首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
鱼类摄食代谢和运动代谢研究进展   总被引:4,自引:2,他引:4  
摄食和运动不仅是动物最主要的生理活动,同时也是机体代谢能量消耗的主要过程。相关研究表明鱼类摄食代谢主要由营养物质同化过程的耗能组成,其食物蛋白质同化耗能远低于陆生脊椎动物,而摄入营养物质不平衡可能导致摄食代谢耗能增加;鱼类摄食代谢和运动代谢上可能存在能量消耗与性能维持之间的权衡,且都可能受最大代谢能力限制。鱼类不仅在摄食和运动代谢的相对大小及其他特征上存在差异,而且在摄食和运动代谢竞争上存在不同的模式。从功率分配的角度,研究鱼类摄食和运动代谢特征及其与物种生态习性的关系将成为鱼类能量学研究的重要方向之一。  相似文献   

2.
In this article, we inquire into the intellectual history ofthe application of the biological concept of metabolism to social systems-not as a metaphor; but as a material and energetic process within the economy and society vis-A-vis various natural systems. The paper reviews several scientific traditions that may contribute to such a view, including biology and ecology, social theory, cultural anthropology, and social geography It assembles widely scattered approaches dating from the 1860s onward and shows how they prepare the ground for the pioneers of "industrial metabolism" in the late 1960s. In connection to varying political perspedives, metabolism gradually takes shape as a powerful interdisciplinary concept It will take another 25 years before this approach becomes one of the most important paradigms for the empirical analysis of the society-nature-interaction across various disciplines. This later period will be the subject of part II of this literature review  相似文献   

3.
Geo. H. Tuttle 《CMAJ》1930,22(2):285-286
  相似文献   

4.
5.
6.
Urban Metabolism     
Urban metabolism studies have been established for only a few cities worldwide, and difficulties obtaining adequate statistical data are universal. Constraints and peculiarities call for innovative methods to quantify the materials entering and leaving city boundaries. Such methods include the extrapolation of data at the country or the region level based, namely, on sales, population, commuters, workers, and waste produced.
The work described in this article offers a new methodology developed specifically for quantifying urban material flows, making possible the regular compilation of data pertinent to the characterization of a city's metabolism. This methodology was tested in a case study that characterized the urban metabolism of the city of Lisbon by quantifying Lisbon's material balance for 2004. With this aim, four variables were characterized and linked to material flows associated with the city: absolute consumption of materials/products per category, throughput of materials in the urban system per material category, material intensity of economic activities, and waste flows per treatment technology.
Results show that annual material consumption in Lisbon totals 11.223 million tonnes (20 tonnes per capita), and material outputs sum 2.149 million tonnes. Nonrenewable resources represent almost 80% of the total material consumption, and renewables consumption (biomass) constitutes only 18% of the total consumption. The remaining portion is made up of nonspecified materials.
A seemingly excessive consumption amount of nonrenewable materials compared to renewables may be the result of a large investment in building construction and a significant shift toward private car traveling, to the detriment of public transportation.  相似文献   

7.
8.
9.
《Cell》2012,148(3):383-385
  相似文献   

10.
11.
Society's Metabolism   总被引:1,自引:0,他引:1  
"Societal metabolism" provides the appropriate conceptual basis for the rapidly growing development and analylical and policy interest in materials flow analysis (MFA). Following the review of the earlier intellectual background of societal metabolism in the first installment of this two-part article, this paper focuses on the current state of the art by examining more recent research referring t o societal metabolism in terms of material and substance flows. An operational classification of the literature according to frame of reference (socioeconomic system, ecosystem), system level (global, national, regional, functional, temporal), and types of flows under consideration (materials, energy, substances) highlights some of its characteristic features. There follows an integrated discussion of some of the major conceptual and methodological properties of MFA, with a particular focus on the field of bulk materials flows on a national level, comparing the major empirical results. Finally, the theoretical stringency research productivity, and political relevance of the MFA-related studies are assessed.  相似文献   

