首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In sublethally irradiated mice, thymus repopulation is due first to the proliferation of surviving thymocytes followed by the multiplication of bone marrow derived prothymocytes. The migration of bone marrow cells to the thymus after a single sublethal whole-body X irradiation was studied by using fluorescein isothiocyanate as a cell marker. Irradiation increases the permissiveness of the thymus to the immigration of bone marrow cells. Furthermore, the post-Rx regenerating bone marrow cells exhibit migration capacities greater than the normal ones. The radiation induced changes in the bone marrow thymus interaction might play an important role in thymus regeneration after sublethal irradiation.  相似文献   

2.
In C57BL mice, bone marrow lymphoid regeneration after a sublethal irradiation is modified by a graft of normal marrow cells. This effect is suppressed in thymectomized mice since a lymphoid peak is observed after a 350 R irradiation; its composition is heterogeneous: small lymphocytes, lymphoblasts and peculier cells named "X cells". The same phenomenon is observed in mice where all the thymocytes and thymus derived and peripheral lymphocytes are destroyed. These results exclude that bone marrow lymphoid regeneration after irradiation is due to a migration of lymphoid cells of thymic origin to the marrow. They could be explained by the effect of a humoral thymic factor on marrow lymphopoiesis.  相似文献   

3.
Many studies have already examined the hematopoietic recovery after irradiation but paid with very little attention to the bone marrow microenvironment. Nonetheless previous studies in a murine model of reversible radio-induced bone marrow aplasia have shown a significant increase in alkaline phosphatase activity (ALP) prior to hematopoietic regeneration. This increase in ALP activity was not due to cell proliferation but could be attributed to modifications of the properties of mesenchymal stem cells (MSC). We thus undertook a study to assess the kinetics of the evolution of MSC correlated to their hematopoietic supportive capacities in mice treated with sub lethal total body irradiation. In our study, colony-forming units-fibroblasts (CFU-Fs) assay showed a significant MSC rate increase in irradiated bone marrows. CFU-Fs colonies still possessed differentiation capacities of MSC but colonies from mice sacrificed 3 days after irradiation displayed high rates of ALP activity and a transient increase in osteoblastic markers expression while pparγ and neuropilin-1 decreased. Hematopoietic supportive capacities of CFU-Fs were also modified: as compared to controls, irradiated CFU-Fs significantly increased the proliferation rate of hematopoietic precursors and accelerated the differentiation toward the granulocytic lineage. Our data provide the first evidence of the key role exerted by the balance between osteoblasts and adipocytes in spontaneous bone marrow regeneration. First, (pre)osteoblast differentiation from MSC stimulated hematopoietic precursor's proliferation and granulopoietic regeneration. Then, in a second time (pre)osteoblasts progressively disappeared in favour of adipocytic cells which down regulated the proliferation and granulocytic differentiation and then contributed to a return to pre-irradiation conditions.  相似文献   

4.
The effect of dipyridamole on megakaryocytopoiesis in regenerating and stationary populations of mouse bone marrow cells has been studied by heterotopic transplantation of the bone marrow using histological, electron microscopic and biochemical techniques. It is shown that drug administration induced destruction of megakaryocytes. In megakaryocytic cytoplasm giant lipid granules were found whose growth and number increase resulted in megakaryocytes kill. Gas-liquid chromatography was used to evaluate the effect of dipyridamole on distribution of lipid fatty acids of the stationary and regenerating populations of the bone marrow cells. A marked increase of the percentage of docosahexaenoic acid was found in lipids of the stationary population. Chronic dipyridamole administration caused an increase of percentage of myristic, palmitic oleic acids, and decrease of percentage of arachidonic and eicosapentaenoic acids in lipids of regenerating bone marrow cells population.  相似文献   

