首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In pancreatic islets prelabelled with (3H) adenine, Ba++ augmented (3H) cyclic AMP in 1–10 min incubations. 3-isobutyl-l-methylxanthine markedly enhanced and prolonged the Ba++-induced nucleotide as well as the insulin response. In the presence of the methyl xanthine 1.6 mM Ba++ was a maximally and 0.4 mM a submaximally effective concentration both for the stimulation of (3H) cyclic AMP and insulin. A 5-fold excess of Ca++ partly inhibited the Ba++-induced nucleotide and — more profoundly — the insulin response. Increasing Mg++ from 2 to 10 mM was also inhibitory. Stimulation by Ba++ was observed in the absence as well as in the presence of D-glucose. It is concluded that the insulinotropic action of Ba++ is at least partly mediated by cyclic AMP.  相似文献   

2.
Embryonic inductions appear to be mediated by the concerted action of different inducing factors that modulate one another's activity. Such modulation is likely to reflect interactions between the signal transduction pathways through which the inducing factors act. We tested this idea for the induction of neural tissue. We report that both adenylate cyclase activity and cAMP concentration increase substantially in induced neuroectoderm during neural induction. The enhancement of adenylate cyclase activity requires protein kinase C (PKC) activation, indicating cross-talk between these two signal transduction pathways. This cross-talk appears to be essential for neural induction. Whereas cAMP analogs alone were not neural inducers, they had a synergistic inducing effect if ectoderm was first incubated with TPA (12-O-tetradecanoylphorbol 13-acetate), a PKC activator. These results strongly suggest that at least two signals mediate neural induction. The first signal activates PKC and the second signal then activates the cAMP pathway effectively.  相似文献   

3.
Phosphoinositide hydrolysis in intact pancreatic islet cells was investigated in an indirect but dynamic manner by monitoring the efflux of radioactivity from islets prelabelled with [3H]inositol. A rise in glucose concentration provoked a rapid, modest but sustained increase in effluent radioactivity, this phenomenon being abolished in the absence of extracellular Ca2+ or presence of verapamil. The release of [3H]inositol was also stimulated at high extracellular K+ concentration, but not by gliclazide. Whether in the presence or absence of glucose, carbamylcholine provoked a marked increase in effluent radioactivity. The response to the cholinergic agent was decreased in the presence of verapamil or absence of extracellular Ca2+ and abolished in the presence of atropine or LiCl. These results suggest that an increase in cytosolic Ca activity, as caused by glucose or membrane depolarization, may cause activation of phospholipase C. In response to cholinergic agents, however, the enzymic activation, although modulated by Ca2+ availability, may result directly from the occupation of muscarinic receptors.  相似文献   

4.
Stimulation of phospholipid methylation by glucose in pancreatic islets   总被引:1,自引:0,他引:1  
A two fold stimulation in the incorporation of [3H-methyl] groups from [3H-methyl] methionine into phospholipids was seen in intact pancreatic islets within six minutes of exposure to a glucose concentration that stimulates insulin release. Nonstimulatory sugars, L-glucose and D-galactose, as well as dibutyryl cAMP, did not affect phospholipid methylation in islet cells. A calcium channel blocker, verapamil, inhibited methylation. These studies suggest that the signal for glucose-induced insulin release could involve phospholipid methylation.  相似文献   

5.
Control of platelet protein kinase C activation by cyclic AMP   总被引:1,自引:0,他引:1  
Experiments were performed to elucidate the role of adenosine 3': 5'-cyclic monophosphate (cAMP) in the control of platelet protein kinase C (PKC) activation. Platelet aggregation and secretion in response to 4 beta-phorbol 12-myristate 13-acetate (PMA) or 1-oleoyl-2-acetylglycerol (OAG) were inhibited by dibutyryl cAMP in a dose-dependent manner. Inhibition of these functional activities paralleled a decrease in the PMA-induced phosphorylation of the Mr 47,000 substrate (p47) of PKC by pre-incubation of platelets with dibutyryl cAMP. These changes were also observed when platelet cAMP was increased by prostacyclin (PGI2), forskolin, or theophylline. The ADP scavenger creatine phosphate/creatine phosphokinase (CP/CPK) and the cyclooxygenase inhibitor indomethacin also diminished the aggregation and p47 phosphorylation responses to PMA or OAG. Pre-incubation of platelets with dibutyryl cAMP significantly potentiated the inhibition of aggregation and p47 phosphorylation effected by CP/CPK and indomethacin. These results are consistent with the model that PMA- or OAG-induced activation of platelets is amplified by secreted ADP and that the response to secreted ADP is inhibited by cAMP. Furthermore, the findings that increased intracellular cAMP inhibits PMA- or OAG-induced p47 phosphorylation in excess of that due solely to CP/CPK, and that cAMP significantly potentiates the effects of ADP removal and inhibition of cyclooxygenase in blocking p47 phosphorylation suggest that cAMP also exerts non-ADP-mediated inhibitory effects on PKC in intact platelets.  相似文献   