12.
13.
14.
15.
Posttranslational modifications (PTMs) of proteins greatly expand proteome diversity, increase functionality, and allow for rapid responses, all at relatively low costs for the cell. PTMs play key roles in plants through their impact on signaling, gene expression, protein stability and interactions, and enzyme kinetics. Following a brief discussion of the experimental and bioinformatics challenges of PTM identification, localization, and quantification (occupancy), a concise overview is provided of the major PTMs and their (potential) functional consequences in plants, with emphasis on plant metabolism. Classic examples that illustrate the regulation of plant metabolic enzymes and pathways by PTMs and their cross talk are summarized. Recent large-scale proteomics studies mapped many PTMs to a wide range of metabolic functions. Unraveling of the PTM code, i.e. a predictive understanding of the (combinatorial) consequences of PTMs, is needed to convert this growing wealth of data into an understanding of plant metabolic regulation.The primary amino acid sequence of proteins is defined by the translated mRNA, often followed by N- or C-terminal cleavages for preprocessing, maturation, and/or activation. Proteins can undergo further reversible or irreversible posttranslational modifications (PTMs) of specific amino acid residues. Proteins are directly responsible for the production of plant metabolites because they act as enzymes or as regulators of enzymes. Ultimately, most proteins in a plant cell can affect plant metabolism (e.g. through effects on plant gene expression, cell fate and development, structural support, transport, etc.). Many metabolic enzymes and their regulators undergo a variety of PTMs, possibly resulting in changes in oligomeric state, stabilization/degradation, and (de)activation (Huber and Hardin, 2004), and PTMs can facilitate the optimization of metabolic flux. However, the direct in vivo consequence of a PTM on a metabolic enzyme or pathway is frequently not very clear, in part because it requires measurements of input and output of the reactions, including flux through the enzyme or pathway. This Update will start out with a short overview on the major PTMs observed for each amino acid residue (PTMs, including determination of the localization within proteins (i.e. the specific residues) and occupancy. Challenges in dealing with multiple PTMs per protein and cross talk between PTMs will be briefly outlined. We then describe the major physiological PTMs observed in plants as well as PTMs that are nonenzymatically induced during sample preparation (PTMs, in particular for enzymes in primary metabolism (Calvin cycle, glycolysis, and respiration) and the C4 shuttle accommodating photosynthesis in C4 plants (PTMs observed in plants
Amino Acid ResidueObserved Physiological PTM in PlantsPTMs Caused by Sample Preparation
Ala (A)Not known
Arg (R)Methylation, carbonylation
Asn (N)Deamidation, N-linked gycosylationDeamidation
Asp (D)Phosphorylation (in two-component system)
Cys (C)Glutathionylation (SSG), disulfide bonded (S-S), sulfenylation (-SOH), sulfonylation (-SO3H), acylation, lipidation, acetylation, nitrosylation (SNO), methylation, palmitoylation, phosphorylation (rare)Propionamide
Glu (E)Carboxylation, methylationPyro-Glu
Gln (Q)DeamidationDeamidation, pyro-Glu
Gly (G)N-Myristoylation (N-terminal Gly residue)
His (H)Phosphorylation (infrequent)Oxidation
Ile (I)Not known
Leu (L)Not known
Lys (K)N-ε-Acetylation, methylation, hydroxylation, ubiquitination, sumoylation, deamination, O-glycosylation, carbamylation, carbonylation, formylation
Met (M)(De)formylation, excision (NME), (reversible) oxidation, sulfonation (-SO2), sulfoxation (-SO)Oxidation, 2-oxidation, formylation, carbamylation
Phe (F)Not known
Pro (P)CarbonylationOxidation
Ser (S)Phosphorylation, O-linked glycosylation, O-linked GlcNAc (O-GlcNAc)Formylation
Thr (T)Phosphorylation, O-linked glycosylation, O-linked GlcNAc (O-GlcNAc), carbonylationFormylation
Trp (W)Glycosylation (C-mannosylation)Oxidation
Tyr (Y)Phosphorylation, nitration
Val (V)Not known
Free NH2 of protein N terminiPreprotein processing, Met excision, formylation, pyro-Glu, N-myristoylation, N-acylation (i.e. palmitoylation), N-terminal α-amine acetylation, ubiquitinationFormylation (Met), pyro-Glu (Gln)
Open in a separate window

Table II.