5.
A study was made of the effect of the hybrid resistance abrogation by means of the lymphoid cell administration on the survival of the lethally irradiated mice protected by the transplantation of the semiallogeneic bone marrow. Injection to the C57BLxCBA recipients of the C57BL lymphoid cells one day before the irradiation and the transplantation of the bone marrow of the same genotype (C57BL) increased the chimera survival in comparison with the untreated recipients; such pretreatment 7 days before the irradiation decreased the chimera survival. Parental spleen lymphocytes administration produced but an insignificant effect on the radioresistance both of the stem hemopoietic cells (by the endocolonisation test) and of the organism as a whole (by the 30-day survival test) of the F1 hybrid. On this basis a conclusion was drawn that the differences in the splenocyte efficacy, when they were injected at different periods before the irradiation, could not be attributed to the changes in radioresistance.  相似文献   

6.
O. Vos 《Cell proliferation》1972,5(4):341-350
Kinetics of the multiplication of haemopoietic CFUs was studied in lethally irradiated mice receiving various numbers of syngeneic bone marrow cells. After transplantation of a small number of bone marrow cells, the growth rate of CFU in femoral bone marrow appeared to decrease after about 10 days after transplantation, before the normal level of CFU in the femur was attained. In the spleen it was found that the overshoot which was observed about 10 days after transplantation of a large number of bone marrow cells is smaller or absent when a small number of cells is transplanted. Experiments dealing with transplantation of 50 x 106 bone marrow cells 0, 4 or 10 days after a lethal irradiation indicated that the decline in growth rate of CFUs about 10 days after irradiation could not be attributed to environmental changes in the host.
The results are explained by the hypothesis that a previous excessive proliferation of CFUs diminishes the growth rate thereafter. This hypothesis is supported by experiments in which 50 x 106 bone marrow cells derived from normal mice or from syngeneic chimaeras were transplanted. The slowest growth rate was observed when bone marrow that had been subjected to the most excessive proliferation in the weeks preceding the experiment was transplanted.  相似文献   

7.
CFU-S differentiation and regeneration kinetics in the spleen and femur was studied after treatment of bone marrow cells with RAMB serum. The effect of thymocytes on the rate of CFU-S regeneration was also investigated. It was found that CFU-S regeneration in the spleen was similar in RAMBS-treated and intact cell populations on days 4-14 after transplantation. On the contrary, the rate of CFU-S regeneration in the femur was slower in RAMBS-treated than in intact bone marrow cells. However, the growth rate in the femur could be restored to the normal level by the administration of freshly isolated syngeneic thymocytes to mice pre-injected with RAMBS-treated CFU-S population. The treatment of bone marrow suspension with RAMB serum did not affect the differentiation of spleen colonies. It is suggested that RAMBS eliminates cell population regulating CFU-S proliferation, without affecting its differentiation.  相似文献   

8.
The influence of continuous gamma irradiation on the lipids of nuclei and chromatin of rat liver at a dose-rate of 0,129 Gy/day for 155 days (a total dose of 20 Gy) and by feeding of ubiquinone-9 has been studied. The amount of phosphatidylcholine with phosphatidylserine and phosphatidyl-ethanolamine in liver nuclei of irradiated rats was found to increase. Ubiquinone-9 had a normalizing effect. A decrease of cardiolipin was observed in the liver chromatin of irradiated rats. The amount of free fatty acids had a tendency to decrease in homogenate, nuclei and liver chromatin of irradiated rats. Ubiquinone was found to increase the amount of free fatty acids up to the control level. The amount of cholesterol in nuclei was increased after irradiation and that in chromatin tended to rise. Ubiquinone-9 significantly decreased the amount of cholesterol in nuclei and chromatin of irradiated rats.  相似文献   

9.
10.
The participation of skeletal tissue cell precursors in the repairing regeneration of bone tissue was studied. Bone marrow was taken from donor animals--mice of C57Bl/6-TgN(ACTbGFP) 1 Osb line (The Jackson Laboratory Bar Harbor ME USA line). Nucleated cell fraction was isolated by centrifugation on a density percoll gradient. Recipient mice C57Bl/6 line were irradiated by 7.0-7.5 Gr dose. Intravenous infusion of donor cells and osteoclasts of tibia was done after irradiation of recipient mice. Histological preparations of bone regenerate tissues were studied on 15, 30, and 60 days by confocal microscopy. Donor cells were found as skeletal tissue precursors into periost, endost, bone marrow, and as differentiated cells of newborn tissue of regenerate--osteoblasts, osteocytes, chondrocytes. The data obtained indicate that part of donor bone marrow cells are able to progressive differentiation under recipient bone fractures.  相似文献   

