首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Conformational properties of five neuropeptides belonging to the calliFMRF-amide series with the Xaa-Pro-Yaa-Gln-Asp-Phe-Met-Arg-Phe-NH2 homologous sequences were studied by the method of theoretical conformational analysis. Three members of these group [(1) (Xaa = Thr, Yaa = Gln), (2) (Xaa = Thr, Yaa = Ser), and (3) (Xaa = Yaa = Ser)] can stimulate the saliva secretion from the separated salivary gland of the Calliphora vomitoria fly, whereas two other calliFMRF-amides [(4) (Xaa = Lys, Yaa = Asn) and (5) (Xaa = Ala, Yaa = Gly)] are inactive in this biological test. Low-energy spatial structures of the studied compounds were determined by a conformational analysis. A comparison of the stable structures of the biologically active and inactive neuropeptides revealed a similarity in their conformational properties and allowed determination of the role of separate residues in the peptide folding. The calculations demonstrated that the C-terminal hexapeptide fragment identical in all the five peptides tends to form -helical structure, whereas the variable N-terminal tripeptide regions of calliFMRF-amides (1)–(5) form more conformationally flexible structures.  相似文献   

2.
The single-crystal structures of three collagen-like host-guest peptides, (Pro-Pro-Gly)(4) -Hyp-Yaa-Gly-(Pro-Pro-Gly)(4) [Yaa = Thr, Val, Ser; Hyp = (4R)-4-hydroxyproline] were analyzed at atomic resolution. These peptides adopted a 7/2-helical structure similar to that of the (Pro-Pro-Gly)(9) peptide. The stability of these triple helices showed a similar tendency to that observed in Ac-(Gly-Hyp-Yaa)(10) -NH(2) (Yaa = Thr, Val, Ser) peptides. On the basis of their detailed structures, the differences in the triple-helical stabilities of the peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence were explained in terms of van der Waals interactions and dipole-dipole interaction between the Hyp residue in the X position and the Yaa residue in the Y position involved in the Hyp(X):Yaa(Y) stacking pair. This idea also explains the inability of Ac-(Gly-Hyp-alloThr)(10) -NH(2) and Ac-(Gly-Hyp-Ala)(10) -NH(2) peptides to form triple helices. In the Hyp(X):Thr(Y), Hyp(X):Val(Y), and Hyp(X):Ser(Y) stacking pairs, the proline ring of the Hyp residues adopts an up-puckering conformation, in agreement with the residual preference of Hyp, but in disagreement with the positional preference of X in the Gly-Xaa-Yaa sequence.  相似文献   

3.
We report the conformational analysis by 1H nmr in DMSO and computer simulations involving distance geometry and molecular dynamics simulations of analogs of the cyclic octapeptide D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Thr6-Cys 7]-Thr8-ol (sandostatin, octreotide). The analogs D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Xaa6-Cys 7]-Xbb8-NH2 (Xaa = allo-Thr, D-allo-Thr, D-beta-Hyv, beta-Hyv, D-Thr, and Xbb = Thr or Xaa = Thr and Xbb = allo-Thr, D-allo-Thr, beta-Hyv, D-Thr) contain stereochemical changes in the Thr residues in positions 6 and 8, which allow us to investigate the influence of the stereochemistry within these residues on conformation and binding affinity. The molecular dynamics simulations provide insight into the conformational flexibility of these analogs. The compounds with (S)-configuration at the C(alpha) of residue 6 adopt beta-sheet structures containing a type II' beta-turn with D-Trp in the i+1 position, and these conformations are "folded" about residues 6 and 3. The structures are very similar to those observed for sandostatin, and the disulfide bridge results in a close proximity of the H(alpha) protons of residues 7 and 2, which confirms earlier observations that a disulfide bridge is a good mimic for a cis peptide bond. The compounds with (R)-configuration at the C(alpha) of residue 6 adopt considerably different backbone conformations. The structures observed for these analogs contain either a beta-turn about residue Lys and Xaa6 or a gamma-turn about the Xaa6 residue. These compounds do not exhibit significant binding to the somatostatin receptors, while the compounds with (S) configuration in position 6 bind potently to the sst2, 3, and 5 receptors. The nmr spectra of analogs with (R) or (S) configuration at the C(alpha) of residue 8 are strikingly similar to each other. We have demonstrated that the chemical shifts of protons of residues 3, 4, 5, and 6, which are part of the type II' beta-turn, and especially the effect on the Lys gamma-protons are considerably different in active molecules as compared to inactive analogs. Since the presence of a type II' beta-turn is crucial for the binding to the receptors, the chemical shifts, the amide temperature coefficients of the Thr residue and the medium strength NOE between LysNH and ThrNH can be extremely useful as an initial screening tool to separate the active molecules from inactive analogs.  相似文献   

