首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kouchi, H., Akao, S. and Yoneyama, T. 1986. Respiratory utilizationof 13C-labelled photosynthate in nodulated root systems of soybeanplants.—J. exp. Bot. 37: 985–993. An improved method for the measurement of respiratory utilizationof current photosynthate in the nodulated root system of water-culturedsoybean (Glycine max L.) plants was developed using a steady-state13CO2 labelling technique. Well-nodulated plants at the latevegetative stage were allowed to assimilate 13CO2 for 10 h incontinuous light at a constant CO2 concentration with a constant13C abundance. The respiratory evolution of 13CO2 from rootsand nodules was measured continuously throughout the periodof 13CO2 assimilation and during a subsequent 36 h chase periodby using a differential infrared 13CO2 analyser. The plantswere grown with nitrogen-free or (15 mmol dm–3)-containing culture solution for 3 d before13CO2 assimilation. In plants grown without , nodule respiration averaged 69% of the total respiration of the undergroundparts over the full experimental period and the CO2 respiredreached an apparent isotopic equilibrium at 80–85% labellingafter initiating 13CO2 assimilation. By contrast, the CO2 respiredfrom the roots did not reach an isotopic equilibrium and labellingwas only 56% at the end of exposure to 13CO2 These findingsdemonstrated that nodule respiration is strongly dependent onrecently assimilated carbon compared with root respiration. Plants supplied with in the culture solution showed a decreased rate of nodule respirationand a slightly increased rate of root respiration. The extentsand time courses of labelling of respired CO2 from both theroots and nodules were similar in the presence and absence of except that the maximum level of labelling of CO2 derived from nodule respiration in plantswith was significantly higher (about 91%) than for plants growing without . Key words: Soybean (Glycine max L.), nodule respiration, 13CO2, assimilation, carbon partitioning  相似文献   

2.
Well-nodulated soya bean (Glycine max L.) plants were allowedto assimilate 13CO2 for 10 h in the light, under steady-stateconditions in which CO2 concentration and 13C abundance wereboth strictly controlled at constant levels. The respiratoryevolution of 13CO2 from roots and nodules and 13C incorporationinto various metabolic fractions were measured during the 13CO2feeding and subsequent 48 h chase period. CO2 respired from nodules was much more rapidly labelled with13C than that from roots. The level of labelling (percentageof carbon currently assimilated during the 13COM2 feeding period)of CO2 respired from nodules reached a maximum of about 87 percent after 4 h of steady-state l3CO2 assimilation and thereafterremained fairly constant. The absolute amount of labelled carbonevolved by the respiration of the nodules during the 10 h 13CO2feeding period was 1·5-fold that of root respiration.These results demonstrated that the currently assimilated (labelled)carbon was preferentially used to support nodule respiration,while root respiration relied considerably on earlier (non-labelled)carbon reserved in the roots. Sucrose pools were mostly composed of currently assimilatedcarbon in all tissues of the plants, since the levels of labellingaccounted for 86–91 per cent at the end of the 13CO2 feeding.In the nodules, the kinetics and levels of sucrose labellingwere in fairly good agreement with those of respired CO2, whilein the roots, the level of labelling of respired CO2 was significantlylower than that of sucrose. Succinate and malate were highly labelled in both roots andnodules but they were labelled much more slowly than sucroseand respired CO2. The kinetics and levels of labelling of theseKrebs cycle intermediates resembled those of major amino acidswhich are derived directly from Krebs cycle intermediates. Itis suggested that large fractions of organic acids in noduleswere physically separate from the respiration site. Glycine max L., Soya bean, 13CO2 assimilation, respiratory evolution of 13CO2, carbon metabolism in root nodules  相似文献   