11.
In experiments on BALB/c mice it was shown that in conditions of local irradiation (7.0 Gy) of one hind foot there was an appreciable accumulation of T-lymphocytes in the exposed bone marrow which stimulated the erythroid cell proliferation and, as the result, accelerated the post-irradiation regeneration of erythropoiesis.  相似文献   

12.
During first 3 days after mice irradiation and syngeneic bone marrow transplantation in them the number of CFUs (about 0,5% of the injected cells) was stable, although the proliferation induction began 24 hours after transplantation. As it was shown by the method of "thymidine self-distruction". Twenty four hours later all the CFUs entered the mitotic cycle. On the contrary, the commited cells (granulopoesis precursors) compartment (CFUc) enters the logarithmic growth phase since the first day. The exponential growth of the CFUs number was observed from the 4th day simultaneously with the increasing of the proliferation rate of CFUc and the beginning of the recovery of the bone marrow cells total number. In late radiation chimeras (1 month after radiation and reconstitution) the total number of CFUs was 50--70% of the initial. The other hemopoetic parameters were in the normal limits.  相似文献   

13.
Agar cultures of C57BL bone marrow cells were used to determine colony stimulating factor (CSF) and serum CSF-inhibitor levels in C57BL and BALB/c mice following irradiation. Whole-body irradiation caused an acute, dose-dependent, rise in serum CSF levels and fall in CSF-inhibitor levels. The regeneration of granulocytic and macrophage progenitor cells ( in vitro CFCs) in the femur after 250 rads whole-body irradiation was preceded or paralleled by a fall in serum CSF-inhibitors and a dramatic rise in the capacity of bone-adherent cells in the marrow ('stromal cells') to produce material with colony-stimulating activity. No comparable changes were observed in the activity of marrow haemopoietic cells during regeneration or in the lungs or spleen. A similar rise in the activity of bone-adherent cells was observed in shielded femurs during regeneration of in vitro CFCs.
Regeneration of granulocytic and macrophage progenitor cells following irradiation may be regulated by fluctuations in circulating CSF-inhibitor levels and local production of CSF within the marrow cavity.  相似文献   

14.
A role for T-cells in the regulation of CFU-S proliferation was investigated by determining the presence and activity of CFU-S proliferation stimulator (CFU-S stimulator) in adult mouse bone marrow after irradiation or cyclophosphamide (Cy) treatment. CBA mice previously deprived of T-cells by thymectomy, irradiation and bone marrow reconstitution (TIR) were thereafter treated with 4.5 Gy irradiation or 200 mg/kg Cy. Regenerating bone marrow cells of TIR and corresponding control mice after irradiation or Cy treatment produced CFU-S stimulator. The dose dependent increase in cytosine arabinoside cell death of normal bone marrow day 8 CFU-S was found when both CFU-S stimulators obtained after irradiation of TIR or corresponding control animals were tested. CFU-S stimulator activity in the bone marrow of TIR-Cy treated mice was also detected, but the effect was not dose-dependent. This was not related to the presence of an inhibitor of CFU-S proliferation. It appears that the CFU-S stimulator activity is not related to IL-6, IL-1 or IL-2, or to an inhibitor of IL-6 or IL-1 activity. The results demonstrate the existence of CFU-S proliferation stimulator unrelated to the two major monokines in the bone marrow of immunosuppressed mice.  相似文献   

15.
The paper is aimed at evaluating the quantity and quality of the haematopoietic stem cells, CFU-S, in the bone marrow and the functional effectiveness of the haematopoietic microenvironment of the spleen in two time intervals after repeated exposure of mice to doses of 0.5 Gy gamma-rays once a week (total doses of 12 and 24 Gy). After irradiation, bone marrow was cross-transplanted between fractionatedly irradiated and control mice. The parameter evaluated were numbers of spleen colonies classified into size categories. The data obtained provide evidence for a significant damage to the CFU-S, concerning both their number and proliferation ability, after both total doses used. The functional effectiveness of the haematopoietic microenvironment of the spleen was impaired only in bone marrow recipients receiving a transplant after having been exposed to a total dose of 24 Gy; this dose combined with subsequent pre-transplantation irradiation resulted in a marked suppression of cell production within the spleen colonies formed from a normal bone marrow on the spleens of fractionatedly irradiated mice.  相似文献   

