首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A majority of cortical areas are connected via feedforward and feedback fiber projections. In feedforward pathways we mainly observe stages of feature detection and integration. The computational role of the descending pathways at different stages of processing remains mainly unknown. Based on empirical findings we suggest that the top-down feedback pathways subserve a context-dependent gain control mechanism. We propose a new computational model for recurrent contour processing in which normalized activities of orientation selective contrast cells are fed forward to the next processing stage. There, the arrangement of input activation is matched against local patterns of contour shape. The resulting activities are subsequently fed back to the previous stage to locally enhance those initial measurements that are consistent with the top-down generated responses. In all, we suggest a computational theory for recurrent processing in the visual cortex in which the significance of local measurements is evaluated on the basis of a broader visual context that is represented in terms of contour code patterns. The model serves as a framework to link physiological with perceptual data gathered in psychophysical experiments. It handles a variety of perceptual phenomena, such as the local grouping of fragmented shape outline, texture surround and density effects, and the interpolation of illusory contours. Received: 28 October 1998 / Accepted in revised form: 19 March 1999  相似文献   

2.
Alzheimer''s disease (AD), a progressive neurodegenerative disorder that is the most common cause of dementia in the elderly, is characterized by the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles, as well as a progressive loss of synapses and neurons in the brain. The major pertinacious component of amyloid plaques is Aβ, a variably sized peptide derived from the integral membrane protein amyloid precursor protein (APP). The Aβ region of APP locates partly within its ecto- and trans-membrane domains. APP is cleaved by three proteases, designated as α-, β-, and γ-secretases. Processing by β- and γ-secretase cleaves the N- and C-terminal ends of the Aβ region, respectively, releasing Aβ, whereas α-secretase cleaves within the Aβ sequence, releasing soluble APPα (sAPPα). The γ-secretase cleaves at several adjacent sites to yield Aβ species containing 39–43 amino acid residues. Both α- and β-cleavage sites of human wild-type APP are located in APP672–699 region (ectodomain of β-C-terminal fragment, ED-β-CTF or ED-C99). Therefore, the amino acid residues within or near this region are definitely pivotal for human wild-type APP function and processing. Here, we report that one ED-C99-specific monoclonal antibody (mAbED-C99) blocks human wild-type APP endocytosis and shifts its processing from α- to β-cleavage, as evidenced by elevated accumulation of cell surface full-length APP and β-CTF together with reduced sAPPα and α-CTF levels. Moreover, mAbED-C99 enhances the interactions of APP with cholesterol. Consistently, intracerebroventricular injection of mAbED-C99 to human wild-type APP transgenic mice markedly increases membrane-associated β-CTF. All these findings suggest that APP672–699 region is critical for human wild-type APP processing and may provide new clues for the pathogenesis of sporadic AD.Abnormal functioning and/or processing of amyloid precursor protein (APP), a type I membrane protein, has a pivotal role in the pathogenesis of Alzheimer''s disease (AD).1, 2, 3 APP is cleaved by three proteases, designated as α-, β-, and γ-secretases (Supplementary Figure S1). The major fraction (>90%) of wild-type APP is proteolyzed by α-secretase that cleaves wild-type APP between residues APP687 and APP688 within the amyloid-β (Aβ) sequence, releasing soluble APPα (sAPPα) and α-C-terminal fragment (α-CTF, C83). Only a minority (<10%) of all wild-type APP molecules undergo β-cleavage at the β-cleavage site (between residues APP671 and APP672) generating sAPPβ and β-CTF (C99), the latter of which is subsequently processed by γ-secretase complex to generate a mixture of Aβ peptides primarily 40 or 42 residues in length (Aβ1-40/42).4, 5 The β-secretase cleaves APP in addition at a β′-site (between residues APP681 and APP682) to generate C89 that is further processed by γ-secretase to produce truncated Aβ11–40/42 species.6Both α- and β-cleavage sites of wild-type APP are located in APP672–699 region (the ectodomain of β-CTF, ED-β-CTF, or ED-C99; Supplementary Figure S1). Therefore, the amino acid residues within or near this region are definitely pivotal for wild-type APP function and processing. Previous studies have identified that mutation in ED-C99 region can affect the physiological processing of APP and contribute to pathological features of familial AD (fAD). For example, Swedish APP carrying APP670/671 mutation (KM→NL) is cleaved by β-secretase over 50-fold more efficiently than wild-type APP.7 APP673 mutation (A→V) and APP693 mutation (E→G) can enhance Aβ production and accelerate formation of amyloid fibrils.8, 9, 10 APP682 mutation (E→K) blocks APP β′-site and shifts cleavage to β-site, thus increasing Aβ1–40/42 production.6 Although sporadic AD (sAD), the more common type of AD comprising 90 to 95% of all AD cases, lacks mutations in the APP gene, region-specific protein modifications within the ED-C99 region may affect wild-type APP processing similarly to APP gene mutations. For example, phosphorylation of ED-C99 at the threonine 687 (of APP770 isoform, or corresponding threonine 668 of APP751 isoform; Supplementary Figure S1) facilitates APP processing by γ-secretase.11 Therefore, the elucidation of potential influences of region-specific modifications, induced by either endogenous or exogenous molecules, on wild-type APP processing would be especially critical for clarifying the mechanisms underlying the pathogenesis of sAD.To confirm this hypothesis, we used one mouse monoclonal antibody specifically recognizing ED-C99 (mAbED-C99) with its epitope at APP674–679 (Supplementary Figure S1). The influences of mAbED-C99 binding on human wild-type APP processing were evaluated in vitro using Chinese hamster ovary cells expressing human wild-type APP (CHO/APPwt cells) and cortical neurons derived from human wild-type APP transgenic (TgAPPwt) mice. The in vitro effects of ED-C99 binding with mAbED-C99 on wild-type APP processing were further evaluated and confirmed in vivo using TgAPPwt mice and 5 × FAD transgenic mice (Tg6799 line).  相似文献   