3.
Recently, we demonstrated that the peroxisome proliferator-activated receptor- (PPAR-) ligands, either 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) or ciglitazone, increased endothelial nitric oxide (·NO) release without altering endothelial nitric oxide synthase (eNOS) expression (4). However, the precise molecular mechanisms of PPAR--stimulated endothelial·NO release remain to be defined. Superoxide anion radical (O2·) combines with ·NO to decrease·NO bioavailability. NADPH oxidase, which produces O2·, and Cu/Zn-superoxide dismutase (Cu/Zn-SOD), which degrades O2·, thereby contribute to regulation of endothelial cell·NO metabolism. Therefore, we examined the ability of PPAR- ligands to modulate endothelial O2· metabolism through alterations in the expression and activity of NADPH oxidase or Cu/Zn-SOD. Treatment with 10 µM 15d-PGJ2 or ciglitazone for 24 h decreased human umbilical vein endothelial cell (HUVEC) membrane NADPH-dependent O2· production detected with electron spin resonance spectroscopy. Treatment with 15d-PGJ2 or ciglitazone also reduced relative mRNA levels of the NADPH oxidase subunits, nox-1, gp91phox (nox-2), and nox-4, as measured using real-time PCR analysis. Concordantly, Western blot analysis demonstrated that 15d-PGJ2 or ciglitazone decreased nox-2 and nox-4 protein expression. PPAR- ligands also stimulated both activity and expression of Cu/Zn-SOD in HUVEC. These data suggest that in addition to any direct effects on endothelial·NO production, PPAR- ligands enhance endothelial·NO bioavailability, in part by altering endothelial O2· metabolism through suppression of NADPH oxidase and induction of Cu/Zn-SOD. These findings further elucidate the molecular mechanisms by which PPAR- ligands directly alter vascular endothelial function. reduced nicotinamide adenine dinucleotide phosphate oxidase; copper/zinc superoxide dismutase; nitric oxide; endothelial cells  相似文献   

4.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):883-896
Nodulated soya bean (Glycine max L.) plants at the early floweringstage were allowed to assimilate 13CO2 under steady-state conditions,with a constant 13C abundance, for 8 h in the light. The plantswere either harvested immediately or 2 d after the end of the13CO2 feeding, divided into young leaves (including flower buds),mature leaves, stems+petioles, roots and nodules; the 13C abundancein soluble carbohydrates, organic acids, amino acids, starchand poly-ß-hydroxybutyric acid was determined witha gas chromatography-mass spectrometry. The rapid turnover of 13C in the sucrose pools observed in allorgans of the plants showed that sucrose was the principal materialin the translocation stream of primary products of photosynthesis.At the end of the 13CO2 exposure, sucrose in the mature leavesas the major source organs and in the stems+petioles was labelledwith currently assimilated carbon to about 75 per cent, whereasa much higher labelling of sucrose was found in the roots andin the nodules. This suggests the existence of two or more compartmentedpools of sucrose in mature leaves and also in stems+petioles. The relative labelling patterns of individual organic acidsand amino acids were similar in various plant organs. However,the rapid turnover of succinate and glycine was characteristicof nodules. Treatment with a high concentration of nitrate inthe nutrient media increased the turnover rate of amino acidcarbon in shoot organs and roots, while it markedly decreasedthe labelling of amino acids in nodules. The cyclitols, exceptfor D-pinitol, were significantly labelled with assimilated13C in mature leaves, but in nodules, the labelling was verymuch less. In the nodules, which were actively fixing atmospheric nitrogen,a large proportion (80–90 per cent) of currently assimilatedcarbon was found as sucrose and starch at the end of the 13CO2feeding. This was also true of the roots. On the other hand,in young growing leaves, the distribution of currently assimilatedcarbon into sucrose, starch and other soluble compounds wasmuch less. This suggests that a large amount of carbon assimilatedby and translocated to young leaves was used to make up structuralmaterials, mainly protein and cell wall polymers synthesis,during the light period. Glycine max L., soya bean, 13CO2 assimilation, carbon metabolism in nodules  相似文献   

