首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The protein-tyrosine kinases (PTKs) are a burgeoning family of proteins, each of which bears a conserved domain of 250 to 300 amino acids capable of phosphorylating substrate proteins on tyrosine residues. We recently exploited the existence of two highly conserved sequence elements within the catalytic domain to generate PTK-specific degenerate oligonucleotide primers (A. F. Wilks, Proc. Natl. Acad. Sci. USA 86:1603-1607, 1989). By application of the polymerase chain reaction, portions of the catalytic domains of several novel PTKs were amplified. We describe here the primary sequence of one of these new PTKs, JAK1 (from Janus kinase), a member of a new class of PTK characterized by the presence of a second phosphotransferase-related domain immediately N terminal to the PTK domain. The second phosphotransferase domain bears all the hallmarks of a protein kinase, although its structure differs significantly from that of the PTK and threonine/serine kinase family members. A second member of this family (JAK2) has been partially characterized and exhibits a similar array of kinase-related domains. JAK1 is a large, widely expressed membrane-associated phosphoprotein of approximately 130,000 Da. The PTK activity of JAK1 has been located in the C-terminal PTK-like domain. The role of the second kinaselike domain is unknown.  相似文献   

2.
Protein tyrosine kinases (PTKs) play key roles in starting the signal transduction network for cellular development and functions. A number of both receptor-type and non-receptor-type PTKs, which are normally at a resting state, are initially activated in association with functions of the cell membrane and membrane rafts. Results of recent studies have suggested that these membrane-associated mechanisms for activation of PTKs consist of the two steps that are under redox control. The first step is activation of cell surface receptors through chemical crosslinkage or aggregation of receptors and membrane rafts, which leads to production of reactive oxygen species (ROS) as second messengers of intracellular signal transduction. The second step involves chemical modification of PTKs at the highly conserved cysteine in the MXXCW motif as a global switch for starting the tyrosine phosphorylation-dependent local switch for activation of the catalytic activity of the enzyme.  相似文献   

3.
Lin X  Ayrapetov MK  Lee S  Parang K  Sun G 《Biochemistry》2005,44(5):1561-1567
Protein tyrosine kinases (PTKs) are important regulators of mammalian cell function and their own activities are tightly regulated. Underlying their tight regulation, all PTKs contain multiple regulatory domains in addition to a catalytic domain. C-terminal Src kinase (Csk) contains a catalytic domain and a regulatory region, consisting of an SH3 and an SH2 domain. In this study, we probed the communication between the regulatory and catalytic domains of Csk. First, kinetic characterization of SH3 and SH2 domain deletion mutants demonstrated that the SH3 and SH2 domains were crucial in maintaining the full activity of Csk, but were not directly involved in Csk recognition of its physiological substrate, Src. Second, highly conserved Trp188, corresponding to a key residue in domain-domain communication in other PTKs, was found to be important for maintaining the active structure of Csk by the presence of the regulatory region, but not required for Csk activation triggered by a phosphopeptide binding to the SH2 domain. Third, structural alignment indicated that the presence of the regulatory domains modulated the conformation of multiple substructures in the catalytic domain, some directly and others remotely. Mutagenic and kinetic studies supported this assignment. This report extended previous studies of Csk domain-domain communication, and provided a foundation for further detailed investigation of this communication.  相似文献   

4.
Although cDNA sequences coding for several Rous sarcoma virus Src-related protein tyrosine kinases (PTKs) have been reported for several years, knowledge of the structure and organisation of genes of the src family is still limited. In this work, a detailed structure and organisation of the human lck gene is reported. A 17-kb genomic clone encoding human p56 Lck, a lymphocyte-specific PTK of the Src-related subfamily, has been isolated. The human lck gene is organized in 13 exons, one more than in the human cellular (c)-src gene. The twelve coding exons are located in this clone, whereas the putative 5'-noncoding exon is probably located very far upstream from the second exon. Splicing sites for exons 4 to 12, which encode both conserved phospholipase-C-like and catalytic domains of the Src-like PTKs, arise exactly at the same position for the human lck, human c-src and c-fgr genes. The only differences concern the splice sites of exons 1' and 2, which encode the unique N-terminal domain of human Lck. These results give further evidence that the different PTKs of the Src-like family have probably evolved through the mechanism of exon shuffling.  相似文献   