3.
Eicosanoid production by parasites: from pathogenesis to immunomodulation?   总被引:5,自引:0,他引:5  
In this review, Adam Belley and Kris Chadee discuss eicosanoid production by various parasites and propose roles they may play in pathogenesis and immunomodulation. The commonality between parasites is prostaglandin production and, therefore, special attention is given to the cyclooxygenase pathway, highlighting the enzymes and functions of prostaglandins.  相似文献   

4.
5.
降水-生产力的空间关系是否稳定不变? 降水是全球陆地生态系统中植被生长和净初级生产力的主要驱动因素。因此,探究降水和生产力关系有助于深入了解气候变化如何改变生态系统功能。降水-生产力的空间关系在全球不同草地上非常相似,但在连续多年气候异常的情况下,这种关系是否会发生变化以及如何变化尚不清楚。本研究利用 利用中国北方温带草地长达10年低于多年平均降水的时期,基于遥感植被指数数据,量化了区域尺度上降水-植被生产力关系在持续多年的干湿期之间将如何变化。结果表明,在连续10年的干期,降水-生产力空间相关性急剧下降,而该空间关系的下降主要是由于不同草原类型对干旱的响应在空间上存在高度的异质性,即不同生态系统对干旱的响应程度存在差异。因此,如果未来气候变化进一步加剧全球草地的干旱,那么基于历史时期(平水期)得到的降水-生产力空间关系推测区域尺度植被生产力可能导致误差。  相似文献   

6.
7.
Bacillus megaterium has been industrially employed for more than 50 years, as it possesses some very useful and unusual enzymes and a high capacity for the production of exoenzymes. It is also a desirable cloning host for the production of intact proteins, as it does not possess external alkaline proteases and can stably maintain a variety of plasmid vectors. Genetic tools for this species include transducing phages and several hundred mutants covering the processes of biosynthesis, catabolism, division, sporulation, germination, antibiotic resistance, and recombination. The seven plasmids of B. megaterium strain QM B1551 contain several unusual metabolic genes that may be useful in bioremediation. Recently, several recombinant shuttle vectors carrying different strong inducible promoters and various combinations of affinity tags for simple protein purification have been constructed. Leader sequences-mediated export of affinity-tagged proteins into the growth medium was made possible. These plasmids are commercially available. For a broader application of B. megaterium in industry, sporulation and protease-deficient as well as UV-sensitive mutants were constructed. The genome sequence of two different strains, plasmidless DSM319 and QM B1551 carrying seven natural plasmids, is now available. These sequences allow for a systems biotechnology optimization of the production host B. megaterium. Altogether, a “toolbox” of hundreds of genetically characterized strains, genetic methods, vectors, hosts, and genomic sequences make B. megaterium an ideal organism for industrial, environmental, and experimental applications.  相似文献   