5.
Toxin- (T)from the Brazilian scorpion Tityusserrulatus venom caused a concentration- andtime-dependent increase in the release of norepinephrine andepinephrine from bovine adrenal medullary chromaffin cells. T was~200-fold more potent than veratridine judged fromEC50 values, although the maximalsecretory efficacy of veratridine was 10-fold greater than that of T(1.2 vs. 12 µg/ml of catecholamine release). The combination of both toxins produced a synergistic effect that was particularly drastic at 5 mM extracellular Ca2+concentration([Ca2+]o),when 30 µM veratridine plus 0.45 µM T were used. T (0.45 µM) doubled the basal uptake of45Ca2+,whereas veratridine (100 µM) tripled it. Again, a drastic synergism in enhancing Ca2+ entry was seenwhen T and veratridine were combined; this was particularlypronounced at 5 mM[Ca2+]o.Veratridine induced oscillations of cytosolicCa2+ concentration([Ca2+]i)in single fura 2-loaded cells without elevation of basal levels. Incontrast, T elevated basal[Ca2+]ilevels, causing only small oscillations. When added together, T andveratridine elevated the basal levels of[Ca2+]iwithout causing large oscillations. T shifted the current-voltage (I-V) curve forNa+ channel current to the left.The combination of T with veratridine increased the shift of theI-V curve to the left, resulting in agreater recruitment of Na+channels at more hyperpolarizing potentials. This led to enhanced andmore rapid accumulation of Na+ inthe cell, causing cell depolarization, the opening of voltage-dependent Ca2+ channels, andCa2+ entry and secretion.

  相似文献   

6.
This study investigated the acute effects of a peroxisome proliferator-activated receptor (PPAR)- ligand, ciglitizone, on cell proliferation and intracellular Ca2+ signaling in human normal myometrium and uterine leiomyoma. Changes in intracellular Ca2+ concentration ([Ca2+]i) were measured with fura-2 AM, and cellular viabilities were determined by viable cell count and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction assay. Ciglitizone (100 µM) induced greater inhibition of cell proliferation in uterine leiomyoma than in myometrium. Ciglitizone also dose-dependently increased [Ca2+]i in both myometrium and uterine leiomyoma; these [Ca2+]i increases were inhibited by PPAR- antagonists and raloxifene. Ciglitizone-induced [Ca2+]i increase showed only an initial peak in normal myometrial cells, whereas in uterine leiomyoma there was a second sustained [Ca2+]i increase as well. The initial [Ca2+]i increase in both myometrium and uterine leiomyoma resulted from the release of Ca2+ by the sarcoplasmic reticulum via activation of ryanodine receptors. The second [Ca2+]i increase was observed only in uterine leiomyoma because of a Ca2+ influx via an activation of store-operated Ca2+ channels (SOCCs). Cell proliferation was inhibited and secondary [Ca2+]i increase in uterine leiomyoma was attenuated by cotreatment of ciglitizone with a SOCC blocker, lanthanum. The results suggest that ciglitizone inhibits cell proliferation and increases [Ca2+]i through the activation of SOCCs, especially in human uterine leiomyoma. peroxisome proliferator-activated receptor-; intracellular calcium; uterine cells  相似文献   

7.
The N-linked oligosaccharides of frog (Rana pipiens) rhodopsinwere analysed by sequential exoglycosidase digestion and gelfiltration chromatography, following reductive tritiation. Inaddition, selected tryptic glycopeptides obtained from frogretinal rod outer segment membranes were examined by electrospraymass spectrometry (ES-MS), fast atom bombardment mass spectrometry(FAB-MS), amino acid sequence and composition analysis, andcarbohydrate composition analysis. The amino acid sequence datademonstrated that the glycopeptides were derived from rhodopsinand confirmed the presence of twoN-glycosylation sites, at residuesAsn2 and Asn15. The predominant glycan (60% of total) had thestructure GlcNAcß1–2Man1–3(Man1–6)Manß1–4GlcNAcß1–4GlcNAc-(Asn),with the remaining structures containing 1–3 additionalhexose residues, as reported previously for bovine rhodopsin.Unlike bovine rhodopsin, however, a sizable fraction of thetotal giycans of frog rhodopsin also contained sialic acid (NeuAc),with the sialylated oligosaccharides being present exclusivelyat the Asn2 site. FAB-MS analysis of oligosaccharides releasedfrom the Asn2 site gave, among other signals, an abundant quasimolecularion corresponding to a glycan of composition NeuAc1Hex6HexNAc3(where Hex is hexose and HexNAc is N-acetylhexosamine), consistentwith a hybrid structure. The potential biological implicationsof these results are discussed in the context of rod outer segmentmembrane renewal. glycoforms oligosaccharide structure rhodopsin  相似文献   

