首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alimentary deficiency of vitamin A causes marked shifts in the metabolism of GSH: the levels of GSH, GSSG and cysteine in the liver increase, while the activities of glutathione-S-transferase (using glycerol as substrate) and gamma-glutamyltransferase in the liver show a rise. At the same time, vitamin A deficiency causes a decrease of the glutathione peroxidase and catalase activity in the liver. The data obtained are discussed in terms of the role of GSH and enzymes of GSH metabolism in the protection of cells against the damaging influence of lipid peroxidation.  相似文献   

2.
Anti-oxidative enzymes play a role in protecting cells from oxidative stress-induced cell death. The present study was conducted to evaluate whether the anti-oxidant and pro-oxidant enzymatic capacities of the sheep corpus luteum (CL) are correlated with steroidogenic and structural status of the gland during the estrous cycle. Steroidogenic activity, apoptosis and superoxide dismutase (SOD1 and SOD2), nitric oxide synthase (NOS), glutathione peroxidase (GPX), glutathione reductase (GSR) and glutathione S-transferase (GST) activities were determined in the CL at specific developmental stages of the luteal phase. The intensity of apoptotic DNA fragmentation, characteristic of physiological cell death, was much greater in CL at late luteal phase than at early and mid-luteal phase, concomitantly with the diminution in the plasma progesterone concentrations from mid-to late luteal phase. SOD1 and GPX activities increased from early to mid-luteal phase, and increased further at late luteal phase. SOD2 and GST activities were not different between early and mid-luteal phase, but increased at late luteal phase. GSR activity was not different between any luteal phase examined. NOS activity decreased from early to mid- and late luteal phase. These results show that the activities of SOD1, SOD2, NOS, GPX, GSR and GST in the sheep CL are subject to major changes during the estrous cycle, and that the anti-oxidant and pro-oxidant enzymatic capacities of luteal cells are not correlated with cell steroidogenic status and integrity during the late luteal phase.  相似文献   

3.
Activities of superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) and catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase, EC 1.11.1.6) were determined during the course of incubation of red cell suspensions with 1,4-naphthoquinone-2-sulfonic acid. In the absence of glucose, incubation with napthoquinone sulfonate resulted in an inhibition of catalase and superoxide dismutase. The catalase inhibitor, 3-amino-1,2,4-triazole enhanced inactivation of catalase in the presence of naphthoquinone sulfonate and this in turn led to augmented inhibition of superoxide dismutase. The presence of glucose in the incubation medium prevented napthoquinone sulfonate-induced enzyme inhibition in the absence of aminotriazole, but had little effect in the presence of aminotriazole. The relevance of these findings to the cellular interrelationship of peroxidatic enzymes and superoxide dismutase is discussed.  相似文献   

4.
Extracts of Desulfovibrio desulfuricans B-1388 cells grown under anaerobic conditions displayed superoxide dismutase activity. The maximal activity was found during the stationary growth phase. The enzyme was virtually completely located in the periplasm fraction. D. desulfuricans B-1388 lacked catalase activity but contained active NADH- and NADPH-peroxidases. The activity of NADH-peroxidase depended on the physiological state of the culture. On changing the growth conditions (the presence of 5% CO in the gaseous phase), the activity of superoxide dismutase decreased.  相似文献   

5.
The inactivating effect of hypochlorite on Cu, Zn-superoxide dismutase (SOD) from bovine erythrocytes has been studied. According to SDS gel electrophoresis and isoelectric focusing data, oxidation is associated with the degradation of the polypeptide chain, formation of aggregates, and appearance of new isoforms. These protein fractions differ from native SOD by the electric charge and molecular mass but possess a catalytic activity. Modified SOD isoforms occur as a result of intramolecular crosslinking of amino groups and aldehydes which is confirmed by the appearance of fluorescence maxima in the longwave region characteristic of such links. It is assumed that the mechanism of SOD inactivation is coupled to the oxidation of amino acids located outside the active center of the enzyme.  相似文献   

