enzyme pattern is shown to depend on the rate of substrate consumption as well as on the type of metabolism and to be correlated with the budding cycle. The enzyme pattern is considered to be controlled by changes of intracellular catabolic or metabolic conditions inherent in the division cycle.  相似文献   

5.
When synchronous cells of the eucaryotic microorganism Chlorella sorokiniana growing in nitrate medium were challenged to synthesize an ammonium-inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) at frequent intervals during the cell cycle the initial rate of induction (i.e., enzyme potential) of this enzyme increased in an approximately linear manner until the period of DNA replication (i.e., S phase). During the S phase, NADP-GDH potential exhibited a positive rate change proportional to the step increase in DNA level. The timing of this rate change was insensitive to large changes in cellular growth rate. This rate change could be blocked within the first cell cycle by specific inhibition of DNA replication with 2'-deoxyadenosine. The approximately linear increase in NADP-GDH potential and also of total cellular protein observed before and after the S phase is proposed to be a result of the increasing photosynthetic capacity of the cell during the cell cycle.  相似文献   

6.
Soybean cell suspension cultures grew on defined media with ammonium as the sole nitrogen source if Krebs cycle acids were added. Satisfactory growth was obtained with ammonium salts of citrate, malate, fumarate, or succinate, when compared with the regular medium containing nitrate and ammonium. Little or no growth occurred when ammonium salts of shikimate, tartrate, acetate, carbonate, or sulfate were used. The cells also grew well with l-glutamine as nitrogen source. The specific activities of glutamine synthetase and isocitrate dehydrogenase (nicotinamide adenine dinucleotide phosphate) were lower than in cells grown on a nitrate medium, but ammonium enhanced the activity of glutamate dehydrogenase. Cells of soybean, wheat, and flax have been cultured for an extended period on the ammonium citrate medium.  相似文献   

7.
Abstract— The amino acid and carbohydrate metabolism of confluent cultures of C-6 glioma cells has been investigated. It was observed that the presence of glutamine in the incubation fluid was essential to maintain high glutamine levels in the cells during a 2 h incubation. When cells were incubated in a cerebrospinal fluid-like medium glutamate, glutamine, aspartate and γ-aminobutyrate (GABA) levels were comparable to those occurring in whole forebrain of adult rat in vivo. Glucose uptake was high, approx 1 μmol/mg protein/2 h, 50% of which was accounted for by lactate production. Of the remaining glucose uptake a substantial proportion was unaccounted for by known oxygen-coupled citric acid cycle flux, or glycogen or amino acid synthesis. Interestingly, the cells released into the medium significant amounts of the neuroinhibitory amino acids, GABA and glycine, and rapidly cleared the medium of the neuroexcitatory amino acids glutamate and aspartate. Metabolism of [2-14C]glucose and [3H]acetate by the cells indicated rapid labelling of the glutamate and aspartate pools of the cells by glucose in 1 h, but the relative specific activities of glutamine and GABA were much lower. The metabolism of tracer concentrations of [3H]acetate to glutamate by the cells indicated greater dilution of this isotope compared to that of labelled glucose. However, the ratio of 3H to 14C radioactivity in glutamate and other amino acids was similar to that in the mixture of glucose and acetate added to the medium. Therefore, some active route of acetate metabolism which communicates metabolically with the route of glucose metabolism to glutamate appears to exist in the cells. Significant acetate activation and fatty acid turnover would explain the present results. Some of the amino acid labelling patterns observed in these studies are not consistent with these glial-like cells behaving as models for the small compartment of amino acid metabolism in brain. Enzyme measurements corroborated the metabolic studies. Glutamate decarboxylase activity was 3–10% of the level found in whole brain. GABA transaminase was also low compared to brain as was glutamine synthetase. Glutamate dehydrogenase was present at levels equal to or higher than those of whole brain.  相似文献   