6.
The mechanism whereby "islet-activating protein" (IAP) purified from the culture medium of Bordetella pertussis potentiates insulin secretion was studied by experiments in vitro with islets of rats once injected with IAP (0.5 micrograms/100 g body weight, 3 days before killing) or with islets that had been exposed to IAP (0.1 to 100 ng/ml) for 24 h. The IAP treatment markedly enhanced insulin secretory responses and cAMP accumulation in islets, facilitated the efflux of 45Ca through the cell membrane, and abolished the alpha-adrenergic action of epinephrine (and somatostatin) to inhibit glucose-induced insulin release, cAMP accumulation, and 45Ca uptake. These effects of the IAP treatment were reduced when islets were incubated in a low calcium medium. Based on these results, it was concluded that IAP interacts directly but slowly with the islet B cell in such a manner as to render more calcium available to the stimulus-secretion coupling mechanism as a result of sustained activation of native calcium ionophores on the cell membrane.  相似文献   

7.
Addition of cAMP to cells has been shown to inhibit phosphatidylinositol (PI) metabolism. cAMP has been reported to inhibit an enzyme in this pathway, PI kinase and it has been suggested that this inhibition is due to phosphorylation of PI kinase by the cAMP dependent protein kinase (PKA). In the present study we directly investigated if the inhibitory effect of cAMP was mediated by PKA. In membranes derived from murine hepatocytes we found that cAMP inhibited PI kinase but other adenine derivatives were more potent inhibitors. Moreover, it was found that the effects of the derivatives were unlikely to be due secondarily to the production of cAMP via their interaction with adenosine receptors. Through studies employing an inhibitor of PKA, mutant cells lacking PKA, and addition of purified catalytic subunit of PKA, we found that the inhibitory effect of cAMP was not mediated by PKA. In addition, the inhibitory effect of cAMP and adenosine was retained upon partial purification of PI kinase. Pulse chase experiments affirmed that the inhibitory effect was not due to breakdown of PI but rather to inhibition of its synthesis. We conclude that the inhibitory effect of cAMP and related compounds on PI kinase is not mediated by PKA dependent phosphorylation but rather appears to be a direct effect of these agents.  相似文献   

8.
Adrenalin and glucagon inhibit glycogen, fatty acid and cholesterol synthesis by elevation of cyclic AMP, activation of cyclic AMP-dependent protein kinase and increased phosphorylation of the rate-limiting enzymes of these pathways. Here, we review recent evidence which indicates that inhibition of these biosynthetic pathways in muscle, adipose tissue and liver is much more indirect than has previously been supposed. In particular, cyclic AMP-dependent protein kinase does not appear to inhibit glycogen synthase, acetyl-CoA carboxylase and HMG-CoA reductase by phosphorylating them directly. It appears to achieve the same end result by inactivation of the protein phosphatases which dephosphorylate these regulatory enzymes in vivo, although this has only been established definitively in the case of glycogen synthesis.  相似文献   

9.
The effects of various sugars on the simultaneous release of insulin and accumulation of cyclic AMP were studied in collagenase isolated rat pancreatic islets. D-Glucose stimulated the formation of cyclic AMP at 3 and 60 min of incubation, whether measured by a label incorporation technique, or by the protein kinase binding assay of Gilman. Only D-glucose and D-mannose were able to stimulate insulin release and cyclic [3H]AMP accumulation in the absence of other substrate. D-fructose had a stimulatory effect in the presence of 3.3 mM D-glucose only at a high concentration (33.8 mM), and enhanced the effects of 8.3 mM glucose when added at the concentration of 8.3 mM. D-Galactose was effective only together with 8.3 mM D-glucose. The order of potency of these hexoses, both regarding insulin secretion and cyclic [3H]AMP accumulation, was glucose-mannose-fructose-galactose. L-Glucose and 3-O-methylglucose had no effects at 60 min when incubated together with 8.3 mM D-glucose, whereas at 3 min, 3-O-methylglucose induced a small stimulation of the cyclic [3H]AMP response. D-mannoheptulose and D-glucosamine inhibited the insulin and cyclic [3H]AMP responses to 27.7 mM glucose. Mannoheptulose suppressed completely the glucose effect on cyclic nucleotide accumulation within 90 s. Although under all incubation conditions, the threshold stimulatory or inhibitory concentration of a given agent was identical for insulin release and cyclic [3H]AMP accumulation, these two variables showed quantitative differences in incubations of 60 min, the magnitude of the changes in insulin secretion being larger than that for the cyclic nucleotide. It is suggested that modulation of islet cyclic AMP level is an important step in the transmission of the effect of various sugars on insulin release; however, glucose and possibly other sugars may also enhance insulin release by additional mechanisms not involving the adenylate cyclase-cyclic AMP system of the beta-cell.  相似文献   

