首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tb3+ binding to bovine prothrombin and bovine prothrombin fragment 1   总被引:1,自引:0,他引:1  
The binding of Tb3+ to bovine prothrombin and the amino-terminal 156 residues of prothrombin (F-1) was studied. On the basis of various Tb3+ emission properties, three classes of Tb3+-binding sites were described. The first class contained three high affinity sites in the F-1 region. These sites were filled noncooperatively and were saturated with Tb3+ before the other classes of sites started to fill. Ho3+ quenching of Tb3+ emission showed that these sites were in close proximity to one another (estimated distances 6-12 A). The second class of sites contained three lower affinity sites, also in the F-1 region. These sites bound Tb3+ in a stoichiometric manner and saturated prior to metal binding to the final class of sites. The number of protein ligands binding Tb3+ in the high affinity sites decreased as this second set of sites was filled. Ho3+ quenching of Tb3+ emission suggested that these sites were closely spaced and/or close to the first set of sites. The third class of sites contained 4-6 low affinity sites unique to prothrombin (not in the F-1 region). These sites were not studied extensively, but Tb3+ did not appear to bind stoichiometrically and did not saturate these sites in a manner similar to the other two classes of sites. The emission properties of Tb3+ bound to F-1 were different in KCl versus NaCl containing buffer while the emission properties of Tb3+ bound to prothrombin were not. Optimum conditions for studying lanthanide binding to F-1 (i.e. when Tb3+ bound to F-1 showed emission properties similar to Tb3+ bound to prothrombin) were when F-1 experiments were done at low F-1 concentrations in buffer containing 0.1 M KCl.  相似文献   

2.
The carbohydrate portion of prothrombin fragment 1 has been removed by fluorolysis in anhydrous HF. The deglycosylated protein retains its calcium- and membrane-binding properties. The slow, calcium-dependent protein transition monitored by changes in intrinsic protein fluorescence remains intact for the aglycoprotein. Calcium-dependent protein-membrane binding is also observed and can be quantitatively reversed with EDTA. The major alteration resulting from carbohydrate removal is the degree of protein self-association. Both the normal and deglycosylated proteins undergo a rapid self-association which approaches a dimer in the presence of calcium. This self-association is independent of the slow change in intrinsic fluorescence. The deglycosylated protein then undergoes a secondary self-association with kinetics identical with the fluorescence change. This secondary self-association also occurs on the membrane surface. This suggests that the calcium-dependent conformational change exposes a site on the protein which functions in secondary self-association. The carbohydrate apparently masks this site in the native molecule.  相似文献   

3.
The metal binding sites of a gamma-carboxyglutamic acid-rich fragment derived from bovine prothrombin were examined using paramagnetic lanthanide ions to evaluate the role of gamma-carboxyglutamic acid resideus in metal binding. A gamma-carboxyglutamic acid-rich peptide, fragment 12-44, was isolated from a tryptic digest of prothrombin. Using 153Gd(III), fragment 12-44 was found to contain one high affinity metal binding site (KD = 0.55 microM) and four to six lower affinity metal binding sites (KD approximately 4 to 8 microM). The S-carboxymethyl derivative of fragment 12-44, in which the disulfide bond in fragment 12-44 was reduced and alkylated, contained no high affinity metal binding site and four or five lower affinity sites (KD = 8 microM). The effects of paramagnetic lanthanide ions on fragment 12-44 and its S-carboxymethyl derivative were studied by natural abundance 13C NMR spectroscopy. The 13C NMR spectrum of fragment 12-44 was recorded at 67.88 MHz and the resonances were assigned by comparison to the chemical shift of carbon resonances of amino acids and peptides previously studied. The proximity between bound metal ions and carbon atoms in fragment 12-44 was estimated using Gd(III), based upon the strategy that the magnitude of the change in the transverse relaxation rate of resonances of carbon nuclei induced by bound metal ions is related in part to the interatomic distances between bound metal and carbon nuclei. Titration of fragment 12-44 with Gd(III) resulted in the selective broadening of the gamma-carboxyl carbon, C gamma, C beta, and C alpha resonances of gamma-carboxyglutamic acid, and the C epsilon of the arginines. S-Carboxymethyl fragment 12-44, which lacked the high affinity metal binding site, showed markedly decreased perturbation of the C epsilon of the arginine residues upon titration with Gd(III). These studies indicate that gamma-carboxyglutamic acid residues in prothrombin fragment 12-44 participate in metal liganding. A high affinity metal binding site in fragment 12-44 is in close proximity of Arg 16 and Arg 25 and is stabilized by the disulfide bond. On the basis of these data, a model of the metal binding sites is proposed in which the high affinity site is composed of two gamma-carboxyglutamic acid residues which participate in intramolecular metal-dependent bridging of two regions of the polypeptide chain. The lower affinity metal binding sites, formed by single or paired adjacent gamma-carboxyglutamic acid residues, then may participate in intermolecular metal-dependent protein . protein or protein . membrane complex formation.  相似文献   

