首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retroviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 [Zn(HIV1-F2)]. Unlike results obtained for the first retroviral-type zinc finger peptide, Zn(HIV1-F1), [Summers et al. (1990) Biochemistry 29, 329], broad signals indicative of conformational lability were observed in the 1H NMR spectrum of Zn-(HIV1-F2) at 25 degrees C. The NMR signals narrowed upon cooling to -2 degrees C, enabling complete 1H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhauser effect (NOESY) data were used to generate 30 distance geometry (DG) structures with penalties (penalty = sum of the squared differences between interatomic distances defined in the restraints file and in the DG structures) in the range 0.02-0.03 A2. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. Superposition of the backbone atoms (C, C alpha, N) for residues C(1)-C(14) gave pairwise RMSD values in the range 0.16-0.75 A. The folding of Zn(HIV1-F2) is very similar to that observed for Zn(HIV1-F1). Small differences observed between the two finger domains are localized to residues between His(9) and Cys(14), with residues M(11)-C(14) forming a 3(10) helical corner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
HIV-1 integrase consists of three functional domains, an N-terminal zinc finger domain, a catalytic core domain and a C-terminal DNA binding domain. NMR analysis of an isolated N-terminal domain (IN(1-55)) has shown that IN(1-55) exists in two conformational states [E and D forms; Cai et al. (1997) Nat. Struct. Biol. 4, 567-577]. The two forms differ in the coordination of the zinc ion by two histidine residues. In the present study, structural analysis of a mutant of IN(1-55), Y15A, by NMR spectroscopy indicated that the mutant protein folds correctly but takes only the E form. Since the Y15A mutation abrogates the HIV-1 infectivity, Y15 might have some important role in the full-length integrase activity during the virus infection cycle. Our results suggest a possible role of Y15 in structural transition between the E and D forms of HIV-1 integrase to allow the optimal tetramerization.  相似文献   

3.
The nucleocapsid protein (NC) from the mouse mammary tumor virus (MMTV) has been overexpressed in Escherichia coli and purified to homogeneity for structural studies by nuclear magnetic resonance (NMR) spectroscopy. The protein contains two copies of a conserved zinc-coordinating "CCHC array" or "zinc knuckle" motif common to the nucleocapsid proteins of nearly all known retroviruses. The residues comprising and adjacent to the zinc knuckles were assigned by standard two-dimensional (1)H and three-dimensional (1)H-(15)N NMR methods; the rotational dynamic properties of the protein were determined from (15)N relaxation experiments, and distance restraints derived from the nuclear Overhauser effect (NOE) data were used to calculate the three-dimensional structure. The (1)H-(1)H NOE and (15)N relaxation data indicate that the two zinc knuckles do not interact with each other, but instead behave as independently folded domains connected by a flexible 13-residue linker segment. The proximal zinc knuckle folds in a manner that is essentially identical to that observed previously for the two zinc knuckles of the human immunodeficiency virus type 1 nucleocapsid protein and for the moloney murine leukemia virus nucleocapsid zinc knuckle domain. However, the distal zinc knuckle of MMTV NC exhibits a rare three-dimensional fold that includes an additional C-terminal beta-hairpin. A similar C-terminal reverse turn-like structure was observed recently in the distal zinc knuckle of the Mason-Pfizer monkey virus nucleocapsid protein [Gao, Y., et al. (1998) Protein Sci. 7, 2265-2280]. However, despite a high degree of sequence homology, the conformation and orientation of the beta-hairpin in MMTV NC is significantly different from that of the reverse turn in MPMV NC. The results support the conclusion that structural features of NC zinc knuckle domains can vary significantly among the different genera of retroviridae, and are discussed in terms of the recent and surprising discovery that MMTV NC can facilitate packaging of the HIV-1 genome in chimeric MMTV mutants.  相似文献   