8.
The Ca2+-sensing receptor (CaR) couples to multiple G proteins involved in distinct signaling pathways: Gi to inhibit the activity of adenylyl cyclase and activate ERK, Gq to stimulate phospholipase C and phospholipase A2, and G to stimulate phosphatidylinositol 3-kinase. To determine whether the receptor also couples to G12/13, we investigated the signaling pathway by which the CaR regulates phospholipase D (PLD), a known G12/13 target. We established Madin-Darby canine kidney (MDCK) cell lines that stably overexpress the wild-type CaR (CaRWT) or the nonfunctional mutant CaRR796W as a negative control, prelabeled these cells with [3H]palmitic acid, and measured CaR-stimulated PLD activity as the formation of [3H]phosphatidylethanol (PEt). The formation of [3H]PEt increased in a time-dependent manner in the cells that overexpress the CaRWT but not the CaRR796W. Treatment of the cells with C3 exoenzyme inhibited PLD activity, which indicates that the CaR activates the Rho family of small G proteins, targets of G12/13. To determine which G protein(s) the CaR couples to in order to activate Rho and PLD, we pretreated the cells with pertussis toxin to inactivate Gi or coexpressed regulators of G protein-signaling (RGS) proteins to attenuate G protein signaling (RGS4 for Gi and Gq, and a p115RhoGEF construct containing the RGS domain for G12/13). Overexpression of p115RhoGEF-RGS in the MDCK cells that overexpress CaRWT inhibited extracellular Ca2+-stimulated PLD activity, but pretreatment of cells with pertussis toxin and overexpression of RGS4 were without effect. The involvement of other signaling components such as protein kinase C, ADP-ribosylation factor, and phosphatidylinositol biphosphate was excluded. These findings demonstrate that the CaR couples to G12/13 to regulate PLD via a Rho-dependent mechanism and does so independently of Gi and Gq. This suggests that the CaR may regulate cytoskeleton via G12/13, Rho, and PLD. calcium-sensing receptor; G proteins; RGS proteins  相似文献   

9.
Sulphated blood group Lewisa/Lewisx (Lea/Lex) type sequences,with sulphate at the 3-position of galactose, have emerged aspotent ligands for the endothelial adhesion molecule E-selectinand the leukocyte adhesion molecule L-selectin. As a first stepin elucidating the molecular basis of the strong interactionswith the selectins, we have performed conformational studiesof the sulphated Lea in comparison with the non-sulphated analoguewhich is less strongly bound by E-selectin and not at all byL-selectin. Experimental NMR parameters [nuclear Overhausereffects (NOE) and interglycosidic 3JC, H] and theoretical valuesback-calculated from the minimum energy structures are in excellentagreement for both molecules. Molecular dynamics calculationsfor SuLea depict only minor torsional fluctuations around theglycosidic linkages over the time course of the 500 ps simulations,leading to the conclusion that the conformation of SuLea approximatesto a singlerigid structure, as does the previously investigatedLea molecule. Comparison of experimentally and theoreticallyobtained parameters for SuLea with those for the nonsulphatedLea molecule indicate that no detectable changes occur in thethree-dimensional structure of the trisaccharide upon sulphation.Thus, the enhanced selectin binding to the sulphated Lea ismost likely due to favourable electrostatic interactions betweenthe charged sulphate group and corresponding charged groupson the selectin protein. bioactive oligosaccharides carbohydrate conformation molecular dynamics simulations selectin ligands sulphated Lewisa  相似文献   