16.
The data are presented on radioresistance of mice 1, 5 and 9 months after irradiation (LD95-99/30) in conditions of protection with cystamine. It was shown that the resistance of these animals to repeated irradiation with LD50/30 is considerably lower than that of the animals not exposed previously. The radioresistance and such indices of the haemopoietic system status as quantity of caryocytes and colony-forming capacity of the bone marrow are compared.  相似文献   

17.
The metabolism of dietary lipids in the anterior midgut of Panstrongylus megistus during blood digestion was studied. Fifth instar nymphs were fed a blood meal containing 7.1 +/- 0.4 mg of lipids, consisting mainly of triacylglycerol (TAG), and completed the overall process of digestion in about 20 days. Lipolysis of TAG and pathways for diacylglycerol (DAG) biosynthesis in the midgut were investigated by feeding the insects with [9,10-3H]-oleic acid-labeled triolein. Lumenal [3H]-triacylglycerol was hydrolyzed, generating mainly fatty acids (FA) and glycerol and to lesser extent, DAG. Almost no radioactivity associated with monoacylglycerol was found at any time. In midgut tissue, labeled fatty acids were incorporated into phosphatidic acid, DAG and TAG, whereas no significantly labeled monoacylglycerol was observed. In addition, the activities of enzymes related to DAG metabolism were assayed in non-blood fed midgut homogenates and at different times after feeding on a blood meal. Significant changes in the activities of phosphatidate phosphohydrolase (EC 3.1.3.4) and triacylglycerol lipase (EC 3.1.1.3) were observed during blood digestion, suggesting that these enzymes are important in regulating intracellular DAG synthesis and mobilization in midgut cells. Finally, the histological changes of lipid stores observed in anterior midgut confirmed the active process of uptake and trafficking of lipids performed by the enterocytes during blood digestion.  相似文献   

18.
The effect of different chemical compounds on the cAMP/cGMP ratio in the bone marrow of mice and radioresistance of animals has been studied. It has been shown that all compounds possessing radioprotective properties give rise to the cAMP/cGMP ratio in the bone marrow of mice. No changes in cAMP and cGMP level were noted after the administration of nonradioprotective substances. The maximal radioprotective effect coincide in time with the largest increase of the cAMP/cGMP ratio. The injection of radioprotectors at different doses demonstrate clearly that only at radioprotective doses the increase in the cAMP/cGMP ratio takes place. The administration of some substances 2, 15 and 60 min after the irradiation of mice shows that the radioprotective effect, though modest, was evident only in one case of elevated cAMP/cGMP ratio (the injection of 2-Mercaptoethylamine 2 min after the irradiation). Evident radioprotective effect occurs at the cAMP/cGMP ratio of about 170-200%; the ratio of about 130-140% corresponds to small radioprotection.  相似文献   

19.
After a sublethal (200 rad) irradiation of mice there occurred during the first 24 hours in the bone marrow a marked reduction of the number of the stem (to 4%), committed precursors of granulocytes and macrophages (to 20%) and of the morphologically-identified cells (to 50%). Complete restoration of hemopoiesis was observed by the end of the 2 weeks after the irradiation and was primarily due to the exponential growth of the number of the stem cells and their intensified proliferation. An increase in the number of the committed precursors was retarded to the moment of restoration of the normal amount of cells in the bone marrow.  相似文献   

20.
With the use of the micronuclear test method it has been shown that mice preirradiated with gamma rays at a low dose rate exhibit a decreased frequency of chromosome aberrations induced in bone marrow cells by subsequent acute exposure to gamma radiation as compared to mice not subjected to preliminary irradiation. Such animals have a higher radioresistance with respect to the survival rate. The results obtained suggest the possibility of induction by ionizing radiation, at a low dose rate, of adaptive repair response at the organism level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号