4.
Total internal reflection fluorescence microscopy (TIRFM) has been employed to investigate the Ca(2+)-dependent membrane-binding characteristics of fluorescein-labeled bovine prothrombin-fragment 1 (F-BF1). Light scattering measurements demonstrated that F-BF1 bound to small unilamellar phosphatidylserine/phosphatidylcholine (25/75, mol/mol) vesicles with an apparent dissociation constant (1.5 +/- 0.2 microM) similar to that of unlabeled protein (1.1 +/- 0.1 microM). Negatively charged supported planar membranes were constructed by fusing small unilamellar vesicles at quartz surfaces. TIRFM measurements under equilibrium conditions showed that F-BF1 bound to planar membranes with an apparent dissociation constant (0.9 +/- 0.2 microM) approximately equal to that on vesicles. Total internal reflection/fluorescence photobleaching recovery (TIR/FPR) curves for F-BF1 on 25 mol% PS planar surfaces were diffusion-influenced at F-BF1 solution concentrations less than or equal to 5 microM. Fluorescence recovery rates from samples of high F-BF1 concentrations were slowed by increasing the solution viscosity with glycerol, thus providing further support for a diffusion-limited effect at low F-BF1 concentrations. Analysis of the reaction-limited fluorescence recovery curves at F-BF1 solution concentrations greater than or equal to 10 microM gave average association and dissociation kinetic rates of approximately 10(5) M-1 s-1 and approximately 0.1 s-1, respectively. Kinetic association rates increased significantly with increasing PS, whereas kinetic dissociation rates increased only slightly. Fluorescence recovery curves were nonmonoexponential; possible mechanisms for this behavior are described.  相似文献   

5.
6.
7.
M E Jones  B R Lentz 《Biochemistry》1986,25(3):567-574
Pyrene-labeled phospholipids have been used to test for the existence of lateral domains due to temperature-induced phase separations and binding of prothrombin fragment 1 to charged lipid vesicles. When in close proximity, pyrene-containing probes can exchange excited-state energy to form excimers; the ratio of the excimer to monomer fluorescence intensity (E/M) is proportional to the local concentration of probe in the membranes, as well as to the excimer lifetime and the probe's lateral diffusion coefficient. The ability of the pyrene-labeled phospholipids to quantitatively report the coexistence of multiple environments was demonstrated in dipalmitoylphosphatidylcholine/palmitoyloleoylphosphatidylcholine multilamellar vesicle preparations of varying compositions, each of which contained coexisting fluid and gel phases. In this system, pyrene-labeled phosphatidylcholine was found to favor the fluid relative to the gel phase with a partition coefficient of 7. At 37 degrees C, in dioleoylphosphatidylglycerol (DOPG)/palmitoyloleoylphosphatidylcholine (POPC) large, unilamellar vesicles containing either pyrene-labeled phosphatidylglycerol (py-PG) or pyrene-labeled phosphatidylcholine (py-PC), the excimer lifetime (37 ns) and the lateral diffusion constant of the probe (5.8 X 10(-8) cm2/s) were independent of the membrane composition and the presence of fragment 1 and Ca2+. Consequently, E/M was directly proportional to only the local concentration of the py-PG or py-PC probes. When saturating amounts of fragment 1 and 5 mM Ca2+ were added to DOPG/POPC vesicles that contained either probe, no change in E/M and hence the local probe concentration was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The purpose of the current study is to present further evidence for prothrombin self-association as assessed by chemical crosslinking. When the self-association (evaluated by covalent crosslinking with dithiobis(succinimidylpropionate) of prothrombin or fragment 1 was evaluated at the same molar concentration of protein, similar rates of dimer formation were observed for either protein. When prothrombin and fragment 1 were incubated together with the crosslinking reagent and calcium ions, a heterodimer consisting of prothrombin and fragment 1 was observed in addition to prothrombin dimer and fragment 1 dimer. Similar experiments with prethrombin 1 showed neither significant self-association nor effect on prothrombin self-association. Comparison of the formation of prothrombin fragment 1 heterodimer formation with the effect of fragment 1 on prothrombin activation by factor Xa suggests that the anticoagulant activity of fragment 1 is not solely a result of the formation of a heterodimer between prothrombin and fragment 1.  相似文献   