8.
Summary Low molecular weight nitrogenous impurity compounds as well as raffinose are negative quality factors that interfere with efficient processing of sugarbeet (Beta vulgaris L.) for sucrose. In order to identify nutrient media for cell selection of biochemical mutants or transgenics that might have reduced levels of these processing impurities, the ability of 10 endogenous compounds to serve as sole nitrogen or carbon source for suspension plating and subculture callus growth was evaluated. The most productive concentrations of nitrate, ammonium, l-glutamine, l-glutamate, urea, and l-proline as sole nitrogen sources supported plating callus growth at 106, 159, 233, 167, 80, and 52%, respectively, as well as the historical 60 mM mix of nitrate and ammonium in Murashige-Skoog medium. Glycine betaine and choline did not support growth. d(+) Raffinose and d(+) galactose supported plating callus growth only 67 and 25%, respectively, as well as sucrose as sole carbohydrate source. No callus growth occurred on glutamine, glutamate, or glycine betaine as the sole carbon or carbon plus nitrogen source. Platings on either nitrate or ammonium as sole nitrogen source did not differ in sensitivity to the nitrate uptake inhibitor phenylglyoxal, suggesting that phenylglyoxal lacks the specificity for use in selection for mutants of nitrate uptake. The ability of raffinose to be used as the carbon source, and glutamine or glutamate as the nitrogen source, may preclude their use for selection of genetic variants accumulating less of these processing impurities. However, mutants or transgenics able to utilize either glutamine, glutamate, or glycine betaine might be selectable on media containing any one of these as carbon, nitrogen, or carbon plus nitrogen source, respectively, that is incapable of supporting wild-type cell growth.  相似文献   

9.
Manganese is one of the essential microelements for plant growth, and cerium is a beneficial element for plant growth. However, whether manganese deficiency affects nitrogen metabolism of plants and cerium improves the nitrogen metabolism of plants by exposure to manganese-deficient media are still unclear. The main aim of the study was to determine the effects of manganese deficiency in nitrogen metabolism and the roles of cerium in the improvement of manganese-deficient effects in maize seedlings. Maize seedlings were cultivated in manganese present Meider's nutrient solution. They were subjected to manganese deficiency and to cerium chloride administered in the manganese-present and manganese-deficient media. Maize seedlings grown in the various media were measured for key enzyme activities involved in nitrogen metabolism, such as nitrate reductase, glutamate dehydrogenase, glutamine synthetase, and glutamic-oxaloace transaminase. We found that manganese deficiency restricted uptake and transport of NO(3)(-), inhibited activities of nitrogen-metabolism-related enzymes, such as nitrate reductase, glutamine synthetase, and glutamic-oxaloace transaminase, thus decreasing the synthesis of chlorophyll and soluble protein, and inhibited the growth of maize seedlings. Manganese deficiency promoted the activity of glutamate dehydrogenase and reduced the toxicity of excess ammonia to the plant, while added cerium relieved the damage to nitrogen metabolism caused by manganese deficiency in maize seedlings. However, cerium addition exerted positively to relieve the damage of nitrogen metabolism process in maize seedlings caused by exposure to manganese-deficient media.  相似文献   

10.
1. The lactate dehydrogenase isoenzyme pattern of cultured calf kidney-cortex cells was correlated to growth phase, changes in oxygen supply, mean generation time and changes in nutritional supply. 2. During culture of free cells and intact explants the lactate dehydrogenase isoenzyme pattern changed towards a dominance of isoenzymes containing the M subunit. 3. Of the shift in monomer proportion, 58% occurred during the lag phase and 42% during the initial part of the exponential growth phase. During the stationary phase the shift in monomer proportion reversed slightly. It was possible to relate the observed shift in monomer proportion to the glycolytic rate. 4. Factors that depressed glycolysis decreased the shift in monomer proportion. Oxygen was found to limit the decrease in the H subunit/M subunit ratio caused by anaerobic culture in vitro. 5. The results obtained support the view that the altered lactate dehydrogenase isoenzyme pattern of urine in renal ischaemia may be explained by anaerobic changes in the lactate dehydrogenase isoenzyme pattern of cortical tubule cells.  相似文献   