4.
All retroviral nucleocapsid (NC) proteins, except those of spumaretroviruses, contain one or two copies of the conserved sequence motif C-X2-C-X4-H-X4-C. The conserved cysteine and histidine residues coordinate a zinc ion in each such motif. Rice et al. (W. G. Rice, J. G. Supko, L. Malspeis, R. W. Buckheit, Jr., D. Clanton, M. Bu, L. Graham, C. A. Schaeffer, J. A. Turpin, J. Domagala, R. Gogliotti, J. P. Bader, S. M. Halliday, L. Coren, R. C. Sowder II, L. 0. Arthur, and L. E. Henderson, Science 270:1194-1197, 1995) have described a series of compounds which inactivate human immunodeficiency virus type 1 (HIV-1) particles and oxidize the cysteine thiolates in the NC zinc finger. We have characterized the effects of three such compounds on Moloney murine leukemia virus (MuLV). We find that, as with HIV-1, the compounds inactivate cell-free MuLV particles and induce disulfide cross-linking of NC in these particles. The killed MuLV particles were found to be incapable of synthesizing full-length viral DNA upon infection of a new host cell. When MuLV particles are synthesized in the presence of one of these compounds, the normal maturational cleavage of the Gag polyprotein does not occur. The compounds have no effect on the infectivity of human foamy virus, a spumaretrovirus lacking zinc fingers in its NC protein. The resistance of foamy virus supports the hypothesis that the zinc fingers are the targets for inactivation of MuLV and HIV- I by the compounds. The absolute conservation of the zinc finger motif among oncoretroviruses and lentiviruses and the lethality of all known mutations altering the zinc-binding residues suggest that only the normal, wild-type structure can efficiently perform all of its functions. This possibility would make the zinc finger an ideal target for antiretroviral agents.  相似文献   

5.
Nuclear magnetic resonance (NMR) methods have been used to address issues regarding the relevance and feasibility of zinc binding to "zinc finger-like" sequences of the type C-X2-C-X4-H-X4-C [referred to as CCHC or retroviral-type (RT) zinc finger sequences]. One-dimensional (1D) NMR experiments with an 18-residue synthetic peptide containing the amino acid sequence of an HIV-1 RT-zinc finger domain (HIV1-F1) indicate that the sequences are capable of binding zinc tightly and stoichiometrically. 1H-113Cd spin echo difference NMR data confirm that the Cys and His amino acids are coordinated to metal in the 113Cd adduct. The 3D structure of the zinc adduct [Zn(HIV1-F1)] was determined to high atomic resolution by a new NMR-based approach that utilizes 2D-NOESY back-calculations as a measure of the consistency between the structures and the experimental data. Several interesting structural features were observed, including (1) the presence of extensive internal hydrogen bonding, and (2) the similarity of the folding of the first six residues to the folding observed by X-ray crystallography for related residues in the iron domain of rubredoxin. Structural constraints associated with conservatively substituted glycines provide further rationale for the physiological relevance of the zinc adduct. Similar NMR and structural results have been obtained for the second HIV-1 RT-zinc finger peptide, Zn(HIV1-F2). NMR studies of the zinc adduct with the NCP isolated directly from HIV-1 particles provide solid evidence that zinc finger domains are formed that are conformationally similar (if not identical) to the peptide structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type I (HTLV-I) were purified by sucrose density gradient centrifugation in the presence of 1 mM EDTA. Pelleted gradient fractions were analyzed for total protein, total Gag capsid protein, and total zinc. Zinc was found to copurify and concentrate with the virus particles. Through successive cycles of resuspending in buffer containing EDTA and repelleting, the zinc content remained constant at about 1.7 mol of zinc per mol of Gag protein. Proteins from purified virus (HIV-1 and HTLV-I) were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, blotted to polyvinylidene fluoride paper, and probed with 65ZnCl2. Viral nucleocapsid (NC) proteins (HIV-1 p7NC and HTLV-I p15NC) bound 65Zn2+. Other retroviruses, including simian immunodeficiency virus, equine infectious anemia virus, bovine leukemia virus, Moloney murine leukemia virus, mouse mammary tumor virus, and Mason-Pfizer monkey virus, were found to contain amounts of zinc per milligram of total protein similar to those found in HIV-1 and HTLV-I. Collectively, these data support the hypothesis that retroviral NC proteins function as zinc finger proteins in mature viruses.  相似文献   