9.
Sedimentation equilibrium studies have demonstrated that prothrombin fragment 1 from either human or bovine plasma reversibly dimerizes in the absence of Ca2+ with an equilibrium constant of 1,000 M-1. In the presence of 10 mM Ca2+ this association constant increased to 10,000 M-1. A model for preferential binding of Ca2+ to the pre-existing dimer has been found capable of accounting quantitatively for the cooperative Ca2+ binding to this prothrombin fragment, and for the dependence of its sedimentation coefficient on protein concentration in the presence and absence of metal ion. Sedimentation equilibrium studies of intact bovine and human prothrombins have confirmed previous reports that these prothrombins dimerize. For both prothrombins the association constant is 10,000 M-1, both in the absence and presence of Ca2+.  相似文献   

10.
The extra-large guanosine-5′-triphosphate (GTP)-binding protein 2, XLG2, is an unconventional Gα subunit of the Arabidopsis (Arabidopsis thaliana) heterotrimeric GTP-binding protein complex with a major role in plant defense. In vitro biochemical analyses and molecular dynamic simulations show that affinity of XLG2 for GTP is two orders of magnitude lower than that of the conventional Gα, AtGPA1. Here we tested the physiological relevance of GTP binding by XLG2. We generated an XLG2(T476N) variant with abolished GTP binding, as confirmed by in vitro GTPγS binding assay. Yeast three-hybrid, bimolecular fluorescence complementation, and split firefly-luciferase complementation assays revealed that the nucleotide-depleted XLG2(T476N) retained wild-type XLG2-like interactions with the Gβγ dimer and defense-related receptor-like kinases. Both wild-type and nucleotide-depleted XLG2(T476N) restored the defense responses against Fusarium oxysporum and Pseudomonas syringae compromised in the xlg2 xlg3 double mutant. Additionally, XLG2(T476N) was fully functional restoring stomatal density, root growth, and sensitivity to NaCl, but failed to complement impaired germination and vernalization-induced flowering. We conclude that XLG2 is able to function in a GTP-independent manner and discuss its possible mechanisms of action.

Arabidopsis extra-large GTP-binding proteins have nucleotide-independent functions.  相似文献   

11.
Rabbit anti-(bovine prothrombin fragment 1) antibodies were fractionated by using fragment-1 affinity chromatography in the absence of metal ions, and showed an absolute requirement for the presence of metal ions in their interactions with bovine fragment 1 or prothrombin. These antibodies were employed to evaluate both the rate constants for a protein conformation change and the equilibrium metal-ion binding to isolated bovine fragment 1 and intact prothrombin. The close similarity of the rates obtained for the conformation change in fragment 1 and those observed in prothrombin indicated that the same process is involved in both proteins and that the non-fragment-1 region of the prothrombin has essentially no effect on this process in the fragment-1 region. Equilibrium metal-ion-binding studies indicate that the details of the metal-ion-binding process in fragment 1 and prothrombin are essentially the same. We conclude that the metal-ion-binding behaviour of the fragment-1 domain of intact prothrombin is identical with that of isolated fragment 1.  相似文献   

