首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of oxygen limitation, low redox potential, and high NaCl stress for 7 days in vitro on the rifampin-resistant biocontrol inoculant Pseudomonas fluorescens CHA0-Rif and its subsequent persistence in natural soil for 54 days were investigated. Throughout the experiment, the strain was monitored using total cell counts (immunofluorescence microscopy), Kogure's direct viable counts, and colony counts (on rifampin-containing plates). Under in vitro conditions, viable-but-nonculturable (VBNC) cells of CHA0-Rif were obtained when the strain was exposed to a combination of low redox potential (230 mV) and oxygen limitation. This mimics a situation observed in the field, where VBNC cells of the strain were found in the waterlogged soil layer above the plow pan. Here, VBNC cells were also observed in vitro when CHA0-Rif was subjected to high NaCl levels (i.e., NaCl at 1.5 M but not 0.7 M). In all treatments, cell numbers remained close to the inoculum level for the first 12 days after inoculation of soil, regardless of the cell enumeration method used, but decreased afterwards. At the last two samplings in soil, VBNC cells of CHA0-Rif were found in all treatments except the one in which log-phase cells had been used. In the two treatments that generated high numbers of VBNC cells in vitro, VBNC cells did not display enhanced persistence compared with culturable cells once introduced into soil, which suggests that this VBNC state did not represent a physiological strategy to improve survival under adverse conditions.  相似文献   

2.
The effects of oxygen limitation, low redox potential, and high NaCl stress for 7 days in vitro on the rifampin-resistant biocontrol inoculant Pseudomonas fluorescens CHA0-Rif and its subsequent persistence in natural soil for 54 days were investigated. Throughout the experiment, the strain was monitored using total cell counts (immunofluorescence microscopy), Kogure's direct viable counts, and colony counts (on rifampin-containing plates). Under in vitro conditions, viable-but-nonculturable (VBNC) cells of CHA0-Rif were obtained when the strain was exposed to a combination of low redox potential (230 mV) and oxygen limitation. This mimics a situation observed in the field, where VBNC cells of the strain were found in the water-logged soil layer above the plow pan. Here, VBNC cells were also observed in vitro when CHA0-Rif was subjected to high NaCl levels (i.e., NaCl at 1.5 M but not 0.7 M). In all treatments, cell numbers remained close to the inoculum level for the first 12 days after inoculation of soil, regardless of the cell enumeration method used, but decreased afterwards. At the last two samplings in soil, VBNC cells of CHA0-Rif were found in all treatments except the one in which log-phase cells had been used. In the two treatments that generated high numbers of VBNC cells in vitro, VBNC cells did not display enhanced persistence compared with culturable cells once introduced into soil, which suggests that this VBNC state did not represent a physiological strategy to improve survival under adverse conditions.  相似文献   

3.
The effects of zinc on the rate of production of bactericidal O2- of polymorphonuclear leukocytes (PMN) in response to three different types of stimulating agents (serum-treated zymosan (STZ), Con A, and myristate) were studied. The percentage reduction of O2- production of PMN stimulated by STZ, Con A, and myristate were all reduced in response to Zn, irregardless of whether Zn was added to the reaction mixture immediately before SZT addition or following a prior 20 min. incubation of PMN in the presence of Zn. However, when Zn was introduced intraperitonially into guinea pigs before the collection of PMN from the animal, zinc treatment produced inhibition only in STZ-activated PMN; it produced no effect in O2- production of PMN stimulated by myristate, and it further augmented the O2- production stimulated by Con A.  相似文献   