8.
9.
In this study, a three-stage-integrated process using the hydrogenic process (BioH2), methanogenic process (BioCH4), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L?1, and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H2 L?1 day?1, methane production rate of 311 ± 18.94 mL-CH4 L?1 day?1, and production rate per electrode surface area of 10.8 ± 1.4 g m?2 day?1. The three-stage integration system generated energy production of 32.32 kJ g-COD?1 and achieved COD removal of 98 %. The contribution of BioH2, BioCH4, and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.  相似文献   

10.
  1. Download : Download high-res image (255KB)
  2. Download : Download full-size image
  相似文献   

11.
In this study, the alkaline twin-screw extrusion pretreated corn stover was subjected to enzymatic hydrolysis after washing. The impact of solid loading and enzyme dose on enzymatic hydrolysis was investigated. It was found that 68.2 g/L of total fermentable sugar could be obtained after enzymatic hydrolysis with the solid loading of 10 %, while the highest sugar recovery of 91.07 % was achieved when the solid loading was 2 % with the cellulase dose of 24 FPU/g substrate. Subsequently, the hydrolyzate was fermented by Clostridium acetobutylicum ATCC 824. The acetone–butanol–ethanol (ABE) production of the hydrolyzate was compared with the glucose, xylose and simulated hydrolyzate medium which have the same reducing sugar concentration. It was shown that 7.1 g/L butanol and 11.2 g/L ABE could be produced after 72 h fermentation for the hydrolyzate obtained from enzymatic hydrolysis with 6 % solid loading. This is comparable to the glucose and simulated hydrozate medium, and the overall ABE yield could reach 0.112 g/g raw corn stover.  相似文献   

12.
Basking by ectothermic vertebrates is thought to have evolved for thermoregulation. However, another beneficial effect of sunlight exposure, specifically the ultraviolet B (UV-B) component, includes endogenous production of vitamin D(3). In the laboratory, panther chameleons exhibited a positive phototaxis to greater visible, ultraviolet A (UV-A) and UV-B light. However, with equivalent high irradiances of UV-A or UV-B, their response to UV-B was significantly greater than it was to UV-A. Exposure of in vitro skin patches of panther chameleons to high UV-B (90 microW/cm(2)) for 1 h significantly enhanced vitamin D(3) concentration. Voluntary exposure to higher UV-B irradiance (70 vs. 1 microW/cm(2)) resulted in greater circulating 25-hydroxyvitamin D(3) in female panther chameleons (604 vs. 92 ng/mL). Depending on dietary intake of vitamin D(3), chameleons adjusted their exposure time to UV-B irradiation as if regulating their endogenous production of this vital hormone. When dietary intake was low (1-3 IU/g), they exposed themselves to significantly more UV-producing light; when intake was high (9-129 IU/g), they exposed themselves to less. Vitamin D(3) photoregulation seems to be an important additional component of the function of basking.  相似文献   

13.
An aminopeptidase from Aspergillus oryzae 460 was purified from the rivanol precipitable fraction. The partially purified enzyme was not homogeneous in disc electrophoresis, although symmetric profiles were obtained for enzyme protein and activity in Sephadex gel filtration. Its optimum pH is at pH 8.5 for l-leucyl-β-naphthylamide. The enzyme activity was inhibited by metal chelating agents and S-S dissociating agents, but not inhibited by SH reagents. The molecular weight of the enzyme was estimated to be about 26,500 by gel filtration. The enzyme was named leucine aminopeptidase I of Asp. oryzae 460, since it preferentially hydrolyzed oligopeptides that possess leucine as the amino terminal amino acid.  相似文献   