6.
7.
Mice lacking the secreted extracellular superoxide dismutase (EC-SOD) or the cytosolic copper- and zinc-containing SOD (CuZn-SOD) show relatively mild phenotypes. To explore the possibility that the isoenzymes have partly overlapping functions, single and double knockout mice were examined. The absence of EC-SOD was found to be without effect on the lifespan of mice, and the reduced lifespan of CuZn-SOD knockouts was not further shortened by EC-SOD deficiency. The urinary excretion of isoprostanes was increased in CuZn-SOD knockout mice, and plasma thiobarbituric acid-reactive substances levels were elevated in EC-SOD knockout mice. These oxidant stress markers showed potentiated increases in the absence of both isoenzymes. Other alterations were mainly found in CuZn-SOD knockout mice, such as halved glutathione peroxidase activity in the tissues examined and increased glutathione and iron in the liver. There were no changes in tissue content of the alternative superoxide scavenger ascorbate, but there was a 25% reduction in ascorbate in blood plasma in mice lacking CuZn-SOD. No increase was found in the urinary excretion of the terminal metabolites of NO, nitrite, and nitrate in any of the genotypes. In conclusion, apart from the increases in the global urinary and plasma oxidant stress markers, our phenotype studies revealed no other evidence that the copper- and zinc-containing SOD isoenzymes have overlapping roles.  相似文献   

8.
A procedure for purification of superoxide dismutase (SOD) from human blood plasma has been developed, which includes gel filtration on Ultrogels AcA-34 and AcA-44 (LKB, Sweden). The protein purified from blood plasma is a glycoprotein which is thermostable at 70-80 degrees C. The molecular mass of the protein determined immediately after gel filtration is approximately 147,000 daltons. A comparative analysis of effects on the SOD activity of plasma and erythrocytes of compounds capable of forming chelating complexes with metals within the enzyme active center has been carried out. The purified enzyme differs by its physico-chemical characteristics from cytosolic Cu,Zn-SOD and pertains to a new class of SOD, the so-called extracellular SOD, detected in some biological fluids.  相似文献   

9.
10.
The effect of Al on superoxide dismutase (SOD) and on other antioxygenic enzymes: horseradish peroxidase, catalase, and glutathione peroxidase, has been investigated in vitro. In the case of SOD, the effect of metal chelators (EDTA and deferoxamine) and a possible synergistic effect with iron salts have also been tested using the pyrogallol assay. There is no significant inhibitory effect of Al on the activity of any of the above-mentioned enzymes. Noticeable increases in SOD activity were observed when metal chelators were added to the medium, but not when high concentrations of Al were present too, in the case of deferoxamine (DFO). The former fact seems to be a consequence of the chelation of transition metal ions that catalyze pyrogallol autoxidation by a mechanism not inhibitable by SOD, interfering in its action, which may account for part of the DFO antioxidant effect observed in vivo. The latter phenomenon could be owing to a saturation of the chelating capacity of DFO by an excess of Al present in the medium, which should bring the system back to the interfering conditions explained above. It can be concluded that Al, either in the presence or in the absence of iron salts, does not inhibit SOD activity in vitro. Moreover, no significant binding of Al to SOD was demonstrated, and the amounts of its metal constituents, Cu and Zn, were not affected by preincubation of the enzyme with Al. The effect of the different compounds tested on the rate of autoxidation of the indicating scavenger, pyrogallol, and a suitable hypothesis on their role in the oxidation process are also discussed.  相似文献   