Most significant and/or frequent PTMs observed in plants
Type of PTM (Reversible, Except if Marked with an Asterisk)Spontaneous (S; Nonenzymatic) or Enzymatic (E)Comment on Subcellular Location and Frequency
Phosphorylation (Ser, Thr, Tyr, His, Asp)EHis and Asp phosphorylation have low frequency
S-Nitrosylation (Cys) and nitration* (Tyr)S (RNS), but reversal is enzymatic for Cys by thioredoxinsThroughout the cell
Acetylation (N-terminal α-amine, Lys ε-amine)EIn mitochondria, very little N-terminal acetylation, but high Lys acetylation; Lys acetylation correlates to [acetyl-CoA]
Deamidation (Gln, Asn)S, but reversal of isoAsp is enzymatic by isoAsp methyltransferaseThroughout the cell
Lipidation (S-acetylation, N-meristoylation*, prenylation*; Cys, Gly, Lys, Trp, N terminal)ENot (or rarely) within plastids, mitochondria, peroxisomes
N-Linked glycosylation (Asp); O linked (Lys, Ser, Thr, Trp)EOnly proteins passing through the secretory system; O linked in the cell wall
Ubiquination (Lys, N terminal)ENot within plastids, mitochondria, peroxisomes
Sumoylation (Lys)ENot within plastids, mitochondria, peroxisomes
Carbonylation* (Pro, Lys, Arg, Thr)S (ROS)High levels in mitochondria and chloroplast
Methylation (Arg, Lys, N terminal)EHistones (nucleus) and chloroplasts; still underexplored
Glutathionylation (Cys)EHigh levels in chloroplasts
Oxidation (Met, Cys)S (ROS) and E (by PCOs; see Fig. 1B), but reversal is enzymatic by Met sulfoxide reductases, glutaredoxins, and thioredoxins, except if double oxidizedHigh levels in mitochondria and chloroplast
Peptidase* (cleavage peptidyl bond)EThroughout the cell
S-Guanylation (Cys)S (RNS)Rare; 8-nitro-cGMP is signaling molecule in guard cells
Formylation (Met)S, but deformylation is enzymatic by peptide deformylaseAll chloroplasts and mitochondria-encoded proteins are synthesized with initiating formylated Met
Open in a separate window

Table III.