10.
11.
Hemin is a catalyst of the formation of reactive oxygen species. We proposed that hematophagous insects are exposed to intense oxidative stress because of hemoglobin hydrolysis in their midgut (Petretsky, M. D., Ribeiro, J. M. C., Atella, G. C., Masuda, H., and Oliveira, P. L. (1995) J. Biol. Chem. 270, 10893-10896). We have shown that hemin stimulates urate synthesis in the blood-sucking insect Rhodnius prolixus (Gra?a-Souza, A. V., Petretsky, J. H., Demasi, M., Bechara, E. J. H., and Oliveira, P. L. (1997) Free Radical Biol. Med. 22, 209-214). Once released by fat body cells, urate accumulates in the hemolymph, where this radical scavenger constitutes an important defense against blood-feeding derived oxidative stress. Incubation of Rhodnius fat bodies with okadaic acid raises the level of urate synthesis, suggesting that urate production can be controlled by protein phosphorylation/dephosphorylation. Urate synthesis is stimulated by dibutyryl cAMP and inhibited by N(2((p-bromocinnamil)amino)ethyl)-5-isoquinolinesulfonamide (H-89), an inhibitor of protein kinase A, as well as activated by the protein kinase C activator phorbol 12-myristate 13-acetate. In the presence of hemin, however, inhibition of urate synthesis by H-89 does not occur, suggesting that the hemin stimulatory effect is not mediated by protein kinase A. Calphostin C completely inhibits the hemin-induced urate production, suggesting that the triggering of urate antioxidant response depends on protein kinase C activation. This conclusion is reinforced by the observation that in fat bodies exposed to hemin, both protein kinase C activity and phosphorylation of specific endogenous polypeptides are significantly increased.  相似文献   

12.
The effects of various sugars on the simultaneous release of insulin and accumulation of cyclic AMP were studied in collagenase isolated rat pancreatic islets. d-Glucose stimulated the formation of cyclic AMP at 3 and 60 min of incubation, whether measured by a label incorporation technique, or by the protein kinase binding assay of Gilman. Only d-glucose and d-mannose were able to stimulate insulin release and cyclic [3H]AMP accumulation in the absence of other substrate. d-fructose had a stimulatory effect in the presence of 3.3 mM d-glucose only at a high concentration (38.8 mM), and enhanced the effects of 8.3 mM glucose when added at the concentration of 8.3 mM. d-Galactose was effective only together with 8.3 mM d-glucose. The order of potency of these hexoses, both regarding insulin secretion and cyclic [3H]AMP accumulation, was glucose-mannose-fructose-galactose.l-Glucose and 3-O-methylglucose had no effects at 60 min when incubated together with 8.3 mM d-glucose, whereas at 3 min, 3-O-methylglucose induced a small stimulation of the cyclic [3H]AMP response.d-mannoheptulose and d-glucosamine inhibited the insulin and cyclic [3H]-AMP responses to 27.7 mM glucose. Mannoheptulose suppressed completely the glucose effect on cyclic nucleotide accumulation within 90 s.Although under all incubation conditions, the threshold stimulatory or inhibitory concentration of a given agent was identical for insulin release and cyclic [3H]AMP accumulation, these two variables showed quantitative differences in incubations of 60 min, the magnitude of the changes in insulin secretion being larger than that for the cyclic nucleotide. It is suggested that modulation of islet cyclic AMP level is an important step in the transmission of the effect of various sugars on insulin release; however, glucose and possibly other sugars may also enhance insulin release by additional mechanisms not involving the adenylate cyclase-cyclic AMP system of the β-cell.  相似文献   

13.
Rat pancreatic islet homogenates display protein kinase C activity. This phospholipid-dependent and calcium-sensitive enzyme is activated by diacylglycerol or the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). In the presence of TPA, the Ka for Ca2+ is close to 5 microM. TPA does not affect phosphoinositide turnover but stimulates [32P]- and [3H]choline-labelling of phosphatidylcholine in intact islets. Exogenous phospholipase C stimulates insulin release, in a sustained and glucose-independent fashion. The secretory response to phospholipase C persists in media deprived of CaCl2. It is proposed that protein kinase C participates in the coupling of stimulus recognition to insulin release evoked by TPA, phospholipase C and, possibly, those secretatogues causing phosphoinositide breakdown in pancreatic islets.  相似文献   