11.
Cell suspension cultures of the Madagascan Periwinkle, Catharanthus roseus (L). G. Don were grown as batch cultures in two different types of media; in one medium the limiting nutrient was inorganic nitrogen, and in the other it was carbon. The response of the cells to these growth-limiting conditions was monitored by measuring cellular fresh weight, dry weight and protein accumulation, cell viability, medium sugar and nitrate levels, and the activities of certain intracellular enzymes throughout growth in batch culture. The enzymes investigated were glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), hexokinase (EC 2.7.1.40), phosphofructokinase (EC 2.7.1.11), nitrate reductase (EC 1.6.6.1), glutamate dehydrogenase (EC 1.4.1.2) and glutamine synthetase (EC 6.3.1.2). The effect of culturing the cells under different nutritional regimes was apparent in all aspects of growth; only some enzyme activities were unaffected. Cell viability remained at a high level for several days after growth limitation in both types of culture. The possibility that protein degradation in nitrogen-limited batch cultures is under very stringent control is discussed.  相似文献   

12.
Summary The enzymes involved in ammonia assimilation by Rhizobium meliloti 4l and their role in the regulation of nitrogen metabolism were studied. Glutamine synthetase (GS) and glutamate synthase (GOGAT) were present at relatively high levels in cells grown in media containing either low or high concentrations of ammonia. NADP-linked glutamate dehydrogenase could not be detected.GOGAT and GS mutants were isolated and characterised. A mutant lacking GOGAT activity did not grow even on high concentrations of ammonia, it was a glutamate auxotroph and was effective in symbiotic nitrogen fixation. The GS and assimilatory nitrate reductase activities of this mutant were not repressible by ammonia but still repressible by casamino acids. A mutant with low GS activity required glutamine for optimal growth. It was ineffective and its nitrate reductase was not inducible.These findings indicate that ammonia is assimilated via the GS/GOGAT pathway in free-living R. meliloti and bacterial GOGAT is not important in symbiosis. Furthermore, GS is suggested to be a controlling element in the nitrogen metabolism of R. meliloti.  相似文献   

13.
Glutamine synthftase (GS) activity was investigated in a nitratt limited continuous culture of the marine diatom Chaeloccros afTinis (Lauder) Hustedt before and after the perturbation of the culture medium with 10 μM of 15 N labelled nitrate. Parallel studies were carried out on nitrate reductase(NR). nitrate uptake and assimilation, and Ievels of cellular nitrogen containing compounds with the objective to determine the validity of the GS assay as a measure of nitrate utilization. Activities in N-deficient cells, grown at steady state, correlated well with uptake and assimilation rates. In N-sufftcient celts, however, during the nitrate pertirbation period, they accounted only for about 10% of the two latter rates, when ambient nitrate concentrations were high (0. 7-10 μ). It is proposed that under these growth conditions an alternative pathway via glutamate dehydrogenase (GDH) was operative. At low ambient nitrate concentrations (0.1-0.7 μM), GS activities, uptake and assimilation rates again balanced rather well. Thus, the data support the view that GDH activity is associated with high levels and GS with low levels of external or internal nitrogen.  相似文献   

14.
Embryos of pea (Pisum sativum L. cv Sol) deprived of cotyledons were cultured for 3 days in medium with or without sucrose. Respiratory activity of embryos (intact) as well as the ability to oxidize glutamate by mitochondria isolated from embryos were studied. Respiration of intact embryos grown in sucrose supplemented medium was more intensive than in the starved ones. Transfer of the starved embryos to the sucrose-containing medium induced the increase in the intensity of O2 consumption. Mitochondria isolated from both starved and control embryos exhibited respiratory control. Mitochondria isolated from embryos cultured in the absence of sucrose showed higher (about 60 %) ability to oxidize glutamate and α-ketoglutarate than mitochondria from embryos grown in sucrose containing medium. The absence of sucrose in the medium led to a rapid increase in the specific activity of glutamate dehydrogenase (NADH-GDH and NAD-GDH) and it was accompanied by changes in izoenzymatic pattern of enzyme. These results suggest that in the conditions of sucrose starvation glutamate dehydrogenase may be responsible for the increase of glutamate oxidation by mitochondria of pea embryos. Electrophoretic separation of glutamate dehydrogenase isolated from embryos cultured in medium without sucrose showed the presence of ca. 17 isoenzymes while in non-starved embryos only 7 isoenzymes were identified. However, the addition of sucrose to starved embryos after 24 hours of cultivation led to a decrease in glutamate dehydrogenase activity (up to 40 %) but it did not cause the changes in isoenzymatic pattern. These results suggest that in the conditions of sucrose starvation glutamate dehydrogenase maybe responsible for the increase of glutamate oxidation by mitochondria of pea embryos. The posibility of glutamate dehydrogenase regulation by sucrose is discussed.  相似文献   