11.
The influence of cytokines on extracellular superoxide dismutase (EC-SOD) expression by human dermal fibroblasts was investigated. The expression was markedly stimulated by interferon-gamma (IFN-gamma), was varying between fibroblast lines stimulated or depressed by interleukin-1 alpha (IL-1 alpha), was intermediately depressed by tumor necrosis factor-alpha (TNF-alpha), and markedly depressed by transforming growth factor-beta (TGF-beta). TNF-alpha, however, enhanced the stimulation by a high dose of IFN-gamma, whereas TGF-beta markedly depressed the stimulations given by IFN-gamma and IL-1 alpha. The ratio between the maximal stimulation and depression observed was around 30-fold. The responses were generally slow and developed over periods of several days. There were no effects of IFN-alpha, IL-2, IL-3, IL-4, IL-6, IL-8, granulocyte-macrophage colony-stimulating factor, human growth hormone, Escherichia coli lipopolysaccharide, leukotriene B4, prostaglandin E2, formylmethionylleucylphenylalanine, platelet-activating factor, and indomethacin. The cytokines influencing the EC-SOD expression are also known to influence superoxide production by leukocytes and other cell types, and the EC-SOD response pattern is roughly compatible with the notion that its function is to protect cells against extracellular superoxide radicals. The results show that EC-SOD is a participant in the complex inflammatory response orchestrated by cytokines. The CuZn-SOD activity of the fibroblasts was not influenced by any of the cytokines, whereas the Mn-SOD activity was depressed by TGF-beta. TNF-alpha, IL-1 alpha, and IFN-gamma stimulated the Mn-SOD activity, as previously known, and these responses were reduced by TGF-beta. The different responses of the three SOD isoenzymes illustrate their different physiological roles.  相似文献   

12.
Jeon B  Kim BH  Lee YS  Kim S  Yoon JB  Kim TY 《BMB reports》2011,44(1):40-45
Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that protects cells and tissues from extracellular damage by eliminating superoxide anion radicals produced during metabolism. Two different forms of EC-SOD exist, and their different enzyme activities are a result of different disulfide bond patterns. Although only two folding variants have been discovered so far, five folding variants are theoretically possible. Therefore, we constructed five different mutant EC-SOD expression vectors by substituting cysteine residues with serine residues and evaluated their expression levels and enzyme activities. The mutant EC-SODs were expressed at lower levels than that of wild-type EC-SOD, and all of the mutants exhibited inhibited extracellular secretion, except for C195S ECSOD. Finally, we demonstrated that co-expression of wild-type EC-SOD and any one of the mutant EC-SODs resulted in reduced secretion of wild-type EC-SOD. We speculate that mutant EC-SOD causes malfunctions in systems such as antioxidant systems and sensitizes tissues to ROS-mediated diseases.  相似文献   

13.
The dynamics of the level of catalase and superoxidedismutase (SOD) expression by S. aureus isolated in persistent experimental kidney infection is described. A rise in the activity of the staphylococci under study during transition of the infectious process from the alteration to persistence stage. Changes in the expression of SOD and catalase were observed simultaneously with a decrease in hemolytic, fibrinolytic and protease activity, as well as in the presence of more pronounced clumping and an increase in the production of protein A, the antilysozyme and anticomplement activity of staphylococcal clones obtained from kidney tissue. The significance of all above-mentioned phenomena in the persistence of microorganisms is discussed.  相似文献   

14.
Two superoxide dismutases (SOD I and SOD II) were purified from Acanthamoeba castellanii and characterized for several biochemical properties. Analysis of the primary structure and inhibition studies revealed that SOD I is iron SOD (Fe-SOD), with a molecular mass of 50 kDa, and SOD II is copper-zinc SOD (Cu,Zn-SOD), with a molecular mass of 38 kDa. Both enzymes have a homodimeric structure consisting of 2 identical subunits, each with a molecular mass of 26 and 19 kDa for SOD I and SOD II, respectively. The isoelectric points of SOD I and SOD II were 6.4 and 3.5, respectively, and there were no isoenzyme forms detected. Both enzymes show a broad optimal pH of 7.0-11.0. Because no differences were observed in the apparent molecular weight of SOD I after addition of the reducing agent 2-mercaptoethanol, the subunits do not appear to be linked covalently by disulfide bonds. However, the subunits of SOD II were covalently linked by intra- and interdisulfide bonds. Western blot analyses showed that the 2 enzymes have different antigenicity. Both enzymes occur as cytoplasmic and detergent-extractable fractions. These enzymes may be potential virulence factors of A. castellanii by acting both as antioxidants and antiinflammatory agents. These enzymes may be attractive targets for chemotherapy and immunodiagnosis of acanthamoebiasis.  相似文献   