14.
15.
16.
The protein kinase C activator, phorbol-12-myristate-13-acetate (PMA), augments the cyclic AMP accumulation induced by forskolin in pheochromocytoma (PC 12) cells with an EC50 value of 14 nM, while having no effect on basal values. At a concentration of 100 nM PMA markedly augmented the magnitude of the forskolin response and, in addition, caused a slight increase in the potency of forskolin. PMA also enhanced the maximal cyclic AMP accumulation produced by 2-chloroadenosine, and caused a slight increase in potency of the adenosine analog. Since PMA mimics the effect of diacylglycerols that form during the turnover of the membrane lipid, phosphatidylinositol, the results suggest an interrelationship between the systems involved in phosphatidylinositol turnover and cyclic AMP generation in PC 12 cells.  相似文献   

17.
In the presence of Li+, glucose, 2-ketoisocaproate and carbamylcholine induced the rapid formation of 3H-inositol phosphates in rat pancreatic islets prelabelled with 3H-inositol. The production of labelled inositol phosphates continued up to 20 min of incubation. Glibenclamide and ionophore A23187 had no significant effect on labelled inositol phosphate production. The effects of carbamylcholine and to a lesser extent, glucose were found to persist in the absence of added Ca2+, but both were strongly inhibited by excess EGTA. In general, the rise in 3H-inositol phosphate production was associated with a fall in lipid bound radioactivity, although the latter was found to occur more slowly, and was of a smaller magnitude than labelled inositol phosphate formation. The results suggest that nutrient secretagogues and cholinergic agonists stimulate hydrolysis of phosphoinositides in pancreatic islets by a phospholipase C mechanism. This effect is Ca2+-dependent, but probably not triggered by increased Ca2+ uptake into the islet.  相似文献   

18.
Sarcolemmal membranes isolated from guinea pig heart ventricles contained an ATP-dependent calcium-sequestering activity. Sarcolemmal calcium accumulation but not binding was enhanced by preincubation of membranes with exogenous protein kinase, with cyclic AMP, or with isoproterenol. Protein kinase (EC 2.7.1.37) increased the V of Ca2+ accumulation by sarcolemma without any significant effect on the affinity for Ca2+. The endogenous protein kinase activity present in isolated sarcolemma affected membrane phosphorylation. Cyclic AMP increased the endogenous kinase activity modestly, whereas histone increased it significantly. Exogenous protein kinase also catalyzed phosphorylation of these membranes. Endogenous and exogenous kinase-catalyzed phosphorylation of sarcolemma was hydroxylamine-insensitive. Ca2+-dependent ATPase (EC 3.6.1.3) (extra ATPase) activity of sarcolemma was also increased by protein kinase.  相似文献   

19.
Cyclic AMP (cAMP) and Ca(2+) are two ubiquitous second messengers in transduction pathways downstream of receptors for hormones, neurotransmitters and local signals. The availability of fluorescent Ca(2+) reporter dyes that are easily introduced into cells and tissues has facilitated analysis of the dynamics and spatial patterns for Ca(2+) signaling pathways. A similar dissection of the role of cAMP has lagged because indicator dyes do not exist. Genetically encoded reporters for cAMP are available but they must be introduced by transient transfection in cell culture, which limits their utility. We report here that we have produced a strain of transgenic mice in which an enhanced cAMP reporter is integrated in the genome and can be expressed in any targeted tissue and with tetracycline induction. We have expressed the cAMP reporter in beta-cells of pancreatic islets and conducted an analysis of intracellular cAMP levels in relation to glucose stimulation, Ca(2+) levels, and membrane depolarization. Pancreatic function in transgenic mice was normal. In induced transgenic islets, glucose evoked an increase in cAMP in beta-cells in a dose-dependent manner. The cAMP response is independent of (in fact, precedes) the Ca(2+) influx that results from glucose stimulation of islets. Glucose-evoked cAMP responses are synchronous in cells throughout the islet and occur in 2 phases suggestive of the time course of insulin secretion. Insofar as cAMP in islets is known to potentiate insulin secretion, the novel transgenic mouse model will for the first time permit detailed analyses of cAMP signals in beta-cells within islets, i.e. in their native physiological context. Reporter expression in other tissues (such as the heart) where cAMP plays a critical regulatory role, will permit novel biomedical approaches.  相似文献   

20.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumulation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5--1 microgram/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 microgram/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 microgram/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 microgram/ml). Somatostatin (1 microgram/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated. The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号