5.
The Tec family is a recently emerging subfamily of non-receptor protein-tyrosine kinases (PTKs) represented by its first member, Tec. This family is composed of five members, namely Tec, Btk, Itk/Emt/Tsk, Bmx and Txk/Rlk. The most characteristic feature of this family is the presence of a pleckstrin homology (PH) domain in their protein structure. The PH domain is known to bind phosphoinositides; on this basis, Tec family PTKs may act as merge points of phosphotyrosine-mediated and phospholipid-mediated signaling systems. Many Tec family proteins are abundantly expressed in hematopoietic tissues, and are presumed to play important roles in the growth and differentiation processes of blood cells. Supporting this, mutations in the Btk gene cause X chromosome-linked agammaglobulinemia (XLA) in humans and X chromosome-linked immunodeficiency (Xid) in mice, indicating that Btk activity is indispensable for B-cell ontogeny. In addition, Tec family kinases have been shown to be involved in the intracellular signaling mechanisms of cytokine receptors, lymphocyte surface antigens, heterotrimeric G-protein-coupled receptors and integrin molecules. Efforts are being made to identify molecules which interact with Tec kinases to transfer Tec-mediated signals in vivo. Candidates for such second messengers include PLC-γ2, guanine nucleotide exchange factors for RhoA and TFII-I/BAP-135. This review summarizes current knowledge concerning the input and output factors affecting the Tec kinases.  相似文献   

6.
Receptor and non-receptor protein tyrosine kinases (PTKs) are essential enzymes in cellular signaling processes that regulate cell growth, differentiation, migration and metabolism. The kinase activity of PTKs is tightly controlled through steric, autoregulatory mechanisms, as well as by the action of protein tyrosine phosphatases. Recent structural studies have revealed several modes of autoregulation governing the catalytic state of these enzymes. Aberrant catalytic activity of many PTKs, via mutation or overexpression, plays an important role in numerous pathological conditions, including cancer. Structural studies of the Abl tyrosine kinase domain in complex with the small-molecule inhibitor STI571 provide a molecular basis for understanding the specificity determinants of this highly successful drug used in the treatment of chronic myeloid leukemia.  相似文献   

7.
Several phage-encoded peptidoglycan hydrolases have been found to share a conserved amidase domain with a variety of bacterial autolysins (N-acetylmuramoyl-L-alanine amidases), bacterial and eukaryotic glutathionylspermidine amidases, gamma-D-glutamyl-L-diamino acid endopeptidase and NLP/P60 family proteins. All these proteins contain conserved cysteine and histidine residues and hydrolyze gamma-glutamyl-containing substrates. These cysteine residues have been shown to be essential for activity of several of these amidases and their thiol groups apparently function as the nucleophiles in the catalytic mechanisms of all enzymes containing this domain. The CHAP (cysteine, histidine-dependent amidohydrolases/peptidases) superfamily includes a variety of previously uncharacterized proteins, including the tail assembly protein K of phage lambda. Some members of this superfamily are important surface antigens in pathogenic bacteria and might represent drug and/or vaccine targets.  相似文献   