7.
It has been reported recently that Sb(III) competes with Zn(II) for its binding to the CCHC zinc finger domain of the HIV-1 NCp7 protein, suggesting that zinc finger proteins may be molecular targets for antimony-based drugs. Here, the interaction of Sb(III) with a CCCH zinc finger domain, which is considered to play a crucial role in the biology of kinetoplastid protozoa, has been characterized for the first time. The binding characteristics of Sb(III) were compared between a CCCH-type peptide derived from a kinetoplastid protein and two different CCHC-type zinc finger peptides. The formation of 1 : 1 Zn-peptide and Sb-peptide complexes from the different peptides was demonstrated using circular dichroism, UV absorption, fluorescence spectroscopies and ESI-MS. Titration of the Zn-peptide complexes with SbCl(3) was performed at pH 6 and 7, exploiting the intrinsic fluorescence of the peptides. The differential spectral characteristics of the peptides allowed for competition experiments between the different peptides for binding of Zn(II). The present study establishes that Sb(III) more effectively displaces Zn(II) from the CCCH peptide than CCHC ones, as a result of both the greater stability of the Sb-CCCH complex (compared to Sb-CCHC complexes) and the lower stability of the Zn-CCCH complex (compared to Zn-CCHC complexes). Comparison of the binding characteristics of Sb(III) or Zn(II) between the CCHC-type peptides with different amino acid sequences supports the model that not only the conserved zinc finger motif, but also the sequence of non-conserved amino acids determines the binding affinity of Sb(III) and Zn(II). These data suggest that the interaction of Sb(III) with CCCH-type zinc finger proteins may modulate, or even mediate, the pharmacological action of antimonial drugs.  相似文献   

8.
9.
Arsenic inhibits DNA repair and enhances the genotoxicity of DNA-damaging agents such as benzo[a]pyrene and ultraviolet radiation. Arsenic interaction with DNA repair proteins containing functional zinc finger motifs is one proposed mechanism to account for these observations. Here, we report that arsenite binds to both CCHC DNA-binding zinc fingers of the DNA repair protein PARP-1 (poly(ADP-ribose) polymerase-1). Furthermore, trivalent arsenite coordinated with all three cysteine residues as demonstrated by MS/MS. MALDI-TOF-MS analysis of peptides harboring site-directed substitutions of cysteine with histidine residues within the PARP-1 zinc finger revealed that arsenite bound to peptides containing three or four cysteine residues, but not to peptides with two cysteines, demonstrating arsenite binding selectivity. This finding was not unique to PARP-1; arsenite did not bind to a peptide representing the CCHH zinc finger of the DNA repair protein aprataxin, but did bind to an aprataxin peptide mutated to a CCHC zinc finger. To investigate the impact of arsenite on PARP-1 zinc finger function, we measured the zinc content and DNA-binding capacity of PARP-1 immunoprecipitated from arsenite-exposed cells. PARP-1 zinc content and DNA binding were decreased by 76 and 80%, respectively, compared with protein isolated from untreated cells. We observed comparable decreases in zinc content for XPA (xeroderma pigmentosum group A) protein (CCCC zinc finger), but not SP-1 (specificity protein-1) or aprataxin (CCHH zinc finger). These findings demonstrate that PARP-1 is a direct molecular target of arsenite and that arsenite interacts selectively with zinc finger motifs containing three or more cysteine residues.  相似文献   

10.
A replication-competent rhabdovirus-based vector expressing human immunodeficiency virus type 1 (HIV-1) Gag protein was characterized on human cell lines and analyzed for the induction of a cellular immune response in mice. We previously described a rabies virus (RV) vaccine strain-based vector expressing HIV-1 gp160. The recombinant RV was able to induce strong humoral and cellular immune responses against the HIV-1 envelope protein in mice (M. J. Schnell et al., Proc. Natl. Acad. Sci. USA 97:3544-3549, 2000; J. P. McGettigan et al., J. Virol. 75:4430-4434, 2001). Recent research suggests that the HIV-1 Gag protein is another important target for cell-mediated host immune defense. Here we show that HIV-1 Gag can efficiently be expressed by RV on both human and nonhuman cell lines. Infection of HeLa cells with recombinant RV expressing HIV-1 Gag resulted in efficient expression of HIV-1 precursor protein p55 as indicated by both immunostaining and Western blotting. Moreover, HIV-1 p24 antigen capture enzyme-linked immunosorbent assay and electron microscopy showed efficient release of HIV-1 virus-like particles in addition to bullet-shaped RV particles in the supernatants of the infected cells. To initially screen the immunogenicity of this new vaccine vector, BALB/c mice received a single vaccination with the recombinant RV expressing HIV-1 Gag. Immunized mice developed a vigorous CD8(+) cytotoxic T-lymphocyte response against HIV-1 Gag. In addition, 26.8% of CD8(+) T cells from mice immunized with RV expressing HIV-1 Gag produced gamma interferon after challenge with a recombinant vaccinia virus expressing HIV-1 Gag. These results further confirm and extend the potency of RV-based vectors as a potential HIV-1 vaccine.  相似文献   