14.
Soil isolates of mesophilic Penicillium monoverticillium CFR 2, Aspergillus flavus CFR 10 and Fusarium oxysporum CFR 8 were cultivated in solid state fermentation (SSF) using wheat bran solid medium supplemented with α-chitin in order to produce chitinolytic enzyme. Under SSF cultivation, maximum enzymes (U/g IDS) production was 41.0 (endo-chitinase) and 195.4 (β-N-acetylhexosaminidase) by P. monoverticillium, 26.8 (endo-chitinase) and 222.1 (β-N-acetylhexosaminidase) by A. flavus and 13.3 (endo-chitinase) and 168.3 (β-N-acetylhexosaminidase) by F. oxysporum after 166?h of incubation. The crude endo-chitinase and β-N-acetylhexosaminidase derived from A. flavus and F. oxysporum revealed optimum temperature at 62?±?1°C, but the enzymes from P. monoverticillium showed optimum temperature at 52?±?1°C for maximum activity. Several fold increase in endo-chitinase and β-N-acetylhexosaminidase activities in the crude enzymes preparation was achieved after concentrating with polyethylene glycol. The concentrated crude chitinases from P. monoverticillium, A. flavus and F. oxysporum, respectively yielded 95.6, 96.6 and 96.1?mmol/l of N-acetyl-D: -glucosamine (GlcNAc) in 48?h of reaction from colloidal chitin. While, the crude enzyme preparations of P. monoverticillium, A. flavus and F. oxysporum produced 10.11, 6.85 and 10.7?mmol/l of GlcNAc respectively, in 48?h of reaction from crystalline α-chitin. HPLC analysis of colloidal chitin hydrolysates prepared with crude chitinases derived from P. monoverticillium, A. flavus and F. oxysporum revealed that the major reaction product was monomeric GlcNAc (~80%) and a small amount of (GlcNAc)(4) (~20%), indicating the potential of these enzymes for efficient production of GlcNAc from α-chitin.  相似文献   

15.
16.
Pyrococcus furiosus β-glucosidase converted rutin to quercetin and rutinose disaccharide with a ratio of 1:1, with no glucose, l-rhamnose, and isoquercitrin, indicating that the enzyme is a β-rutinosidase. The specific activity for flavonoid glycosides followed the order of isoquercitrin > quercitrin > rutin. The conversion of rutin to quercetin was optimal at pH 5.0 and 95°C in the presence of 0.5% dimethyl sulfoxide with a half-life of 101 h, a k cat of 1.6 min−1, and a K m of 0.3 mM. Under the improved conditions, the enzyme produced 6.5 mM quercetin from 10 mM rutin after 150 min, with a molar yield of 65% and a productivity of 2.6 mM/h. This productivity is the highest reported thus far among enzymatic transformations.  相似文献   