10.
In the present study, we examined the mechanisms through which erythropoietin (Epo) activates the calcium-permeable transient receptor potential protein channel (TRPC)2. Erythroblasts were isolated from the spleens of phenylhydrazine-treated mice, and Epo stimulation resulted in a significant and dose-dependent increase in intracellular calcium concentration ([Ca2+]i). This increase in [Ca2+]i was inhibited by pretreatment with the phospholipase C (PLC) inhibitor U-73122 but not by the inactive analog U-73343, demonstrating the requirement for PLC activity in Epo-modulated Ca2+ influx in primary erythroid cells. To determine whether PLC is involved in the activation of TRPC2 by Epo, cell models were used to examine this interaction. Single CHO-S cells that expressed transfected Epo receptor (Epo-R) and TRPC2 were identified, and [Ca2+]i was quantitated. Epo-induced Ca2+ influx through TRPC2 was inhibited by pretreatment with U-73122 or by downregulation of PLC1 by RNA interference. PLC activation results in the production of inositol 1,4,5-trisphosphate (IP3), and TRPC2 has IP3 receptor (IP3R) binding sites. To determine whether IP3R is involved in Epo-R signaling, TRPC2 mutants were prepared with partial or complete deletions of the COOH-terminal IP3R binding domains. In cells expressing TRPC2 IP3R binding mutants and Epo-R, no significant increase in [Ca2+]i was observed after Epo stimulation. TRPC2 coassociated with Epo-R, PLC, and IP3R, and the association between TRPC2 and IP3R was disrupted in these mutants. Our data demonstrate that Epo-R modulates TRPC2 activation through PLC; that interaction of IP3R with TRPC2 is required; and that Epo-R, TRPC2, PLC, and IP3R interact to form a signaling complex. transient receptor potential protein channels; erythropoietin receptor; calcium channels  相似文献   

11.
Cell-attached recordings revealedK+ channel activity in basolateral membranes ofguinea pig distal colonic crypts. Inwardly rectified currents wereapparent with a pipette solution containing 140 mM K+.Single-channel conductance () was 9 pS at the resting membrane potential. Another inward rectifier with  of 19 pS was observed occasionally. At a holding potential of 80 mV,  was 21 and 41 pS,respectively. Identity as K+ channels was confirmed afterpatch excision by changing the bath ion composition. From reversalpotentials, relative permeability of Na+ overK+ (PNa/PK)was 0.02 ± 0.02, withPRb/PK = 1.1 andPCl/PK < 0.03. Spontaneous open probability (Po) of the 9-pSinward rectifier (gpKir) was voltageindependent in cell-attached patches. Both a low(Po = 0.09 ± 0.01) and a moderate(Po = 0.41 ± 0.01) activity mode wereobserved. Excision moved gpKir to the mediumactivity mode; Po ofgpKir was independent of bath Ca2+activity and bath acidification. Addition of Cl andK+ secretagogues altered Po ofgpKir. Forskolin or carbachol (10 µM)activated the small-conductance gpKir inquiescent patches and increased Po inlow-activity patches. K+ secretagogues, either epinephrine(5 µM) or prostaglandin E2 (100 nM), decreasedPo of gpKir in activepatches. This gpKir may be involved inelectrogenic secretion of Cl and K+ acrossthe colonic epithelium, which requires a large basolateral membraneK+ conductance during maximal Cl secretionand, presumably, a lower K+ conductance during primaryelectrogenic K+ secretion.