12.
The binding of magnesium ions to two tripeptides, L-Arg-D-Gla-D-Gla-OMe and Z-L-Arg(NO2)-D-Gla-D-Gla-OMe, and to bovine prothrombin fragment 1 as a function of pH has been monitored by 25Mg NMR spectroscopy. Binding to the tripeptide was dependent on peptide ionizations occurring at pH 4.6 – 4.8. The pH dependence of magnesium ion binding to fragment 1 reveals two inflection points 4.2 may be attributed to the deprotonation of the third side chain carboxylic acid group of the double γ-carboxyglutamic acid sequence. The origin of the increased binding of magnesium ions to fragment 1 at pH values above 7 is unknown.  相似文献   

13.
A Váradi  L Patthy 《Biochemistry》1984,23(9):2108-2112
It was shown previously that two sequentially nonidentical regions of human fibrin(ogen), present in fragments D and E, carry specific plasminogen-binding sites [V aradi , A., & Patthy , L. (1983) Biochemistry 22, 2440-2446]. Comparison of the affinity of a variety of fragment E species for immobilized Lys-plasminogen revealed that fragment E3e [(alpha 20/24-78, beta 54-122, gamma 1-53)2] possesses a strong plasminogen-binding site, whereas fragment E3t [(alpha 20/24-78, beta 54-120, gamma 1-53)2] has 30-fold lower affinity for the affinant . Since the two fragments differ only in the beta ( Leu121 - Lys122 ) segment, this suggests that residues beta ( Leu121 - Lys122 ), present in the triple-helical connector region of fibrin(ogen), are essential for plasminogen binding by fragment E. Reduction and alkylation of fragment E3e lead to the destruction of the plasminogen-binding site, indicating that none of the separated, alkylated polypeptide chains of the fragment are able to bind to plasminogen and probably the coiled-coil superstructure of the connector region is necessary for the maintenance of the plasminogen-binding site of fragment E.  相似文献   

14.
3-Phosphoinositide-dependent kinase-1 (PDK1) is a ubiquitously expressed serine/threonine kinase that functions downstream of phosphoinositide 3-kinase. Although binding of 3'-phosphoinositides, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate, to the pleckstrin homology (PH) domain of PDK1 is known to be essential for its interaction with and activation of downstream kinases, the mechanism by which PDK1 is recruited to the plasma membrane remains controversial. Our surface plasmon resonance analysis of the PDK1 PH domain and selected mutants shows that the PH domain specifically binds phosphatidylserine using a site that is separate from the canonical phosphoinositide-binding site. Further cell studies show that this specific phosphatidylserine binding is important for the plasma membrane localization and signaling function of PDK1.  相似文献   

15.
Lipoxygenases are key enzymes in the metabolism of unsaturated fatty acids. Soybean lipoxygenase-1 (LOX-1), a paradigm for lipoxygenases isolated from different sources, is composed of two domains: a approximately 30 kDa N-terminal domain and a approximately 60 kDa C-terminal domain. We used limited proteolysis and gel-filtration chromatography to generate and isolate a approximately 60 kDa fragment of LOX-1 ("mini-LOX"), produced by trypsin cleavage between lysine 277 and serine 278. Mini-LOX was subjected to N-terminal sequencing and to electrophoretic, chromatographic, and spectroscopic analysis. Mini-LOX was found to be more acidic and more hydrophobic than LOX-1, and with a higher content of alpha-helix. Kinetic analysis showed that mini-LOX dioxygenates linoleic acid with a catalytic efficiency approximately 3-fold higher than that of LOX-1 (33.3 x 10(6) and 10.9 x 10(6) M(-1) x s(-1), respectively), the activation energy of the reaction being 4.5 +/- 0.5 and 8.3 +/- 0.9 kJ x mol(-1) for mini-LOX and LOX-1, respectively. Substrate preference, tested with linoleic, alpha-linolenic, and arachidonic acids, and with linoleate methyl ester, was the same for LOX-1 and mini-LOX, and also identical was the regio- and stereospecificity of the products generated thereof, analyzed by reversed-phase and chiral high-performance liquid chromatography, and by gas chromatography/mass spectrometry. Mini-LOX was able to bind artificial vesicles with higher affinity than LOX-1, but the binding was less affected by calcium ions than was that of LOX-1. Taken together, these results suggest that the N-terminal domain of soybean lipoxygenase-1 might be a built-in inhibitor of catalytic activity and membrane binding ability of the enzyme, with a possible role in physio(patho)logical conditions.  相似文献   