Regulation by PTMs in plant metabolism and classic examples of well-studied enzymes and pathwaysMany of these enzymes also undergo allosteric regulation through cellular metabolites. GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; PRK, phosphoribulokinase.
ProcessEnzymesPTMs, Protein Modifiers, LocalizationReferences
Calvin-Benson cycle (chloroplasts)Many enzymesOxidoreduction of S-S bonds, reversible nitrosylation, glutathionylation; through ferredoxin/ferredoxin-thioredoxin reductase/thioredoxins (mostly f and m) and glutaredoxins; proteomics studies in Arabidopsis and C. reinhardtiiMichelet et al. (2013)
RubiscoMethylation, carbamylation, acetylation, N-terminal processing, oligomerization; classical studies in pea (Pisum sativum), spinach (Spinacia oleracea), and ArabidopsisHoutz and Portis (2003); Houtz et al. (2008)
GAPDH/CP12/PRK supercomplexDynamic heterooligomerization through reversible S-S bond formation controlled by thioredoxinsGraciet et al. (2004); Michelet et al. (2013); López-Calcagno et al. (2014)
GlycolysisCytosolic PEPCPhosphorylation (S, T), monoubiquitinationO’Leary et al. (2011)
PhotorespirationSeven enzymes are phosphorylatedPhosphorylation from meta-analysis of public phosphoproteomics data for Arabidopsis; located in chloroplasts, peroxisomes, mitochondriaHodges et al. (2013)
Maize glycerate kinaseRedox-regulated S-S bond; thioredoxin f; studied extensively in chloroplasts of C4 maizeBartsch et al. (2010)
Respiration (mitochondria)Potentially many enzymes, but functional/biochemical consequences are relatively unexploredRecent studies suggested PTMs for many tricarboxylic acid cycle enzymes, including Lys acetylation and thioredoxin-driven S-S formation; in particular, succinate dehydrogenase and fumarase are inactivated by thioredoxinsLázaro et al. (2013); Schmidtmann et al. (2014); Daloso et al. (2015)
PDHSer (de)phosphorylation by intrinsic kinase and phosphatase; ammonia and pyruvate control PDH kinase activity; see Figure 1BThelen et al. (2000); Tovar-Méndez et al. (2003)
C4 cycle (C3 and C4 homologs also involved in glycolysis and/or gluconeogenesis)Pyruvate orthophosphate dikinasePhosphorylation by pyruvate orthophosphate dikinase-RP, an S/T bifunctional kinase-phosphatase; in chloroplastsChastain et al. (2011); Chen et al. (2014)
PEPCPhosphorylation; allosteric regulation by malate and Glc-6-P; in cytosol in mesophyll cells in C4 species (e.g. Panicum maximum); see Figure 1AIzui et al. (2004); Bailey et al. (2007)
PEPC kinaseUbiquitination resulting in degradation (note also diurnal mRNA levels and linkage to activity level; very low protein level); in cytosol in mesophyll cells in C4 species (e.g. Flaveria spp. and maize)Agetsuma et al. (2005)
PEPC kinasePhosphorylation in cytosol in bundle sheath cellsBailey et al. (2007)
Starch metabolism (chloroplasts)ADP-Glc pyrophosphorylaseRedox-regulated disulfide bonds and dynamic oligomerization; thioredoxins; see Figure 1CGeigenberger et al. (2005); Geigenberger (2011)
Starch-branching enzyme IIPhosphorylation by Ca2+-dependent protein kinase; P-driven heterooligomerizationGrimaud et al. (2008); Tetlow and Emes (2014)
Suc metabolism (cytosol)SPS (synthesis of Suc)(De)phosphorylation; SPS kinase and SPS phosphatase; 14-3-3 proteins; cytosol (maize and others)Huber (2007)
Suc synthase (breakdown of Suc)Phosphorylation; Ca2+-dependent protein kinase; correlations to activity, localization, and turnoverDuncan and Huber (2007); Fedosejevs et al. (2014)
Photosynthetic electron transport (chloroplast thylakoid membranes)PSII core and light-harvesting complex proteins(De)phosphorylation by state-transition kinases (STN7/8) and PP2C phosphatases (PBCP and PPH1/TAP38)Pesaresi et al. (2011); Tikkanen et al. (2012); Rochaix (2014)
Nitrogen assimilationNitrate reductase(De)phosphorylation; 14-3-3 proteinsLillo et al. (2004); Huber (2007)
Open in a separate windowThere are many recent reviews focusing on specific PTMs in plant biology, many of which are cited in this Update. However, the last general review on plant PTMs is from 2010 (Ytterberg and Jensen, 2010); given the enormous progress in PTM research in plants over the last 5 years, a comprehensive overview is overdue. Finally, this Update does not review allosteric regulation by metabolites or other types of metabolic feedback and flux control, even if this is extremely important in the regulation of metabolism and (de)activation of enzymes. Recent reviews for specific pathways, such as isoprenoid metabolism (Kötting et al., 2010; Banerjee and Sharkey, 2014; Rodríguez-Concepción and Boronat, 2015), tetrapyrrole metabolism (Brzezowski et al., 2015), the Calvin-Benson cycle (Michelet et al., 2013), starch metabolism (Kötting et al., 2010; Geigenberger, 2011; Tetlow and Emes, 2014), and photorespiration (Hodges et al., 2013) provide more in-depth discussions of metabolic regulation through various posttranslational mechanisms. Many of the PTMs that have been discovered in the last decade through large-scale proteomics approaches have not yet been integrated in such pathway-specific reviews, because these data are not always easily accessible and because the biological significance of many PTMs is simply not yet understood. We hope that this Update will increase the general awareness of the existence of these PTM data sets, such that their biological significance can be tested and incorporated in metabolic pathways.  相似文献   

16.
17.
18.
19.
20.
More Metabolism!     
《Molecular cell》2021,81(18):3659-3664
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号