4.
Material‐independent adhesive action derived from polycatechol structures has been intensively studied due to its high applicability in surface engineering. Here, we for the first time demonstrate that a dihydroxynaphthalene‐based fungal melanin mimetic, which exhibit a catechol‐free structure, can act as a coating agent for material‐independent surface modifications on the nanoscale. This mimetic was made by using laccase to catalyse the oxidative polymerization of specifically 2,7‐dihydroxynaphthalene. Analyses of the product of this reaction, using Fourier transform infrared‐attenuated total reflectance and X‐ray photoelectron spectroscopy, bactericidal action, charge‐dependent sorption behaviour, phenol content, Zeta potential measurements and free radical scavenging activity, yielded results consistent with it containing hydroxyphenyl groups. Moreover, nuclear magnetic resonance analyses of the product revealed that C‐O coupling and C‐C coupling were the main mechanisms for its synthesis, thus clearly excluding a catechol structure in the polymerization. This product, termed poly(2,7‐DHN), was successfully deposited onto a wide variety of solid surfaces, including metals, polymeric materials, ceramics, biosurfaces and mineral complexes. The melanin‐like polymerization could be used to co‐immobilize other organic molecules, forming functional surfaces. In addition, the hydroxyphenyl group contained in the coated poly(2,7‐DHN) induced secondary metal chelation/reduction and adhesion with proteins, suggesting the potential of this poly(2,7‐DHN) layer to serve as a platform material for a variety of surface engineering applications. Moreover, the novel physicochemical properties of the poly(2,7‐DHN) illuminate its potential applications as bactericidal, radical‐scavenging and pollutant‐sorbing agents.  相似文献   

5.
Pseudomonas mendocina P2d grew in sodium benzoate at as high as 1% concentration and formed a quinonoid compound, identified as ortho-benzoquinone, that rendered the medium orange to wine-red in colour. The quinone was not metabilised further by the organism. Sodium benzoate was converted to catechol, which was a central metabolite forming ortho-benzoquinone and 2- hydroxymuconic semialdehyde (2-HMS) via. meta ring cleavage pathway.  相似文献   

6.
【目的】分析倭蜂猴粪便微生物中苯酚羟化酶(Phenol hydroxylase,PH)和邻苯二酚1,2-双加氧酶(Catechol 1,2-dioxygenase,C12O)的基因多样性。【方法】利用简并引物,以倭蜂猴粪便微生物宏基因组DNA为模板,通过PCR扩增,分别构建PH和C12O基因克隆文库,并对克隆进行测序分析。【结果】倭蜂猴粪便微生物来源的PH和C12O基因序列经BLAST比对分析,与GenBank中相应酶的序列一致性分别介于92%?100%和87%?100%。系统进化树分析表明PH基因序列与Neisseria、Burkholderia、Alcaligenes、Acinetobacter 4个属来源的PH序列相关;C12O基因序列全部与Acinetobacter来源的C12O序列相关。序列比对结果表明PH序列具有LmPH (Largest subunit of multicomponent PH)中高保守的两个DEXRH结构域;C12O序列具有能被Ag+和Hg2+抑制的位点(半胱氨酸)。【结论】倭蜂猴粪便微生物来源的PH为多组分PH,其降解苯酚的中间产物邻苯二酚可以被C12O通过邻位开环途径裂解。  相似文献   

7.
The anti-inflammatory drug phenylbutazone has been found to inhibit both engulfment and intracellular killing of E. coli by guinea pig peritoneal polymorphonuclear (PMN) leukocytes. The bactericidal activity of leukocytic homogenates was also inhibited by the drug. Addition of the drug at various time intervals to a phagocytic reacting system caused an almost immediate cessation of bactericidal activity. Metabolic studies showed that the drug sharply curtailed glucose-l-(14)C and (14)C-formate oxidation of both resting and phagocytizing PMN leukocytes. These data indicated an effect upon the hexose monophosphate shunt and H(2)O(2) formation. Further investigation showed that the sites of inhibition were on glucose-6-phosphate and 6-phosphogluconate dehydrogenase. These inhibitions resulted in decreased H(2)O(2) production. It is suggested that H(2)O(2) activates lysosomes and subsequently complexes with the lysosomal enzyme, myeloperoxidase. This complex is a potent bactericidal agent in the phagocyte.  相似文献   