11.
12.
The generation of neutralizing antibodies by peptide immunization is dependent on achieving conformational compatibility between antibodies and native protein. Consequently, approaches are needed for developing conformational mimics of protein neutralization sites. We replace putative main-chain hydrogen bonds (NH --> O=CRNH) with a hydrazone link (N-N=CH-CH(2)CH(2)) and scan constrained peptides for fit with neutralizing monoclonal antibodies (MAbs). To explore this approach, a V3 MAb 58.2 that potently neutralizes T-cell lab-adapted HIV-1(MN) was used to identify a cyclic peptide, [JHIGPGR(Aib)F(D-Ala)GZ]G-NH(2) (loop 5), that binds with >1000-fold higher affinity than the unconstrained peptide. NMR structural studies suggested that loop 5 stabilized beta-turns at GPGR and R(Aib)F(D-Ala) in aqueous solvent implying considerable conformational mimicry of a Fab 58.2 bound V3 peptide determined by X-ray crystallography [Stanfield, R. L. et al. (1999) Structure 142, 131-142]. Rabbit polyclonal antibodies (PAbs) generated to loop 5 but not to the corresponding uncyclized peptide bound the HIV-1(MN) envelope glycoprotein, gp120. When individual rabbit antisera were scanned with linear and cyclic peptides, further animal-to-animal differences in antibody populations were characterized. Loop 5 PAbs that most closely mimicked MAb 58.2 neutralized HIV-1(MN) with similar potency. These results demonstrate the remarkable effect that conformation can have on peptide affinity and immunogenicity and identify an approach that can be used to achieve these results. The implications for synthetic vaccine and HIV-1 vaccine research are discussed.  相似文献   

13.
NCp8 of HIV-2 contains two CCHC-type zinc fingers connected by a linker, and is involved in many critical steps of the virus life cycle. It was previously shown that the first zinc finger flanked by the linker is the minimal active domain for specific binding to viral RNA. In our previous study, we determined the three-dimensional structure of NCp8-f1, including the minimal active domain, and found that a hydrogen bond between Asn(11) N(delta)H and Arg(27) O stabilized the conformation of the linker in the vicinity of the zinc finger [Kodera et al. (1998) Biochemistry 37, 17704-17713]. In this study, RNA binding activities of NCp8-f1 and three types of its mutant peptides were analysed by native PAGE assay. The activity and three-dimensional structure of NCp8-f1/N11A, in which alanine is substituted for Asn(11) thereby affecting the conformation of the linker, was analyzed and compared with those of NCp8-f1. We demonstrated that the existence of Arg(4) and/or Lys(5) and Arg(26) and/or Arg(27) were necessary for binding RNA. Furthermore, the linker's flexible orientation, which is controlled by the hydrogen bond between Asn(11) N(delta)H and Arg(27) O, appears to be a structural basis for NCp8 existing as a multi-functional protein.  相似文献   

14.
The monoallelic expression of imprinted genes is regulated by DNA methylation marks that originate from the oocyte or sperm. Li et al. (2008) show in this issue of Developmental Cell that the KRAB zinc finger protein Zfp57 contributes to the embryonic maintenance of these imprints. At one locus, Zfp57 is also involved in imprint establishment. These findings provide a mechanistic interpretation for Mackay et al.'s recently reported ZFP57 mutations in patients with transient neonatal diabetes.  相似文献   