  相似文献   

12.
Complex carbohydrates linked to glycoproteins are recently being implicated to play a variety of biological roles. The lack of well-resolved crystallographic coordinates of the carbohydrates makes it difficult to assess the contributions of the glycan chain on protein structure and dynamics. We have modeled two different oligosaccharides NeuNAc2Gal3Man3GlcNAc5Fuc and Man3GlcNAc4 to generate two glycosylation variants of major histocompatibility complex (MHC) class I glycoprotein. Molecular dynamics simulations of the isolated fourteen- and seven-residue oligosaccharides have been done in vacuo and in solution. The dynamics of the two glycoforms of MHC class I protein have been simulated in solution in the free as well as in the peptide-bound form. Good agreement between the calculated solution conformations of the oligosaccharides in isolated and conjugated forms and the average conformations obtained from x-ray or NMR data was observed for most of the glycosidic linkages. These molecular dynamics simulations of the isolated glycan chains and the glycoconjugates reveal the details of the conformational flexibility of the glycan chains; they also provide atomic level details of protein-carbohydrate interactions and the effect of the ligand binding on the carbohydrate structure and dynamics. It was found that though there is some flexibility in some of the glycosidic linkages in the isolated oligosaccharides, in the protein-conjugated form the linkages adopt more restricted conformations. The glycan chains protrude out into the solvent and might hinder the lateral association of the proteins. The presence of the bulky glycan chains does not affect the average backbone fold of the protein but induces local changes in protein structure and dynamics. It has been noted that the extent of the changes depends upon the nature of the attached glycan chain. The glycan chains do not appear to influence the peptide binding property of the protein directly, but may stabilize the protein residues that are involved in ligand binding.  相似文献   

13.
Cell Wall Metabolism in Developing Strawberry Fruits   总被引:11,自引:5,他引:6  
Cell wall metabolism was studied in strawberry receptacles (Fragariaananassa, Duchesne) of known age in relation to petal fall (PF).Polysaccharide and protein composition, incorporation of [14C]glucoseand [14C]proline by excised tissue, and the fate of 14CO2 fixedby young, attached fruits were followed in relation to celldivision, cell expansion, fine structure, and ethylene synthesis. Cell division continued for about 7 d after PF although vacuolationof cells was already beginning at PF and the subsequent cellexpansion was logarithmic. There was an associated logarithmicincrease in sugar content per cell and a decreasing rate ofethylene production per unit fresh weight. During cell expansion radioactivity from [14C]glucose was incorporatedinto fractions identified as starch and soluble polyuronideand into glucose and galactose residues in the cell wall. Radioactivityfrom [14C]proline was also incorporated into the cell wall,but only 10 per cent of this activity was found in hydroxyproline.Correspondingly wall protein contained a low proportion of hydroxyprolineresidues. The proportion of radioactivity from 14CO2 fixed byfruitlets remained constant in most sugar residues in the cellwall. The proportion of radioactivity in galactose fell, indicatingturnover of these residues. Between 21 and 28 d after PF receptacles became red and softenedbut there was no change in the rate of ethylene production.Cell expansion continued for at least 28 d. Tubular proliferationof the tonoplast and hydration of middle lamella and wall matrixmaterial had begun 7–14 d after PF but became extremeduring ripening. Associated with the hydration of the wall,over 70 per cent of the polyuronide in the wall became freelysoluble, and arabinose and galactose residues lost from thewall appeared in soluble fractions. There was no increase intotal polysaccharide during ripening and incorporation of [14C]glucoseinto polysaccharides ceased, although protein increased andincorporation of [14C]proline into wall protein continued.  相似文献   

14.
Inside-out submitochondrial particles (IO-SMP) were isolatedand purified from potato (Solanum tuberosum L. cv.) tubers.When these IO-SMP were incubated with [ 32P]ATP more then 20proteins became labelled as a result of phosphorylation. The32P incorporation was stimulated by the oxidising reagent ferricyanide.Except for a 17 kDa protein which was phosphorylated only inthe absence of divalent cations, the protein phosphorylationrequired Mg2+. The time for half-maximum 32P incorporation was4 mm for the 22 kDa phospho-F1 -subunit and 2 min for the 28kDa phospho-F0 b-subunit of the proton-ATPase. The Km for ATPfor the detected phosphoproteins was between 65 µM and110 µM. The pH optimum for protein phosphorylation ininner membranes was between pH 6 and 8, and for the F1 -subunitand the F0 b-subunit the pH optima were 6.5–8 and pH 8,respectively. A 37 kDa phosphoprotein was phosphorylated ona histidine residue while the remainder of the inner membraneproteins were phosphorylated on serine or threonine residues.Two autophosphorylated putative kinases were identified: oneat 16.5 kDa required divalent cations for autophosphorylation,while another at 30 kDa did not. A 110 kDa protein was labelledonly with [-32P] suggesting adenylylation. 3 Present address; Novartis Seeds AB, Box 302, S-261 23 Landskrona,Sweden.  相似文献   