8.
The human transporter associated with antigen processing (TAP) translocates antigenic peptides from the cytosol into the endoplasmic reticulum lumen. The functional unit of TAP is a heterodimer composed of the TAP1 and TAP2 subunits, both of which are members of the ABC-transporter family. ABC-transporters are ATP-dependent pumps, channels, or receptors that are composed of four modules: two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Although the TMDs are rather divergent in sequence, the NBDs are conserved with respect to structure and function. Interestingly, the NBD of TAP1 contains mutations at amino acid positions that have been proposed to be essential for catalytic activity. Instead of a glutamate, proposed to act as a general base, TAP1 contains an aspartate and a glutamine instead of the conserved histidine, which has been suggested to act as the linchpin. We used this degeneration to evaluate the individual contribution of these two amino acids to the ATPase activity of the engineered TAP1-NBD mutants. Based on our results a catalytic hierarchy of these two fundamental amino acids in ATP hydrolysis of the mutated TAP1 motor domain was deduced.  相似文献   

9.
Hiroshi Suga  Kazutaka Katoh  Takashi Miyata   《Gene》2001,280(1-2):195-201
The protein tyrosine kinases (PTKs) diverged specifically in animal lineages by gene duplications and domain shufflings to form a large protein family comprising diverse subfamilies with distinct domain organizations and functions. On the basis of a phylogenetic tree inferred from a comparison of the shared kinase domains, we previously showed that gene duplications that gave rise to diverse subfamilies predate the divergence of parazoans and eumetazoans. There is, however, still a possibility that, although the kinase domain duplications are ancient events, the domain shufflings that gave rise to different subfamilies with distinct domain organization are more recent event than the kinase domain duplications. To clarify this problem, we have determined the complete sequences of 15 sponge PTKs and have compared the domain organizations of these sponge PTKs and those of eumetazoans. For each of ten sponge PTKs out of 15 analyzed here, a possible eumetazoan (human and Drosophila) ortholog has been identified. The sponge and eumetazoan orthologs are virtually identical in domain organization and belong to the same subfamily in the PTK family tree for each of ten orthologous pairs, except for one subfamily in which a considerable deletions and/or insertions of domains are observed. This result suggests that most, if not all, of the domain shufflings, together with gene duplications, are very old, going back to dates before the parazoan–eumetazoan split, the earliest divergence among extant animal phyla.  相似文献   

10.
Abundant evidence has indicated that protein tyrosine kinases (PTKs) convey signals from G protein-coupled receptors (GPCRs) to regulate cell proliferation, migration, adhesion, and potentialy cellular transformation. Molecular mechanisms by which PTKs regulate such diverse effects in GPCR signaling are not well understood. Recently, an unifying theme has emerged where both growth factors and GPCRs utilize protein tyrosine kinase activity and the highly conserved Ras/MAP kinase pathway to control mitogenic signals. Additionally, PTKs are also involved in the regulation of signal transmission from GPCRs to activation of the JNK/SAPK kinase pathway. Furthermore novel insights in chemokine receptor-activated PTKs and their role in mediating cell functions are discussed in this review.  相似文献   

11.
Cytokines are important regulators of hemopoiesis which exert their actions by binding to specific, high affinity, cell surface receptors. In the past several years, molecular cloning of these receptors has revealed a new superfamily referred to as the hemopoietic growth factor receptors. Members of this family are defined by a 200 amino acid conserved domain; however, it has become increasingly apparent that another characteristic of these receptors is the shared usage of a common signalling subunit among subgroups in this family. The shared signalling component explains the functional redundancy of many cytokines; however, the mechanism by which these receptors transduce a signal across the membrane is not yet clear. Studies into cytokine action have shown that many of the events that occur in response to ligand stimulation are similar to those observed for the better characterized intrinsic tyrosine kinase receptors. Thus, although the cytokine receptors do not possess intrinsic tyrosine kinase activity, these observations have led to a model of cytokine signal transduction adapted from the signalling mechanisms described for the tyrosine kinase receptors.  相似文献   