17.
Epithelial sheets often present a “cobblestone” appearance, but the mechanisms underlying the dynamics of this arrangement are unclear. In this issue, Choi et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201506115) show that afadin and ZO-1 regulate tension and maintain zonula adherens architecture in response to changes in contractility.The textbook view of epithelial cells is that once such cells adopt a close, hexagonal packing, their “honeycomb” or “cobblestone” arrangement is static. This fixed appearance is misleading, as these cells are more like players in a rugby scrum, locked in a tussle in which the forces exerted by each of the players on the others maintains their seemingly static arrangement, but by a very dynamic force balance. How such balance is maintained in epithelia is a subject of substantial interest. A crucial role is played by F-actin and nonmuscle myosin II isoforms, which are deployed in contractile networks that transiently attach to cell–cell junctions to generate tensile forces along cell–cell boundaries (Lecuit and Yap, 2015). Contractile arrays of actomyosin are regulated by the monomeric G protein Rho, its upstream regulators, including Rho guanine nucleotide exchange factors (Quiros and Nusrat, 2014), and its effectors ROCK/Rho kinase and Shroom3 (Nishimura and Takeichi, 2008), but also by tension-mediated feedback between the myosin network and the junction (Lecuit and Yap, 2015). Cell–cell adhesion, including cadherin-dependent adhesion, also plays a crucial role in this process. As cells engage with one another via interactions of the extracellular domains of their cadherin complexes, they transduce forces to the actomyosin cytoskeleton through catenins. β-Catenin binds to the cytoplasmic domain of classical cadherins and recruits α-catenin, which binds F-actin.Given the dynamic nature of epithelia, the attachment of contractile actomyosin networks to junctions are also subject to regulation. One aspect of epithelial architecture that has received relatively little attention is that a typical epithelial monolayer (Fig. 1 A) displays two main types of cell–cell interfaces: bilateral junctions (BCJs), in which two cells establish a relatively long stretch of contact, and cellular vertices, which represent a confluence of three or more cell edges to form tricellular junctions (TCJs) or multicellular junctions. TCJs are not well understood, but are known to contain unique molecular components (Furuse et al., 2014; Flores-Benitez and Knust, 2015). In this issue, Choi et al. show that the multivalent scaffolding proteins afadin and ZO-1/2 regulate the spacing of and tension along lateral contacts in cultured cells, thereby shedding light on how contractile arrays containing bilateral and tri- or multicellular contact points are regulated in epithelia.Open in a separate windowFigure 1.ZO proteins and afadin regulate junctional tension and organization in cultured cells. (A) Untreated MDCK cells have sinuous cell boundaries, whereas ZO KD cells show extremely straight boundaries. When ZO proteins and afadin are knocked down, cells adopt contact zones of irregular length with other cells, sometimes clustering into foci (asterisks). Images courtesy of Mark Peifer (Choi et al., 2016). (B) A model for actomyosin organization at adherens junctions (adapted from Choi et al., 2016). Contractile actomyosin arrays run parallel to bicellular junctions and are anchored by side-on attachments (pink circles). At TCJs, end-on binding of actin, likely stabilized by afadin, anchors actomyosin filaments. In ZO KD cells, contractile elements and cadherin complexes collapse toward TCJs, and myosin minifilaments adopt a regularly spaced arrangement.Afadin and ZO-1/2 are far from new players at junctions. Afadin binds α-catenin, actin, and other cytoskeletal and junctional proteins and associates with the transmembrane protein nectin, which appears to form an alternative adhesion system at adherens junctions (Mandai et al., 2013). The zonula occludens proteins ZO-1 and ZO-2 are tight junction proteins that bind claudins and are required for tight junction formation (Itoh et al., 1999; Balda and Matter, 2008). In addition, ZO proteins also bind to α-catenin (Itoh et al., 1997), are involved in establishing the zonula adherens (ZA; Ikenouchi et al., 2007), and potentiate cadherin-dependent adhesion in Caenorhabditis elegans (Lockwood et al., 2008) and Drosophila melanogaster (Choi et al., 2011). Knockdown of ZO-1 and ZO-2 (ZO KD) in MDCK cells has previously been shown (Fanning et al., 2012) to lead to dramatic alterations of the ZA: F-actin and myosin IIs assemble into striking apical arrays at the ZA, spaced at regular intervals. In addition, the normally sinuous boundaries between cells give way to very straight borders (Fig. 1 A).Using superresolution microscopy, diffraction-limited junctional laser ablation, cell morphometry, kinetic analysis, and a whole-monolayer approach to contractility, Choi et al. (2016) now extend this story. To test whether contractility is increased after ZO KD, the authors first measured the recoil after laser ablation of ZO KD cells; an increase in recoil velocity indicated that the straight junctional boundaries between ZO-depleted cells are under tension. Imaging analysis of BCJs showed that the increase in contractility in ZO KD cells is associated with a strikingly dynamic behavior of the BCJs. Individual BCJs were found to undergo periods of shortening and elongation, whereas neighboring BCJs underwent compensatory, opposite changes in length. These changes in contractility have effects on the entire tissue sheet as well: whereas control cell sheets remained flat when detached from the substratum, ZO KD cells contracted into a cup-like shape. This constriction was blocked by the myosin inhibitor blebbistatin. Overall, these experiments indicated that ZO proteins regulate myosin assembly and contractility across the cellular sheet.To dissect the protein network mediating increased contractility in ZO KD cells, Choi et al. (2016) examined the role of ROCK and found that ROCK inhibitors abolished the straight BCJs, which became curvilinear. Additionally, Shroom3, which is known to recruit ROCK (Nishimura and Takeichi, 2008), was cytoplasmic in control cells but junctional in ZO KD cells. Transient Shroom3 overexpression led to ROCK recruitment to the ZA and drove formation of an actomyosin network similar to that in ZO KD cells. Conversely, Shroom3 knockdown resulted in loss of the actomyosin arrays in ZO KD cells. Collectively, these data indicated that Shroom3 is an effector of increased apical contractility in ZO KD cells.The researchers used ZO KD cells to test how tissue integrity is maintained despite elevated contractibility and how junctions are remodeled to maintain integrity when increased tension is present. Afadin is a good candidate: the Drosophila homologue of afadin, Canoe, plays roles in convergent extension and collective cell migration; in its absence, actomyosin networks at the apex of constricting epithelial cells in the embryo contract in a catastrophic, uncontrolled fashion (Sawyer et al., 2009), suggesting a potential role for afadin in the maintenance of tissue integrity during morphogenetic movements. Choi et al. (2016) therefore turned their attention to afadin. ZO KD cells have significantly more afadin at their adherens junctions and TCJs, a pattern reminiscent of the normal distribution of Canoe in Drosophila (Sawyer et al., 2009). Knocking down afadin by shRNA in ZO KD cells led to further defects in cell–cell boundary maintenance. In addition to the taut appearance of bicellular borders, cell boundary length became much more irregular, with occasional foci of highly contracted cells (Fig. 1 A). Velocimetry analysis and live-cell imaging indicated that loss of both ZO proteins and afadin led to large-scale cell movements within the monolayer not seen after ZO KD alone.New imaging techniques used by Choi et al. (2016) revealed further details about the changes in actomyosin arrays in ZO KD cells. Superresolution imaging of myosin light chain kinase staining via structured illumination showed that myosin II assembles into arrays of myosin minifilaments spaced ∼415 nm apart along bicellular contacts. Superresolution and transmission electron microscopy also revealed reorganization of F-actin and E-cadherin at TCJs in ZO KD cells. Lateral F-actin bundles appeared to terminate end-on at TCJs at sites where E-cadherin was present. ZO KD therefore induces assembly of a remarkably ordered actomyosin array along BCJs, and these arrays appear to be separate contractile units that anchor end-on at the ZA. Moreover, based on staining for vinculin and a specific epitope in αE-catenin that serve as markers for regions under high tension (Yonemura et al., 2010), the end-on attachments of actin cables to the ZA at TCJs experience significant tensile stress. Strikingly, although vinculin and αE-catenin accumulation at TCJs was relatively uniform after ZO KD, their distribution was more heterogeneous after ZO/afadin KD. Differences in staining paralleled differences in cell border length and correlated with the level of tension measured at BCJs after laser cutting, suggesting that afadin contributes to the ability of cells to distribute forces at TCJ/multicellular junctions throughout the monolayer. Lastly, the researchers investigated whether internal cues downstream of ZO KD are sufficient for myosin recruitment or whether such recruitment depends on mechanical cues exerted by neighboring cells. They designed an assay mixing small islands of wild-type cells surrounded by ZO KD cells (or vice versa) and found that the development of the contractile array at the ZA depends on the contractility of neighboring cells; however, afadin recruitment to the ZA was less dependent on the sustained contractility of neighboring cells. Taking these data together, Choi et al. (2016) propose that cells respond to elevated contractility by increasing junctional afadin; because combined ZO/afadin knockdown dramatically alters cell shape and barrier function in response to elevated contractility, afadin acts as a robust scaffold that maintains ZA architecture most crucially at TCJs.Although many aspects of the model proposed by Choi et al. (2016) remain to be tested, their data suggest new features regarding the detailed assembly of actomyosin contractile arrays in confluent cells (Fig. 1 B). In control cells, actomyosin arrays presumably extend parallel to individual BCJs. Choi et al. (2016) propose that these actomyosin bundles act as separate contractile units that terminate near TCJs, allowing the generation of tension along BCJs. In ZO KD cells, excessive assembly of actomyosin filaments, perhaps exacerbated by the tendency of F-actin/myosin minifilament arrays to self-assemble, somehow leads to regularly spaced actomyosin arrays, and perhaps collapse of cadherin complexes and other components toward TCJs. There is a precedent for such lateral collapse of cadherin-dependent attachments: it is a prominent feature of cadherin complexes at sites of high tension in the epidermis of the C. elegans embryo (Choi et al., 2015). If the new model of Choi et al. (2016) is correct, then the foci seen in ZO KD/afadin KD cells may be similar to what happens in a game of tug of war when one team stops pulling. If some end-on attachments (assisted by afadin) fail, filaments might be expected to collapse along BCJs as the other, still tethered end of a set of filaments contracts toward the remaining attachment at the opposite cell vertex.Several other interesting questions remain. First, what is the relationship of the striking, regularly spaced bipolar myosin II minifilaments that form in ZO KD cells to myosin arrays in normal cells? It is clear that untreated cells have junctional actomyosin networks, but not with this strict periodicity. One possibility is that this spacing is simply an epiphenomenon; when not appropriately anchored along junctions, actomyosin networks may self-organize as they are known to do in other systems, such as in the contractile ring and in migrating cells (Srivastava et al., 2015; Fenix et al., 2016). More optimistically, the spacing may represent an intensified version of processes that operate in normal cells at bicellular and multicellular contact sites. If so, components of the model of Choi et al. (2016) will require further investigation. For example, the organization of F-actin along BCJs remains unclear, as are the proteins that mediate the side-on binding envisioned in this model. It is also uncertain whether proteins assist bundling of filaments and what role dynamic growth and shrinkage of actin filaments plays in end-on binding. In some contexts, junctions are capable of seeding polymerization of F-actin (Brieher and Yap, 2013), and it may be that actin dynamics are important in the processes studied here.A second question has to do with the community events within monolayers that Choi et al. (2016) describe. The neighbor effects on ZA morphology that they document are intriguing, as are the long-range accelerated movements of cells lacking both ZO proteins and afadin. Collective properties of monolayers are only beginning to be explored; connecting these properties with subcellullar events is an exciting future challenge. Whatever the answers to these new questions, the work of Choi et al. (2016) refines our understanding of the roles of key scaffolding proteins in organizing and anchoring junctions in epithelia.  相似文献   