15.
NO2 fumigation at 8 ppm of spinach plants resulted in nitriteaccumulation in the leaves in the dark but not in the light.When spinach plants were fumigated with 15N-labeled NO2 in thelight, amide nitrogen of glutamine, glutamic acid, -amino butyricacid and aspartic acid, in this order, were highly labeled with15N and nitrate was also labeled. These results suggest thatNO2-nitrogen (at least some of it) is converted into nitriteand nitrate, and then actively assimilated into amino acidsthrough the glutamine synthetase/glutamate synthase pathwayin spinach leaves. 1This work was conducted as a part of the special research project"Studies on evaluation and amelioration of air pollution byplants" (1976–1978) at the National Institute for EnvironmentalStudies. (Received July 24, 1978; )  相似文献   

16.
Rat natriuretic peptideclearance receptor (NPR-C) contains four sequences capable ofinhibiting adenylyl cyclase. We have undertaken mutational and deletionstudies on the intracellular domain of rat NPR-C to determine which ofthese sequences is functionally relevant. Nine mutant receptors wereconstructed by deletion of 11 or 28 COOH-terminal residues or bysite-directed mutagenesis of basic residues in a 17-amino acidsequence, R469RNHQEESNIGKHRELR485,corresponding to the main active peptide. Substitution of arginine residues (R469R470) flanking theNH2 terminus abolished Gi1 and Gi2and PLC- activities and inhibition of adenylyl cyclase. Substitutionof one or two basic residues (H481 and/or R482or R485) in the COOH-terminal motif(H481RELR485) greatly decreased or abolished Gprotein and PLC- activities and inhibition of adenylyl cyclase. Thisimplies that sequences NH2-terminal to the motif orCOOH-terminal to R470 could not sustain receptor activityin situ, although they exhibited activity when used as syntheticpeptides. Deletion of the 11 COOH-terminal residues (E486to A496) suggested an autoinhibitory function for thissequence. We conclude that the 17-amino acid sequence (R469to R485) in the middle region of the intracellular domainof NPR-C is both necessary and sufficient for activation of G proteinsand effector enzymes.

  相似文献   

17.
Corrigendum     
Light response curves for (•) gross 16O2 evolution, and() CO2 uptake in 210 mmol mol–1 O2 with 900–1000µbar CO2 or () in air by leaves of Hirschfeldia incana.The difference between (•) and () or () was quantitativelyequivalent to the measured 18O2 uptake. The areas under thecurves are labelled to identify regions of assimilatory andnon-assimilatory electron flow redrawn from data of Canvin etal. (1980). It should be noted that the data and the labelling of the figureaxes are correct as printed.  相似文献   

18.
The relationship between the CO2 accumulating mechanism andcarbon isotope discrimination has been investigated in the unicellulargreen alga Chlorella emersonii. Growth of Chlorella at highC02 levels (5%) which repress the activity of the CO2 accumulatingmechanism results in more negative 13C values. The data presentedin this paper suggest that it is possible to induce the accumulatingmechanism by nitrogen limitation as well as by carbon limitation.Activity of the accumulating mechanism, irrespective of whetherit is induced by C or by N limitation, is accompanied by 13Cvalues considerably less negative than those of cells whichdo not possess such a mechanism. It is suggested that the CO2accumulating mechanism results in essentially a closed systemin which the inherent isotope discrimination by RuBP carboxylaseis not expressed.  相似文献   