15.
Batch suspension cultures of chicory cells (Cichorium intybusL. var. Witloof) possess a NADH-specific nitrate reductase activitythat peaks on day 3 of a 10 d growth cycle. When both nitrateand ammonium are used as nitrogen sources, chicory cells absorbnitrate irst. Ammonium uptake becomes predominant at day 3,even though NO3 was still present in the medium. Althoughabscisic acid impairs growth as well as 15NO3 uptakeand reduction, it promotes nitrate reductase activity as measuredboth in vivo and in vitro. Specific activity is 50% higher inABA-treated cells than in controls. These conflicting data maybe explained either in erms of nitrate reductase levels or bythe availability of reducing power and energy. Since NRA isgenerally controlled by the availability of the reducing power,the energy status of the cell, the adenylate nucleotide pools,were measured simultaneously with the carbohydrate levels withinthe cell and the growth medium. The energy charge was not modifiedduring the growth cycle, regardless of the rowth conditions.Yet ABA modified the intracellular carbohydrate metabolism andinhibited the acidic invertase, the sucrose synthase and thesucrose phosphate synthase activities. Modified assimilationrates of nitrate in chicory cells grown in the presence of ABA,were probably correlated to modified carbohydrate metabolismpathways leading to increased availability of reducing power,energy and C-skeletons. Key words: Abscisic acid, Cichorium intybus L, nitrate reductase, reductase, invertase, sucrose synthase, sucrose phosphate synthase  相似文献   

16.
Cell culture of Taxus cuspidata may represent an alternative to extraction of bark as a source of taxol and related taxanes. Cell suspensions of a cell line of T. cuspidata were grown for 44 days in shake flasks containing B5C2 medium. Throughout the growth cycle, fresh and dry weight accumulation, taxol yield on a dry weight basis, taxol accumulation in the medium, pH and pigmentation variation in the medium, as well as the uptake of sucrose, glucose, fructose, nitrate, and inorganic phosphate from the culture medium were examined. The results showed that the growth was relatively slow (doubling times of 17 and 20 days for fresh and dry weight, respectively), and taxol accumulation in the cells was non-growth related (higher in the stationary phase) and at relatively low levels (up to 4 mug/g of the extracted dry weight). Taxol concentration in the medium had two peaks: one during the early (0.4mug/mL) and another during the late (0.1-mug/mL) parts of the growth cycle. On a volumetric basis, the average total amount of taxol produced during the stationary phase (day 38) was 0.15 mug/mL, of which approximately 66% was in the medium and 34% was in the cells. Total carbohydrate uptake was closely associated with the increase in dry biomass. Sucrose was apparently extracellularly hydrolyzed after the first 6 days of culture; glucose was used before fructose. Nitrate was assimilated throughout the growth cycle, but phosphate was absorbed within the first week of culture. The pH variation showed an initial drop followed by a trend toward alkalinization for most of the growth period. Dark pigmentation in the medium increased progressively, particularly during the stationary phase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

17.
A simple biochemical procedure was obtained for studying metabolism ofCorynebacterium diphtheriae during submerged cultivation based on the modification of the assay of dehydrogenase activity using 2,3,5-triphenyltetrazolium chloride as redox indicator. Results obtained by the estimation of the dehydrogenase activity using TTC are in a good accordance with oxygen consumption assayed manometrically. By following dehydrogenase activity in submerged cultivations of a production strain ofCorynebacterium diphtheriae PW8-Weissensee we found that a massive toxin production is connected with the decrease of the activity of cells. This fall of activity occurs yet during the exponential phase of growth. Especially a sudden fall of succindehydrogenase activity exactly indicates the beginning of a considerable toxin accumulation in the medium. The presence of inhibitory concentrations of iron ions in the medium not only increases the level of dehydrogenase activity but changes its whole kinetics. A retarded and irregular fall of the activity occurs instead of a sharp one typical for good toxin production.  相似文献   