15.
The principal neutralizing determinant (PND) of HIV-1 is found in the V3 loop of the envelope glycoprotein. Antibodies elicited by peptides from this region, containing the GlyProGlyArgAlaPhe (GPGRAF) sequence, were able to neutralize diverse HIV-1 isolates [Javaherian et al. (1990) Science 250, 1590-1593]. The GPGR tetrapeptide was predicted to adopt a type II beta-turn conformation. Earlier, we showed that glycosylation of synthetic T cell epitopic peptides at natural glycosylation sites stabilized beta-turns [Otv?s et al. (1991) Int. J. Pept. Protein Res. 38, 467-482]. To evaluate the secondary structure modifying effect of the introduction of an N-glycosylated asparagine residue and to find a correlation between conformation and a possible PND potential, a series of glycopeptide derivatives, N(sugar) GPGRAFY-NH2 (4a-f), have been prepared, together with the parent peptides GPGRAFY-NH2 (2) and NGPGRAFY-NH2 (3), by solid-phase peptide synthesis [sugars: (a) beta-D-glucopyranosyl (Glc); (b) beta-D-galactopyranosyl (Gal); (c) Glc-beta(1----4)-Glc; (d) 2-acetamido-2-deoxy-beta-D-glucopyranosyl (GlcNAc); (e) 2-acetamido-2-deoxy-beta-D-galactopyranosyl (GalNAc); (f) GlcNAc-beta(1----4)-GlcNAc; sugars are attached through a beta (1----N beta) linkage to asparagine (N).] Peptides 2-4 were characterized by amino acid analysis, reversed-phase HPLC, and fast atom bombardment mass spectrometry. Circular dichroism (CD) and Fourier-transform infrared (FT-IR) spectroscopic studies were performed in trifluoroethanol (TFE) and water (D2O was used in FT-IR experiments). Nonglycosylated peptides showed significantly different CD spectra in aqueous and TFE solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Development of HIV/AIDS vaccine using chimeric gag-env virus-like particles   总被引:4,自引:0,他引:4  
We attempted to develop a candidate HIV/AIDS vaccine, by using unprocessed HIV-2 gag pr45 precursor protein. We found that a 45 kDa unprocessed HIV-2 gag precursor protein (pr45), with a deletion of a portion of the viral protease, assembles as virus-like particles (VLP). We mapped the functional domain of HIV-2 gag VLP formation in order to find the minimum length of gag protein to form VLP. A series of deletion mutants was constructed by sequentially removing the C-terminal region of HIV-2 gag precursor protein and expressed truncated genes in Spodoptera frugiperda (SF) cells by infecting recombinant baculoviruses. We found that deletion of up to 143 amino acids at the C-terminus of HIV-2 gag, leaving 376 amino acids at the N-terminus of the protein, did not affect VLP formation. There is a proline-rich region at the amino acid positions 373 to 377 of HIV-2 gag, and replacement of these proline residues by site-directed mutagenesis completely abolished VLP assembly. Our data demonstrate that the C-terminal p12 region of HIV-2 gag precursor protein, and zinc finger domains, are dispensable for gag VLP assembly, but the presence of at least one of the three prolines at amino acid positions 373, 375 or 377 of HIV-2NIH-Z is required for VLP formation. Animals immunized with these gag particles produced high titer antibodies and Western blot analyses showed that anti-gag pr45 rabbit sera react with p17, p24 and p55 gag proteins of HIV-1. We then constructed chimeric gag genes, which carry the hypervariable V3 region of HIV-1 gp120, because the V3 loop is known to interact with chemokine receptor as a coreceptor, and known to induce the major neutralizing antibodies and stimulate the cytoxic T lymphocyte responses in humans and mice. We expressed chimeric fusion protein of HIV-2 gag with 3 tandem copies of consensus V3 domain that were derived from 245 different isolates of HIV-1. In addition, we also constructed and expressed chimeric fusion protein that contains HIV-2 gag with V3 domains of HIV-1IIIB, HIV-1MN, HIV-1SF2 and HIV-1RF. The chimeric gag-env particles had a spherical morphology, and the size was slightly larger than that of a gag particle. Immunoprecipitation and Western blot analyses show that these chimeric proteins were recognized by HIV-1 positive human sera and antisera raised against V3 peptides, as well as by rabbit anti-gp120 serum. We obtained virus neutralizing antibodies in rabbits by immunizing these gag-env VLPs. In addition, we found that gag-env chimeric VLPs induce a strong CTL activity against V3 peptide-treated target cells. Our results indicate that V3 peptides from all major clades of HIV-1 carried by HIV-2 gag can be used as a potential HIV/AIDS vaccine.  相似文献   