16.
IQGAP1 is a homodimeric protein that reversibly associates with F-actin, calmodulin, activated Cdc42 and Rac1, CLIP-170, beta-catenin, and E-cadherin. Its F-actin binding site includes a calponin homology domain (CHD) located near the N-terminal of each subunit. Prior studies have implied that medium- to high-affinity F-actin binding (5-50 microM K(d)) requires multiple CHDs located either on an individual polypeptide or on distinct subunits of a multimeric protein. For IQGAP1, a series of six tandem IQGAP coiled-coil repeats (IRs) located past the C-terminal of the CHD of each subunit support protein dimerization and, by extension, the IRs or an undefined subset of them were thought to be essential for F-actin binding mediated by its CHDs. Here we describe efforts to determine the minimal region of IQGAP1 capable of binding F-actin. Several truncation mutants of IQGAP1, which contain progressive deletions of the IRs and CHD, were assayed for F-actin binding in vitro. Fragments that contain both the CHD and at least one IR could bind F-actin and, as expected, removal of all six IRs and the CHD abolished binding. Unexpectedly, a fragment called IQGAP1(2-210), which contains the CHD, but lacks IRs, could bind actin filaments. IQGAP1(2-210) was found to be monomeric, to bind F-actin with a K(d) of approximately 47 microM, to saturate F-actin at a molar ratio of one IQGAP1(2-210) per actin monomer, and to co-localize with cortical actin filaments when expressed by transfection in cultured cells. These collective results identify the first known example of high-affinity actin filament binding mediated by a single CHD.  相似文献   

17.
Copper is an essential trace element required by all aerobic organisms as a cofactor for enzymes involved in normal growth, development, and physiology. Ctr1 proteins are members of a highly conserved family of copper importers responsible for copper uptake across the plasma membrane. Mice lacking Ctr1 die during embryogenesis from widespread developmental defects, demonstrating the need for adequate copper acquisition in the development of metazoan organisms via as yet uncharacterized mechanisms. Whereas the fruit fly, Drosophila melanogaster, expresses three Ctr1 genes, ctr1A, ctr1B, and ctr1C, little is known about their protein isoform-specific roles. Previous studies demonstrated that Ctr1B localizes to the plasma membrane and is not essential for development unless flies are severely copper-deficient or are subjected to copper toxicity. Here we demonstrate that Ctr1A also resides on the plasma membrane and is the primary Drosophila copper transporter. Loss of Ctr1A results in copper-remedial developmental arrest at early larval stages. Ctr1A mutants are deficient in the activity of copper-dependent enzymes, including cytochrome c oxidase and tyrosinase. Amidation of Phe-Met-Arg-Phe-amides, a group of cardiomodulatory neuropeptide hormones that are matured via the action of peptidylglycine alpha-hydroxylating monooxygenase, is defective in neuroendocrine cells of Ctr1A mutant larvae. Moreover, both the Phe-Met-Arg-Phe-amide maturation and heart beat rate defects observed in Ctr1A mutant larvae can be partially rescued by exogenous copper. These studies establish clear physiological distinctions between two Drosophila plasma membrane copper transport proteins and demonstrate that copper import by Ctr1A is required to drive neuropeptide maturation during normal growth and development.  相似文献   