12.
Protein kinases: a diverse family of related proteins   总被引:9,自引:0,他引:9  
Homologies in amino-acid sequence indicate that all known protein kinases share a conserved catalytic core, and, thus, belong to a related family of proteins that have evolved in part from a common ancestoral origin. This family includes cellular kinases, oncogenic viral kinases and their protooncogene counterparts, and growth factor receptors. One of the simplest and certainly the best characterized of the protein kinases at the biochemical level is the kinase that is activated in response to cAMP. The properties of this cAMP-dependent protein kinase are reviewed with particular emphasis on the features of nucleotide binding and catalytic mechanism that are likely to be shared by all protein kinases. In spite of this conserved catalytic core, these kinases vary widely in overall structure and in the mechanisms by which each is regulated, and these differences also are compared.  相似文献   

13.
Natural history and functional divergence of protein tyrosine kinases   总被引:3,自引:0,他引:3  
Gu J  Gu X 《Gene》2003,317(1-2):49-57
Cellular signaling is important for many biological processes including growth, differentiation, adhesion, motility and apoptosis. The protein tyrosine kinase (PTK) supergene family is the key mediator in cellular signaling in metazoans, directly associated with a variety of human diseases. All PTKs contain a highly conserved catalytic kinase domain, in spite of variable multi-domain structures. Within each PTK gene family, members exhibit functional divergence in substrate-specificity or temporal/tissue-specific expression, although their primary function is conserved. After conducting phylogenetic analysis on major PTK gene families, we found that the expanding of each PTK family was likely caused by gene or genome duplication event(s) that occurred before the emergence of teleosts but after the vertebrate-amphioxus split. We further investigated the evolutionary pattern of functional divergence after gene duplication in those gene families. Our results show that site-specific shifted evolutionary rate (altered functional constraint) is a common pattern in PTK gene family evolution.  相似文献   

14.
WNK family protein kinases are large enzymes that contain the catalytic lysine in a unique position compared with all other protein kinases. These enzymes have been linked to a genetically defined form of hypertension. In this study we introduced mutations to test hypotheses about the position of the catalytic lysine, and we examined mechanisms involved in the regulation of WNK1 activity. Through the analysis of enzyme fragments and sequence alignments, we have identified an autoinhibitory domain of WNK1. This isolated domain, conserved in all four WNKs, suppressed the activity of the WNK1 kinase domain. Mutation of two key residues in this autoinhibitory domain attenuated its ability to inhibit WNK kinase activity. Consistent with these results, the same mutations in a WNK1 fragment that contain the autoinhibitory domain increased its kinase activity. We also found that WNK1 expressed in bacteria is autophosphorylated; autophosphorylation on serine 382 in the activation loop is required for its activity.  相似文献   

15.
The Eph (erythropoietin-producing hepatocellular carcinoma) B receptors are important in a variety of cellular processes through their roles in cell-to-cell contact and signalling; their up-regulation and down-regulation has been shown to have implications in a variety of cancers. A greater understanding of the similarities and differences within this small, highly conserved family of tyrosine kinases will be essential to the identification of effective therapeutic opportunities for disease intervention. In this study, we have developed a route to production of multi-milligram quantities of highly purified, homogeneous, recombinant protein for the kinase domain of these human receptors in Escherichia coli. Analyses of these isolated catalytic fragments have revealed stark contrasts in their amenability to recombinant expression and their physical properties: e.g., a >16°C variance in thermal stability, a 3-fold difference in catalytic activity and disparities in their inhibitor binding profiles. We find EphB3 to be an outlier in terms of both its intrinsic stability, and more importantly its ligand-binding properties. Our findings have led us to speculate about both their biological significance and potential routes for generating EphB isozyme-selective small-molecule inhibitors. Our comprehensive methodologies provide a template for similar in-depth studies of other kinase superfamily members.  相似文献   