4.
The human red blood cell sialoglycoprotein, glycophorin A (GpA),contains a ‘mucin-like’ extensively O-glycosylatedextracellular domain which carries the MN blood group antigens.We have revised the sites of O-glyccsylation in the extracellulardomain of GpA by automated solid-phase Edman degradation, whichallowed positive identification and quantitation of O-glycosylatedSer and Thr residues, as well as the single N-glycosylationsite. One N-linked and 16 O-linked sites were identified. Carbohydratewas absent on Ser 1, Ser14, Ser15, Ser23, Thr28 and Thr58 inGpA. We propose that the glycosyltransferases present in erythrocytesrecognize specific flanking sequences around potential O-glycosylationsites. All 16 O-glycosylation sites are explained on the basisof four motifs. Three motifs are associated with Thr-glycosylation:Xaa—Pro—Xaa—Xaa where at least one Xaa = Thr;Thr—Xaa—Xaa—Xaa where at least one Xaa = Thr;Xaa—Xaa—Thr—Xaa where at least one X = Argor Lys. The fourth motif is associated with Ser-glycosylation:Ser—Xaa—Xaa—Xaa where at least one Xaa = Ser.These simple rules explain the glycosylation (or lack of it)on 21 of 22 Ser/Thr in the extracellular domain of GpA. glycophorin A O-glycosylation motif solid-phase Edman degradation  相似文献   

5.
The relationship between the Ser, Thr, and Cys side-chain conformation (chi(1) = g(-), t, g(+)) and the main-chain conformation (phi and psi angles) has been studied in a selection of protein structures that contain alpha-helices. The statistical results show that the g(-) conformation of both Ser and Thr residues decreases their phi angles and increases their psi angles relative to Ala, used as a control. The additional hydrogen bond formed between the O(gamma) atom of Ser and Thr and the i-3 or i-4 peptide carbonyl oxygen induces or stabilizes a bending angle in the helix 3-4 degrees larger than for Ala. This is of particular significance for membrane proteins. Incorporation of this small bending angle in the transmembrane alpha-helix at one side of the cell membrane results in a significant displacement of the residues located at the other side of the membrane. We hypothesize that local alterations of the rotamer configurations of these Ser and Thr residues may result in significant conformational changes across transmembrane helices, and thus participate in the molecular mechanisms underlying transmembrane signaling. This finding has provided the structural basis to understand the experimentally observed influence of Ser residues on the conformational equilibrium between inactive and active states of the receptor, in the neurotransmitter subfamily of G protein-coupled receptors.  相似文献   

6.
Saha I  Shamala N 《Biopolymers》2012,97(1):54-64
The covalent linkage between the side‐chain and the backbone nitrogen atom of proline leads to the formation of the five‐membered pyrrolidine ring and hence restriction of the backbone torsional angle ? to values of ?60 °± 30° for the L ‐proline. Diproline segments constitute a chain fragment with considerably reduced conformational choices. In the current study, the conformational states for the diproline segment ( L Pro‐ L Pro) found in proteins has been investigated with an emphasis on the cis and trans states for the Pro‐Pro peptide bond. The occurrence of diproline segments in turns and other secondary structures has been studied and compared to that of Xaa‐Pro‐Yaa segments in proteins which gives us a better understanding on the restriction imposed on other residues by the diproline segment and the single proline residue. The study indicates that PII–PII and PII–α are the most favorable conformational states for the diproline segment. The analysis on Xaa‐Pro‐Yaa sequences reveals that the Xaa‐Pro peptide bond exists preferably as the trans conformer rather than the cis conformer. The present study may lead to a better understanding of the behavior of proline occurring in diproline segments which can facilitate various designed diproline‐based synthetic templates for biological and structural studies. © 2011 Wiley Periodicals, Inc. Biopolymers 97: 54–64, 2012.  相似文献   

7.
Subtilisin 72 serine protease (EC 3.4.21.14) immobilized on a poly(vinyl alcohol) cryogel was used as a catalyst in the syntheses of N-protected peptide p-nitroanilides of the general formulas Z(or Boc)-Xaa-Phe-pNA (Xaa = Leu or Ala), Z-Ala-Xaa-Yaa-pNA (Xaa = Leu or Ala; Yaa = Leu or Phe), and Z-Ala-Ala-Xaa-Yaa-pNA (Xaa = Leu, Arg, or Gly; Yaa = Phe, Leu, Gly, Asp, or Glu). The syntheses were carried out in DMF-acetonitrile mixtures. A number of protected di-, tri-, and tetrapeptides were prepared in yields up to 99%. The syntheses were found to retain stereoselectivity under the conditions studied. The activation of carboxyl group of the acylating component was shown to have a positive effect upon the coupling rate. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 6; see also http://www.maik.ru.  相似文献   