19.
The production of recombinant glycoprotein therapeutics requirescharacterization of glycosylation with respect to the lot-to-lotconsistency. Here we introduce the ‘hypothetical N-glycancharge Z’ as a parameter that allows to characterize theprotein glycosylation in a simple, however, efficient manner. The hypothetical N-glycan charge of a given glycoprotein isdeduced from the N-glycan mapping profile obtained via HPAE-PAD.In HPAEC, N-glycans are clearly separated according to theircharge, i.e., their number of sialic acid residues, providingdistinct regions for neutral struc tures as well as for themono- di-, tri, and tetrasialylated N-glycans (Hermentin etal., 1992a). Z is defined as the sum of the products of the respective areas(A) in the asialo, monosialo, disialo, trisialo, tetrasialo,and pentasialo region, each multiplied by the correspondingcharge: Thus, a glycoprotein with mostly C4-4* structures will provideZ400 (e.g., rhu EPO (CHO), Z=361), a glycoprotein carrying largelyC3-3* structures will amount to Z300 (e.g., bovine fetuin, Z=290),a glycoprotein with mostly C2-2* structures will have Z200 (e.g.,human serum transferrin, Z=207, or human plasma AT III, Z=180),and a glycoprotein carrying only high-mannose type or trunkatedstructures will provide Z0 (e.g., bovine pancreas ribonucleaseB, Z=15, and hen ovomucoid, Z=15, respectively). The determination of Z was validated in multiple repetitiveexperiments and proved to be highly accurate and reliable. Zmay therefore be regarded as a new and characteristic parameterfor protein N-glycosylation. high-performance anion-exchange chromatography (HPAEC) pulsed amperometric detection (PAD) HPAE-PAD human plasma recombinant expression CHO BHK interleukin 4-receptor erythropoietin fetuin transferrin thyroglobulin antithrombin ribonuclease ovomucoid orosomucoid 1-acid glycoprotein fibrinogen 1 T-glycoprotein 1-antitrypsin 1-antichymotrypsin ß2-glycoprotein I thyroxin-binding globulin 1B-glycoprotein 8S3-glycoprotein haptoglobin hydrazinolysis PNGase F consistency clearance in vivo half-life  相似文献   

20.
Shelp, B. J. 1987. The composition of phloem exudate and xylemsap from broccoli (Brassica oleracea var. italica) suppliedwith NH+4, NO3 or NH4NO3.—J. exp. Bot. 38: 1619–1636. The detailed composition of xylem sap and exudate from stemincisions of attached inflorescences of broccoli (Brassica oleraceavar. italica) was compared in plants supplied with NH+4, NO3or NH4NO3. A phloem origin for the exudate was suggested fromthe high levels of sugars (71–133 mg cm-3), amino acids(8·1-26·7 mg cm3) and K. (2·3–3·8mg cm3), the low levels of NO3 and Ca, the high C: N (w/w) ratios(8·3–33), and the alkaline pH (7·2–7·3).In contrast, the xylem sap was mildly acidic (pH 5·6–6·0),and possessed lower levels of all organic and inorganic solutesbut NO3 and Ca, and lower ratios of K: Ca, Mg: Ca and C: N (0·6–4·4). Glutamine was the predominant o-phthalaldehyde-reactive aminocompound in both transport fluids with the next most abundantamino acids dependent on sap type and N-form. Together witharginine, -aminobutyric acid, which was found only in the xylemstream, was enhanced by NH+4compared to NO3 -nutrition suggestingthat glutamate metabolism was stimulated in the roots. Underlimiting N the amino acid concentrations in the transport fluidswere greater with NH+4 than with NO3. NO3 reduction occurredin both the root and shoot with the latter site predominatingover the entire N range (0-300 mol m3). Even though the compositionof nitrogenous solutes in the xylem was dependent on cultivarand N source, the composition of the phloem streams supplyingthe developing inflorescence was relatively unaffected. The data on the element composition of organs and phloem sapare interpreted to suggest that, in spite of the restrictedmobility of some elements such as B and Mn, a significant proportionof their total supply to developing sinks is carried in thephloem stream. Key words: Transport fluid composition, plant nutrition, phloem mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号