16.
17.
Phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase constitute a family of tetrahydropterin-dependent aromatic amino acid hydroxylases. Comparison of the amino acid sequences of these three proteins shows that the C-terminal two-thirds are homologous, while the N-terminal thirds are not. This is consistent with a model in which the C-terminal two-thirds constitute a conserved catalytic domain to which has been appended discrete regulatory domains. To test such a model, two mutant proteins have been constructed, expressed in Escherichia coli, purified, and characterized. One protein contains the first 158 amino acids of rat tyrosine hydroxylase. The second lacks the first 155 amino acid residues of this enzyme. The spectral properties of the two domains suggest that their three-dimensional structures are changed only slightly from intact tyrosine hydroxylase. The N-terminal domain mutant binds to heparin and is phosphorylated by cAMP-dependent protein kinase at the same rate as the holoenzyme but lacks any catalytic activity. The C-terminal domain mutant is fully active, with Vmax and Km values identical to the holoenzyme; these results establish that all of the catalytic residues of tyrosine hydroxylase are located in the C-terminal 330 amino acids. The results with the two mutant proteins are consistent with these two segments of tyrosine hydroxylase being two separate domains, one regulatory and one catalytic.  相似文献   

18.
The haloacid dehalogenase (HAD) superfamily is a large family of proteins dominated by phosphotransferases. Thirty-three sequence families within the HAD superfamily (HADSF) have been identified to assist in function assignment. One such family includes the enzyme phosphoacetaldehyde hydrolase (phosphonatase). Phosphonatase possesses the conserved Rossmanniod core domain and a C1-type cap domain. Other members of this family do not possess a cap domain and because the cap domain of phosphonatase plays an important role in active site desolvation and catalysis, the function of the capless family members must be unique. A representative of the capless subfamily, PSPTO_2114, from the plant pathogen Pseudomonas syringae, was targeted for catalytic activity and structure analyses. The X-ray structure of PSPTO_2114 reveals a capless homodimer that conserves some but not all of the intersubunit contacts contributed by the core domains of the phosphonatase homodimer. The region of the PSPTO_2114 that corresponds to the catalytic scaffold of phosphonatase (and other HAD phosphotransfereases) positions amino acid residues that are ill suited for Mg+2 cofactor binding and mediation of phosphoryl group transfer between donor and acceptor substrates. The absence of phosphotransferase activity in PSPTO_2114 was confirmed by kinetic assays. To explore PSPTO_2114 function, the conservation of sequence motifs extending outside of the HADSF catalytic scaffold was examined. The stringently conserved residues among PSPTO_2114 homologs were mapped onto the PSPTO_2114 three-dimensional structure to identify a surface region unique to the family members that do not possess a cap domain. The hypothesis that this region is used in protein-protein recognition is explored to define, for the first time, HADSF proteins which have acquired a function other than that of a catalyst.  相似文献   

19.
Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles.  相似文献   

20.
Lipoprotein lipase (LPL) plays a central role in normal lipid metabolism as the key enzyme involved in the hydrolysis of triglycerides present in chylomicrons and very low density lipoproteins. LPL is a member of a family of hydrolytic enzymes that include hepatic lipase and pancreatic lipase. Based on primary sequence homology of LPL to pancreatic lipase, Ser-132, Asp-156, and His-241 have been proposed to be part of a domain required for normal enzymic activity. We have analyzed the role of these potential catalytic residues by site-directed mutagenesis and expression of the mutant LPL in human embryonic kidney-293 cells. Substitution of Ser-132, Asp-156, and His-241 by several different residues resulted in the expression of an enzyme that lacked both triolein and tributyrin esterase activities. Mutation of other conserved residues, including Ser-97, Ser-307, Asp-78, Asp-371, Asp-440, His-93, and His-439 resulted in the expression of active enzymes. Despite their effect on LPL activity, substitutions of Ser-132, Asp-156, and His-241 did not change either the heparin affinity or lipid binding properties of the mutant LPL. In summary, mutation of Ser-132, Asp-156, and His-241 specifically abolishes total hydrolytic activity without disrupting other important functional domains of LPL. These combined results strongly support the conclusion that Ser-132, Asp-156, and His-241 form the catalytic triad of LPL and are essential for LPL hydrolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号