8.
Subtilisin 72 serine protease (EC 3.4.21.14) immobilized on a poly(vinyl alcohol) cryogel was used as a catalyst in the syntheses of N-protected peptide p-nitroanilides of the general formulas Z(or Boc)-Xaa-Phe-pNA (Xaa = Leu or Ala), Z-Ala-Xaa-Yaa-pNA (Xaa = Leu or Ala; Yaa = Leu or Phe), and Z-Ala-Ala-Xaa-Yaa-pNA (Xaa = Leu, Arg, or Gly; Yaa = Phe, Leu, Gly, Asp, or Glu). The syntheses were carried out in DMF-acetonitrile mixtures. A number of protected di-, tri-, and tetrapeptides were prepared in yields up to 99%. The syntheses were found to retain stereoselectivity under the conditions studied. The activation of carboxyl group of the acylating component was shown to have a positive effect upon the coupling rate.  相似文献   

9.
Here we report the use of automated Edman degradation of covalently linked glycopeptides to identify positively the sites of O- and N-glycosylation. The O-glycosidic linkage of carbohydrate to the hydroxy amino acids Ser and Thr is a major form of post-translational modification. However, unlike Asn-linked glycosylation, which is identified by the consensus sequence Asn-Xaa-Thr/Ser, no simple motif conferring O-linkage to Thr and Ser has been described. After sequencing glycopeptides derived from two cell surface glycoproteins, a Thr-O-glycosylation motif of Xaa-Pro-Xaa-Xaa, where at least one Xaa = Thr(Sac), has been defined. This motif predicts the site(s) of Pro- associated Thr-O-glycosylation in O-glycosylated proteins, although it is clear that there are also other forms of Thr-O-glycosylation not associated with Pro.  相似文献   

10.
In a continuation of our research efforts on the design and synthesis of novel peptidomimetic structures, we have synthesized a series of sandostatin amide analogs in which stereoisomers of threonine and beta-hydroxyvaline(beta-Hyv) are employed. The analogs D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Xaa6-Cys 7]-Xbb8-NH2 (Xaa = allo-Thr, D-allo-Thr, D-beta-Hyv, beta-Hyv, D-Thr, and Xbb = Thr or Xaa = Thr and Xbb = allo-Thr, D-allo-Thr, beta-Hyv, D-Thr) explore the effects on biological activity of stereochemical modifications and beta-methylation at positions 6 or 8. By these modifications, we examine the role of the two residues in binding to somatostatin receptors. We describe the synthesis and biological activity of these analogs. In combination with the results of the conformational analysis, this study provides new insights into the structural requirements for the binding affinity of somatostatin amide analogs to somatostatin receptors [Mattern et al., Conformational analyses of sandostatin analogs containing stereochemical changes in positions 6 or 8].  相似文献   

11.
Combinatorial libraries of the lid domain of Rhizopus oryzae lipase (ROL; Phe88Xaa, Ala91Xaa, Ile92Xaa) were displayed on the yeast cell surface using yeast cell-surface engineering. Among the 40,000 transformants in which ROL mutants were displayed on the yeast cell surface, ten clones showed clear halos on soybean oil-containing plates. Among these, some clones exhibited high activities toward fatty acid esters of fluorescein and contained non-polar amino acid residues in the mutated positions. Computer modeling of the mutants revealed that hydrophobic interactions between the substrates and amino acid residues in the open form of the lid might be critical for ROL activity. Based on these results, Thr93 and Asp94 were further combinatorially mutated. Among 6,000 transformants, the Thr93Thr, Asp94Ser and Thr93Ser, Asp94Ser transformants exhibited a significant shift in substrate specificity toward a short-chain substrate. Computer modeling of these mutants suggested that a unique oxyanion hole, which is composed of Thr85 Oγ and Ser94 Oγ, was formed and thus the substrate specificity was changed. Therefore, coupling combinatorial mutagenesis with the cell surface display of ROL could lead to the production of a unique ROL mutant.  相似文献   