8.
Certain fluorescent pseudomonads can protect plants from soil-borne pathogens, and it is important to understand how these biocontrol agents survive in soil. The persistence of the biocontrol strain Pseudomonas fluorescens CHA0-Rif under plough pan conditions was assessed in non-sterile soil microcosms by counting total cells (immunofluorescence microscopy), intact cells (BacLight membrane permeability test), viable cells (Kogure's substrate-responsiveness test) and culturable cells (colony counts on selective plates) of the inoculant. Viable but non-culturable cells of CHA0-Rif (106 cells g-1 soil) were found in flooded microcosms amended with fermentable organic matter, in which the soil redox potential was low (plough pan conditions), in agreement with previous observations of plough pan samples from a field inoculated with CHA0-Rif. However, viable but non-culturable cells were not found in unamended flooded, amended unflooded or unamended unflooded (i.e. control) microcosms, suggesting that such cells resulted from exposure of CHA0-Rif to a combination of low redox potential and oxygen limitation in soil. CHA0-Rif is strictly aerobic. Its anaerobic regulator ANR is activated by low oxygen concentrations and it controls production of the biocontrol metabolite hydrogen cyanide under microaerophilic conditions. Under plough pan conditions, an anr-deficient mutant of CHA0-Rif and its complemented derivative displayed the same persistence pattern as CHA0-Rif, indicating that anr was not implicated in the formation of viable but non-culturable cells of this strain at the plough pan.  相似文献   

9.
Phagocytosis, bactericidal capacity and superoxide anion production of polymorphonuclear neutrophils (PMN) were estimated in 30 patients with well-controlled insulin-dependent diabetes (IDD) and in 50 patients with non insulin-dependent diabetes (NIDD). The estimations were additionally done in 20 elderly patients without glucose intolerance. The estimations of bactericidal capacity were performed in autologous-, zymosan activated-, inactivated- and control plasma. The phagocytosis of viable staphylococci was unchanged in all evaluated groups. The bactericidal capacity in all diabetic patients was significantly reduced. It was fully correctable in patients with IDD by suspension of cells in control or zymosan activated plasma. The improvement of PMN bactericidal capacity in patients with NIDD in similar conditions was less distinct. The superoxide anion production in patients with IDD was similar to values noticed in healthy persons. Whereas, the O2- production in patients with NIDD as well as in elderly patients were significantly reduced and correlated significantly with bactericidal capacity impairment. The possible mechanism of noticed disturbances were discussed.  相似文献   

10.
It was shown that two different enzymes of aromatic ring oxidative meta-cleavage (2,3-dihydroxybiphenyl-1,2-dioxygenase), DBO and catechol-2,3-dioxygenase, C230) function in Pseudomonas strains with a plasmid and chromosomal genetic control of biphenyl and toluate catabolism. A comparative analysis of DBO's and C230's expressed by the pBS241 biphenyl degradative plasmid in P. putida BS893, pBS311 in P. putida U83, chromosomal genes in P. putida BF and C230 from P. putida PaW160 (pWWO) was carried out. It was found that the DBO's of all strains under study are highly specialized enzymes in respect of 2,3-dihydroxybiphenyl cleavage and are also able to cleave 3-methyl-catechol and catechol (but not 4-methylcatechol) at low rates. In contrast with DBO's, in Pseudomonas strains the substrate specificities of all C230's are variable. The C230's expressed by the D-plasmids pBS241 and pBC311 have a moderate affinity for catechol, 3-methyl- and 4-methylcatechol, but are unable to cleave 2,3-dihydroxybiphenyl. The C230 which is encoded by the chromosomal structure gene from P. putida BF is very similar to C230 which codes for the TOL-plasmid pWWO. These plasmid differ from C230's expressed by biphenyl D-plasmids due to their capability to cleave 2,3-dihydroxybiphenyl in addition to catechol cleavage. All DBO's and C230's under study possess a number of properties that are typical for the enzymes having an oxidative meta-cleaving effect. The different roles of these enzymes in biphenyl and toluate catabolism in Pseudomonas strains are discussed.  相似文献   