18.
Propionibacterium freudenreichii strain DSM 20271 was grown in a mineral medium containing 0.1% (w/v) yeast extract. Acetate was oxidized by growing cells with potassium hexacyanoferrate as electron acceptor, which was oxidized by a three-electrode poised-potential system at a redox potential of +510 mV. Growth with acetate under these conditions followed linear rather than expenential kinetics, whereas growth with other substrates such as lactate under the same conditions was exponential. Cell-free extracts of P. freudenreichii cells grown with acetate contained all enzymes of the classical citric acid cycle except 2-oxoglutarate-oxidizing activity. No activity of anaplerotic reactions such as isocitrate lyase or malate synthase was found. Instead, moderate activities of glutamate decarboxylase, 4-aminobutyrate:2-oxoglutarate aminotransferase, and succinate semialdehyde dehydrogenase were detected. In short-term radiolabeling experiments with U-14C-acetate, 4-aminobutyrate was identified as a major early intermediate in acetate oxidation by these cells. These findings allow the construction of a modified citric acid cycle that compensates the lack of 2-oxoglutarate dehydrogenase by a subcycle through glutamate, 4-aminobutyrate, and succinate semialdehyde. Lack of anaplerotic reactions explains subexponential growth kinetics during growth with acetate.  相似文献   

19.
Although glutamine is a major carbon source for mammalian cells in culture, its chemical decomposition or cellular metabolism leads to an undesirable excess of ammonia. This limits the shelf-life of glutamine-supplemented media and may reduce the cell yield under certain conditions. We have attempted to develop a less ammoniagenic medium for the growth of BHK-21 cells by a mole-to-mole substitution of glutamine by glutamate. This results in a medium that is thermally stable but unable to support an equivalent growth yield. However, supplementation of the glutamate-based medium with asparagine (3 mM) and a minimal level of glutamine (0.5 mM) restored the original growth capacity of the cultures. Substitution of the low level of glutamine with the glutamine dipeptides, ala-gln (1 mM), or gly-gln (3 mM) resulted in an equivalent cell yield and in a thermally stable medium. The ammonia accumulation in cultures with glutamate-based medium was reduced significantly (>60%). Factors mediating growth and adaptation in medium substituted with glutamate were also investigated. The maximum growth capacity of the BHK-21 cells in glutamate-based medium (without glutamine) was achieved after a period of adaptation of 5 culture passages from growth in glutamine-based cultures. Adaptation was not influenced by increases in glutamate uptake which was constitutively high in BHK cells. Adaptation was associated with changes in the activities of enzymes involved in glutamate or glutamine metabolism. The activities of glutamine synthetase (GS) and alanine aminotransferase (ALT) increased significantly and the activity of phosphate-activated glutaminase (PAG) decreased significantly. The activity of glutamate dehydrogenase (GDH) showed no significant change after adaptation to glutamate. These changes resulted in an altered metabolic profile which included a reduced ammonia production but an increased alanine production. Alanine production is suspected of being an alternative route for removal of excess nitrogen.  相似文献   

20.
Primary cultures of glial cells prepared from brains of newborn rats were grown for periods of 1–5 weeks. After a proliferative phase of between 2 and 3 weeks, the cultures were maintained in stationary phase, during which a significant increase of oxygen consumption and of the activities of lactate dehydrogenase, succinate dehydrogenase, and mitochondrial glycerolphosphate dehydrogenase could be observed. Furthermore, qualitative changes in the lactate dehydrogenase isoenzyme pattern were found with time, characterized by a shift toward an enhanced synthesis of H subunits. A similar development was found in comparing the LDH isoenzyme pattern in the brain of 15-day-old rat embryo with those of newborn and adult rat brains. It is suggested that some aspects of maturation of glial cells in culture are comparable to those occurring in whole brain in vivo, namely a shift towards an enhanced aerobic metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号