18.
The conversion of the blood coagulation zymogen prothrombin to thrombin is associated with the production of several cleavage intermediates and products. In contrast to earlier studies of prothrombin cleavage in chemically defined systems, the current investigation examines the fragmentation of human prothrombin in normal plasma. Radiolabeled prothrombin was added to platelet-poor relipidated normal human plasma, and clotting was initiated with the addition of Ca(II) and kaolin. Analysis of the radiolabeled prothrombin cleavage products by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate and beta-mercaptoethanol identified a heretofore unobserved product of prothrombin activation with an apparent molecular weight of 45,000. This product was identified as fragment 1 X 2 X 3, the NH2-terminal 286 amino acids of prothrombin. The product was isolated from a prothrombin digest by immunoaffinity chromatography using anti-prothrombin:Ca(II) antibodies and by preparative gel electrophoresis. Its amino-terminal sequence is identical to that of prothrombin. Digestion of this product with either Factor Xa or thrombin yields, at a minimum, fragment 1 X 2 and fragment 1. Amino-terminal sequence analysis of the products obtained by digestion with Factor Xa of the unknown activation product indicated 3 amino acid residues at each cycle consistent with the presence of fragment 1, fragment 2, and fragment 3. To unambiguously identify the COOH-terminal amino acid sequence of the product, its factor Xa digestion products were separated by reverse-phase high performance liquid chromatography. Edman degradation of one peptide revealed the complete sequence of fragment 3. On this basis, we identify the Mr 45,000 polypeptide as fragment 1 X 2 X 3 and indicate that it is a prominent product of prothrombin conversion to thrombin when activation occurs in plasma.  相似文献   

19.
To initiate mitochondrial fission, dynamin-related proteins (DRPs) must bind specific adaptors on the outer mitochondrial membrane. The structural features underlying this interaction are poorly understood. Using yeast as a model, we show that the Insert B domain of the Dnm1 guanosine triphosphatase (a DRP) contains a novel motif required for association with the mitochondrial adaptor Mdv1. Mutation of this conserved motif specifically disrupted Dnm1–Mdv1 interactions, blocking Dnm1 recruitment and mitochondrial fission. Suppressor mutations in Mdv1 that restored Dnm1–Mdv1 interactions and fission identified potential protein-binding interfaces on the Mdv1 β-propeller domain. These results define the first known function for Insert B in DRP–adaptor interactions. Based on the variability of Insert B sequences and adaptor proteins, we propose that Insert B domains and mitochondrial adaptors have coevolved to meet the unique requirements for mitochondrial fission of different organisms.  相似文献   

20.
Prothrombin (Pro) activation by factor Xa generates the thrombin catalytic site and exosites I and II. The role of fragment 1 (F1) in the pathway of exosite I expression during Pro activation was characterized in equilibrium binding studies using hirudin(54-65) labeled with 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoate ([NBD]Hir(54-65)(SO3-)) or 5-(carboxy)fluorescein ([5F]Hir(54-65)(SO3-)). [NBD]Hir(54-65)(SO3-) distinguished exosite I environments on Pro, prethrombin 1 (Pre 1), and prethrombin 2 (Pre 2) but bound with the same affinities as [5F]Hir(54-65)(SO3-). Conversion of Pro to Pre 1 caused a 7-fold increase in affinity for the peptides. Conversely, fragment 1.2 (F1.2) decreased the affinity of Pre 2 for [5F]Hir(54-65)(SO3-) by 3-fold. This was correlated with a 16-fold increased affinity of F1.2 for Pre 2 in comparison to thrombin, demonstrating an enhancing effect of F1 on F1.2 binding. The active intermediate, meizothrombin, demonstrated a 50- to 220-fold increase in exosite affinity. Free thrombin and thrombin.F1.2 complex bound [5F]Hir(54-65)(SO3-) with indistinguishable affinity, indicating that the effect of F1 on peptide binding was eliminated upon expression of catalytic activity and exosite I. The results demonstrate a new zymogen-specific role for F1 in modulating the affinity of ligands for exosite I. This may reflect a direct interaction between the F1 and Pre 2 domains in Pro that is lost upon folding of the zymogen activation domain. The effect of F1 on (pro)exosite I and the role of (pro)exosite I in factor Va-dependent substrate recognition suggest that the Pro activation pathway may be regulated by (pro)exosite I interactions with factor Va.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号