12.
Several phosphonamide peptides having the general structure R-PO(OH)-Xaa-Yaa-Zaa were synthesized and tested for inhibition of Clostridium histolyticum collagenase. Inhibition was found to depend on the nature of R, Xaa, Yaa and Zaa such that the maximal affinity (Ki = 5 nM) was observed when R = p-nitrophenylethyl, Xaa = Gly, Yaa = Pro and Zaa = 2-aminohexanoic acid; this represents the tightest binding of inhibitor reported to date for any bacterial collagenase. Substitution of the p-nitrophenylethyl by a methyl group led to a 500-fold decrease of the potency, highlighting the existence of optimal interaction between the nitrophenylethyl side chain and one subsite of the enzyme. Replacement of the NH group in glycine residue (Xaa position) by -O- or -N-CH3 produces significantly less potent inhibitors, presumably due in part to the loss of a hydrogen bond between the inhibitor and collagenase active site. These phosphonamidates are thought to be acting as transition-state analogues of the peptide substrate.  相似文献   

13.
BRASSINOSTEROID-INSENSITIVE 1 (BRI1) encodes a putative Leucine-rich repeat receptor kinase in Arabidopsis that has been shown by genetic and molecular analysis to be a critical component of brassinosteroid signal transduction. In this study we examined some of the biochemical properties of the BRI1 kinase domain (BRI1-KD) in vitro, which might be important predictors of in vivo function. Recombinant BRI1-KD autophosphorylated on serine (Ser) and threonine (Thr) residues with p-Ser predominating. Matrix-assisted laser desorption/ionization mass spectrometry identified a minimum of 12 sites of autophosphorylation in the cytoplasmic domain of BRI1, including five in the juxtamembrane region (N-terminal to the catalytic KD), five in the KD (one each in sub-domains I and VIa and three in sub-domain VIII), and two in the carboxy terminal region. Five of the sites were uniquely identified (Ser-838, Thr-842, Thr-846, Ser-858, and Thr-872), whereas seven were localized on short peptides but remain ambiguous due to multiple Ser and/or Thr residues within these peptides. The inability of an active BRI1-KD to transphosphorylate an inactive mutant KD suggests that the mechanism of autophosphorylation is intramolecular. It is interesting that recombinant BRI1-KD was also found to phosphorylate certain synthetic peptides in vitro. To identify possible structural elements required for substrate recognition by BRI1-KD, a series of synthetic peptides were evaluated, indicating that optimum phosphorylation of the peptide required R or K residues at P - 3, P - 4, and P + 5 (relative to the phosphorylated Ser at P = 0).  相似文献   

14.
The ST Pinch is a 12-membered hydrogen-bonded motif (Ser/Thr-Xaa-Ser/Thr) involving the side chain oxygen atoms of two Ser/Thr residues. We identified the ST Pinch in 104 proteins in a database containing high-resolution crystal structures. Conformational analysis of the ST Pinch in these proteins points to specific preferences for the Xaa residue and a high propensity of this residue to adopt positive φ angles. Our results suggest that this motif serves as a linker of secondary structural elements within proteins and is a new addition to the existing list of short hydrogen bond-stabilized motifs in proteins.  相似文献   

15.
Theoretical conformational analysis of C-terminal fragments of tachykinin peptides with a common amino acid sequence Asx-Xaa-Phe-Yaa-Gly-Leu-Met-NH2 suggested the conformational states to be independent of the nature of Xaa and Yaa residues. It is shown that among plausible spatial forms of the C-terminal fragments an alpha-helix with the hydrophobic coat consisted of identically oriented side chains is energetically the most stable structure. The preference of this conformation for tachykinins functioning is discussed.  相似文献   

16.
The refolding of thermally denatured model collagen-like peptides was studied for a set of 21 guest triplets embedded in a common host framework: acetyl-(Gly-Pro-Hyp)3-Gly-Xaa-Yaa-(Gly-Pro-Hyp)4-Gly-Gly-amide. The results show a strong dependence of the folding rate on the identity of the guest Gly-Xaa-Yaa triplet, with the half-times for refolding varying from 6 to 110 min (concentration = 1 mg/ml). All triplets of the form Gly-Xaa-Hyp promoted rapid folding, with the rate only marginally dependent on the residue in the Xaa position. In contrast, triplets of the form Gly-Pro-Yaa and Gly-Xaa-Yaa were slower and showed a wide range of half-times, varying with the identity of the residues in the triplet. At low concentrations, the folding can be described by third-order kinetics, suggesting nucleation is rate-limiting. Data on the relative nucleation ability of different Gly-Xaa-Yaa triplets support the favorable nature of imino acids, the importance of hydroxyproline, the varying effects of the same residue in the Xaa position versus the Yaa position, and the difficulties encountered when leucine or aspartic acid are in the Yaa position. Information on the relative propensities of different tripeptide sequences to promote nucleation of the triple-helix in peptides will aid in identification of nucleation sites in collagen sequences.  相似文献   