17.
The nucleocapsid protein (NCP) from Mason-Pfizer monkey virus (MPMV) contains two evolutionary invariant Cys-X2-Cys-X4-His-X4-Cys retroviral-type zinc finger structures, where the Cys and His residues provide ligands to a tetrahedrally coordinated Zn(II) ion. The N-terminal zinc finger (F1) of NCP from MPMV contains an immediately contiguous Cys in the -1 position relative to the start of this conserved motif: Cys-Cys-X2-Cys-X4-His-X4-Cys. Metal complexes of 18-amino acid peptides which model the native zinc finger sequence, SER-Cys-X2-Cys-X4-His-X4-Cys (F1_SC), and non-native Cys-SER-X2-Cys-X4-His-X4-Cys (F1_CS) and SER-SER-X2-Cys-X4-His-X4-Cys (F1_SS) sequences have been spectroscopically characterized and compared to the native two-zinc-finger protein fragment, MPMV NCP 21-80. All Co(II)-substituted peptide complexes adopt tetrahedral ligand geometries and have S-MCo(II) ligand-to-metal charge-transfer (LMCT) transition intensities consistent with three Co(II)-S bonds for F1_SC and F1_CS. The non-native F1_CS peptide binds Co(II) with KCo=1.5᎒6 M-1, comparable to that of the native complex, and 걄-fold tighter than F1_SS. Like the Co(II) derivative, the absorption spectrum of Ni(II)-substituted NCP 21-80 is most consistent with tetrahedral Ni(II) complexes with multiple thiolate donors. In contrast, Ni(II) complexes of F1_SC and F1_CS exhibit a single absorption band in the 400-550 nm region ()겨-300 M-1 cm-1), distinct in the two complexes, assignable to a degenerate d-d transition envelope characteristic of non-native square-planar coordination geometry, and an intense LMCT transition in the UV ()255ᄾ,000 M-1 cm-1). Cd(II) complexes have intense absorption in the UV (5max=233 nm), with absolute intensities consistent with 񬩈 M-1 cm-1 per Cd(II)-S bond. 113Cd NMR spectroscopy of 113Cd MPMV NCP gives '=649 ppm, consistent with S3N coordination. Co(II) and Cd(II) complexes of non-native F1_CS peptides are more sensitive to oxidation by O2, relative to F1_SC, suggestive of a higher lability in the non-native chelate. The implications of these findings for the evolutionary conservation of this motif are discussed.  相似文献   

18.
The nucleocapsid protein of HIV-1 consists of two basic amino acid regions and two zinc fingers. We investigated the requirement of these domains for the structural conversion of a 39mer RNA covering the dimerization initiation site by using three peptides; wild-type NCp7, a mutant in which the two zinc fingers are mutated, and another mutant in which the two zinc fingers are deleted. The two mutants exhibited similar conversion activities to each other, which were lower than that of the wild-type, indicating that the two basic regions exhibit some activity for RNA chaperone, as we suggested before, and the zinc fingers enhance the efficiency of this activity.  相似文献   

19.
The selective enrichment of phosphorylated peptides prior to reversed-phase separation and mass spectrometric detection significantly improves the analytical results in terms of higher number of detected phosphorylation sites and spectra of higher quality. Metal oxide chromatography (MOC) has been recently described for selective phosphopeptide enrichment (Pinkse et al., 2004 [1]; Larsen et al., 2005 [2]; Kweon and Hakansson, 2006 [3]; Cantin et al., 2007 [4]; Collins et al., 2007 [5]). In the present work we have tested the effect of a modified loading solvent containing a novel acid mix and optimized wash conditions on the efficiency of TiO2-based phosphopeptide enrichment in order to improve our previously published method (Mazanek et al., 2007 [6]). Applied to a test mixture of synthetic and BSA-derived peptides, the new method showed improved selectivity for phosphopeptides, whilst retaining a high recovery rate. Application of the new enrichment method to digested purified protein complexes resulted in the identification of a significantly higher number of phosphopeptides as compared to the previous method. Additionally, we have compared the performance of TiO2 and ZrO2 columns for the isolation and identification of phosphopeptides from purified protein complexes and found that for our test set, both media performed comparably well. In summary, our improved method is highly effective for the enrichment of phosphopeptides from purified protein complexes prior to mass spectrometry, and is suitable for large-scale phosphoproteomic projects that aim to elucidate phosphorylation-dependent cellular processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号