18.
Reaching is a well-practiced functional task crucial to daily living activities, and temporal–spatial measures of reaching reflect function for both adult and pediatric populations with upper-extremity motor impairments. Inertial sensors offer a mobile and inexpensive tool for clinical assessment of movement. This research outlines a method for measuring temporal–spatial reach parameters using inertial sensors, and validates these measures with traditional marker-based motion capture. 140 reaches from 10 adults, and 30 reaches from nine children aged 18–20 months, were recorded and analyzed using both inertial-sensor and motion-capture methods. Inertial sensors contained three-axis accelerometers, gyroscopes, and magnetometers. Gravitational offset of accelerometer data was measured when the sensor was at rest, and removed using sensor orientation measured at rest and throughout the reach. Velocity was calculated by numeric integration of acceleration, using a null-velocity assumption at reach start. Sensor drift was neglected given the 1–2 s required for a reach. Temporal–spatial reach parameters were calculated independently for each data acquisition method. Reach path length and distance, peak velocity magnitude and timing, and acceleration at contact demonstrated consistent agreement between sensor- and motion-capture-based methods, for both adult and toddler reaches, as evaluated by intraclass correlation coefficients from 0.61 to 1.00. Taken together with actual difference between method measures, results indicate that these functional reach parameters may be reliably measured with inertial sensors.  相似文献   