17.
Sweet is stable: glycosylation stabilizes collagen   总被引:2,自引:0,他引:2  
For most collagens, the melting temperature (T(m)) of the triple-helical structure of collagen correlates with the total content of proline (Pro) and 4-trans-hydroxyproline (Hyp) in the Xaa and Yaa positions of the -Gly-Xaa-Yaa- triplet repeat. The cuticle collagen of the deep-sea hydrothermal vent worm Riftia pachyptila, despite a very low content of Pro and Hyp, has a relatively high thermal stability. Rather than Hyp occupying the Yaa position, as is normally found in mammalian collagens, this position is occupied by threonine (Thr) which is O-glycosylated. We compare the triple-helix forming propensities in water of two model peptides, Ac-(Gly-Pro-Thr)(10)-NH(2) and Ac-(Gly-Pro-Thr(Galbeta))(10)-NH(2), and show that a collagen triple-helix structure is only achieved after glycosylation of Thr. Thus, we show for the first time that glycosylation is required for the formation of a stable tertiary structure and that this modification represents an alternative way of stabilizing the collagen triple-helix that is independent of the presence of Hyp.  相似文献   

18.
Cyclic-disulfide-containing analogues of somatostatin, Xaa1-Cys2-Xaa3-DTrp4-Lys6-Thr5-Xaa7- Xaa8 [Xaa1 = H or DPhe; Xaa3 = Phe or Tyr; Xaa7 = Cys, Me2Cys or Me2DCys; Xaa8 = OH, Thr8 (OH) or Thr8NH2], were examined in aqueous solution by 1H-NMR spectroscopy and circular dichroism. The influence of the helical nature of the disulfide bridge and the presence of exocyclic residues on biological activity were investigated with particular care.  相似文献   

19.
A series of 24 peptides Z-Gly-Xaa(R)-OH where Xaa = 15 different residues and R = H, NH2, tBu, Bzl, Trt, Mtr, and StBu were coupled with valine benzyl ester in dimethylformamide or dichloromethane at +5 degrees. The accompanying racemization was determined by analysis of the epimeric products by normal phase high-performance liquid chromatography (HPLC) for Xaa(R) = Met, Cys(StBu) and Lys(Z) and by reversed-phase HPLC after removal of benzyl-based protecting groups for Xaa(R) = Ser(tBu), Thr(tBu) and Arg(Mtr). The coupling methods examined included mixed anhydride (MxAn) at -5 degrees, and N,N'-dicyclohexylcarbodiimide (DCC), benzotriazol-1-yl-tris(dimethylamino)phosphonium hexafluorophosphate (BOP) and O-benzotriazol-1-yl-N,N,N',N'-tetramethyluroniumhexafluorophosp hate (HBTU) in the presence of 1-hydroxybenzotriazole (HOBt). Very few couplings gave stereochemically pure products. The order of sensitivity to racemization of residues depended on the method of coupling and the solvent. It varied most when comparing MxAn to HOBt-assisted reactions; it varied moderately when comparing HOBt-assisted reactions. There was less variation in comparing BOP and HBTU reactions that are initiated by the same mechanism. Leu, Nle, Phe, Asn, Lys(Z) and Asp(OBzl) are identified as the residues least sensitive to racemization. DCC-HOBt generally led to less epimerization than the other methods.  相似文献   

20.
The amino acid sequence of collagen is composed of GlyXaaYaa repeats. A prevailing paradigm maintains that stable collagen triple helices form when (2S)-proline (Pro) or Pro derivatives that prefer the C(γ)-endo ring pucker are in the Xaa position and Pro derivatives that prefer the C(γ)-exo ring pucker are in the Yaa position. Anomalously, an amino acid sequence in an invertebrate collagen has (2S,4R)-4-hydroxyproline (Hyp), a C(γ)-exo-puckered Pro derivative, in the Xaa position. In certain contexts, triple helices with Hyp in the Xaa position are now known to be hyperstable. Most intriguingly, the sequence (GlyHypHyp)(n) forms a more stable triple helix than does the sequence (GlyProHyp)(n). Competing theories exist for the physicochemical basis of the hyperstability of (GlyHypHyp)(n) triple helices. By synthesizing and analyzing triple helices with different C(γ)-exo-puckered proline derivatives in the Xaa and Yaa positions, we conclude that interstrand dipole-dipole interactions are the primary determinant of their additional stability. These findings provide a new framework for understanding collagen stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号