15.
16.
The contents of extracellular superoxide dismutase, CuZn superoxide dismutase and Mn superoxide dismutase were determined in tissues from nine mammalian species. The pattern of CuZn superoxide dismutase distribution was similar in all species, with high activity in metabolically active organs such as liver and kidney and low activity in, for example, skeletal muscle. Mn superoxide dismutase activity was high in organs with high respiration, such as liver, kidney, and myocardium. Overall the Mn superoxide dismutase activity in organs was almost as high as the CuZn superoxide dismutase activity. The content of extracellular superoxide dismutase was, almost without exception, lower than the content of the other isoenzymes. The pattern of tissue distribution was distinctly different from those of CuZn superoxide dismutase and Mn superoxide dismutase. The tissue distribution of extracellular superoxide dismutase differed among species, but in general there was much in lungs and kidneys and little in skeletal muscle. In man, pig, sheep, cow, rabbit and mouse the overall tissue extracellular superoxide dismutase activities were similar to each other, whereas dog, cat and rat tissues contained distinctly less. There was no general correlation between the tissue extracellular superoxide dismutase activity of any of the various species and the variable plasma activity. The ratio between the plasma and the overall tissue activities was high, for some species over unity, providing further evidence for the notion that one role of extracellular superoxide dismutase is as a plasma protein.  相似文献   

17.
Manganese superoxide dismutase (MnSOD) is essential for life as dramatically illustrated by the neonatal lethality of mice that are deficient in MnSOD. In addition, mice expressing only 50% of the normal compliment of MnSOD demonstrate increased susceptibility to oxidative stress and severe mitochondrial dysfunction resulting from elevation of reactive oxygen species. Thus, it is important to know the status of both MnSOD protein levels and activity in order to assess its role as an important regulator of cell biology.

Numerous studies have shown that MnSOD can be induced to protect against pro-oxidant insults resulting from cytokine treatment, ultraviolet light, irradiation, certain tumors, amyotrophic lateral sclerosis, and ischemia/reperfusion. In addition, overexpression of MnSOD has been shown to protect against pro-apoptotic stimuli as well as ischemic damage. Conversely, several studies have reported declines in MnSOD activity during diseases including cancer, aging, progeria, asthma, and transplant rejection. The precise biochemical/molecular mechanisms involved with this loss in activity are not well understood. Certainly, MnSOD gene expression or other defects could play a role in such inactivation. However, based on recent findings regarding the susceptibility of MnSOD to oxidative inactivation, it is equally likely that post-translational modification of MnSOD may account for the loss of activity. Our laboratory has recently demonstrated that MnSOD is tyrosine nitrated and inactivated during human kidney allograft rejection and human pancreatic ductal adenocarcinoma. We have determined that peroxynitrite (ONOO-) is the only known biological oxidant competent to inactivate enzymatic activity, to nitrate critical tyrosine residues, and to induce dityrosine formation in MnSOD. Tyrosine nitration and inactivation of MnSOD would lead to increased levels of superoxide and concomitant increases in ONOO- within the mitochondria which, could lead to tyrosine nitration/oxidation of key mitochondrial proteins and ultimately mitochondrial dysfunction and cell death. This article assesses the important role of MnSOD activity in various pathological states in light of this potentially lethal positive feedback cycle involving oxidative inactivation.  相似文献   

18.
19.
A real-time optical biosensor study on the interactions between putidaredoxin reductase (PdR), putidaredoxin (Pd), and cytochrome P450cam (P450cam) within the P450cam system was conducted. The binary Pd/P450cam and Pd/PdR complexes were revealed and kinetically characterized. The dominant role of electrostatic interactions in formation of productive electron transfer complexes was demonstrated. It was found that Pd/P450cam complex formation and decay obeys biphasic kinetics in contrast to the monophasic one for complexes formed by other redox partners within the system. Evidence for PdR/P450cam complex formation was obtained. It was found that, in contrast to Pd, which binds only to its redox partners, PdR and P450cam were able to form PdR/PdR and P450cam/P450cam complexes. A ternary PdR/Pd/P450cam complex was also registered. Its lifetime was sufficient to permit up to 60 turnovers to occur. The binding of Pd to P450cam and to PdR within the ternary complex occurred at distinct sites, with Pd serving as a bridge between the two proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号