19.
20.
Background aimsAdoptive immunotherapy with the use of chimeric antigen receptor (CAR)-engineered T cells specific for CD19 has shown promising results for the treatment of B-cell lymphomas and leukemia. This therapy involves the transduction of autologous T cells with a viral vector and the subsequent cell expansion. We describe a new, simplified method to produce anti-CD19-CAR T cells.MethodsT cells were isolated from peripheral blood mononuclear cell (PBMC) with anti-CD3/anti-CD28 paramagnetic beads. After 2 days, the T cells were added to culture bags pre-treated with RetroNectin and loaded with the retroviral anti-CD19 CAR vector. The cells, beads and vector were incubated for 24 h, and a second transduction was then performed. No spinoculation was used. Cells were then expanded for an additional 9 days.ResultsThe method was validated through the use of two PBMC products from a patient with B-cell chronic lymphoblastic leukemia and one PBMC product from a healthy subject. The two PBMC products from the patient with B-cell chronic lymphoblastic leukemia contained 11.4% and 12.9% T cells. The manufacturing process led to final products highly enriched in T cells with a mean CD3+ cell content of 98%, a mean expansion of 10.6-fold and a mean transduction efficiency of 68%. Similar results were obtained from the PBMCs of the first four patients with acute lymphoblastic leukemia treated at our institution.ConclusionsWe developed a simplified, semi-closed system for the initial selection, activation, transduction and expansion of T cells with the use of anti-CD3/anti-CD28 beads and bags to produce autologous anti-CD19 CAR–transduced T cells to support an ongoing clinical trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号