11.
We used flow cytometry to analyze the expression of adhesion molecules and the oxidative burst of whole-blood polymorphonuclear neutrophils (PMN) from 26 patients with periodontitis. Three different clinical entities were studied: adult periodontitis (AP), localized juvenile periodontitis (LJP), and rapidly progressive periodontitis (RPP). Unstimulated PMN from the patients showed reduced Lewis x, sialyl-Lewis x, and L-selectin expression relative to those from healthy control subjects. These alterations were present whatever the severity of periodontal disease. However, PMN from RPP patients showed increased basal H2O2 production and decreased L-selectin shedding. These latter impairments, which correlated with increased IL-8 plasma levels, could contribute to initial vascular damage. In addition, decreased IL-8 priming of H2O2 production by PMN from RPP patients could account for a lower bactericidal capacity of PMN, leading to the large number of bacteria in the subgingival region of RPP patients. Soluble L-selectin plasma levels were also decreased in the RPP group, indicating more severe or diffuse endothelial damage. These abnormalities were not found in the patients with less destructive forms of periodontitis (AP and LJP). Porphyromonas gingivalis, a bacterial pathogen known to increase IL-8 production by PMN, was found in the periodontal pockets of RPP patients only. These results show links among PMN abnormalities, the clinical form of periodontitis, and the gingival bacterial flora.  相似文献   

12.
The ability of bovine polymorphonuclear leucocytes (PMN) to release H2O2 was investigated. Resting PMN suspended in buffer released only small amounts of H2O2 which was appreciably increased during phagocytosis of heat killed coliforms. However, in the presence of bovine serum (BS), foetal calf serum (FCS) and milk whey (MW) no increase of H2O2 could be detected unless sodium azide (NaN2) was added. It appears that the enzyme content of these fluids (catalase and lactoperoxidase) consumed the released H2O2 and NaN2, which inactivates these enzymes, abolished this interference. Live organisms required BS or MW both for phagocytosis and for H2O2 production. Bovine IgG2 and, to a lesser extent, IgG1 but not SIgA or IgM stimulated the release of H2O2 independently of phagocytosis; this indicates the presence of receptors specific for IgG2 and IgG1 on the cell surface. Ingestion of casein micelles triggered the greatest burst of H2O2 production by cells suspended in buffer. In general, PMN isolated from blood were more active than cells isolated from milk. Since the extracellular release of H2O2 reflects the intracellular level of H2O2, the lower metabolic activity of milk PMN may contribute to the lesser intracellular bactericidal activity of milk leucocytes. The possibility that the release of H2O2 may activate extracellularly the lactoperoxidase system, known to be bactericidal in milk, is discussed.  相似文献   

13.
In this work, poly(aniline-co-o-aminophenol) (copolymer) was used as an electron transfer mediator in the electrochemical oxidation of catechol due to its reversible redox over a wide range of pH. The experimental results indicate that the anodic peak potential of catechol at the copolymer electrode is lower than that at the platinum electrode in a solution consisting of catechol and sodium sulfate with pH 5.0, and the activation energy for the electrochemical oxidation of catechol at the copolymer electrode is low (23.6 kJ mol(-1)). These are strong evidence for the electrocatalytic oxidation of catechol at the copolymer electrode. The -OH group on the copolymer chain plays an important role in the electron transfer between the copolymer electrode and catechol in the solution. Based on the catalytic oxidation, the copolymer is used as a sensor to determine the concentration of catechol. The response current of the sensor depends on the concentration of catechol, pH, applied potential and temperature. At 0.55 V (versus saturated calomel reference electrode (SCE)) and pH 5.0, the sensor has a fast response (about 10s) to catechol and good operational stability. The sensor shows a linear response range between 5 and 80 microM catechol with a correlation coefficient of 0.997. It was found that phenol and resorcinol cannot be oxidized at the copolymer electrode at potentials < or =0.55 V, so controlling the sensor potential affords a good way of avoiding the effect of phenol and resorcinol on the determination of catechol.  相似文献   

14.
Phenol is a widespread pollutant and a model molecule to study the biodegradation of monoaromatic compounds. After a first oxidation step leading to catechol in mesophilic and thermophilic microorganisms, two main routes have been identified depending on the cleavage of the aromatic ring: ortho involving a catechol 1,2 dioxygenase (C12D) and meta involving a catechol 2,3 dioxygenase (C23D). Our work aimed at elucidating the phenol-degradation pathway in the hyperthermophilic archaea Sulfolobus solfataricus 98/2. For this purpose, the strain was cultivated in a fermentor under different substrate and oxygenation conditions. Indeed, reducing dissolved-oxygen concentration allowed slowing down phenol catabolism (specific growth and phenol-consumption rates dropped 55% and 39%, respectively) and thus, evidencing intermediate accumulations in the broth. HPLC/Diode Array Detector and LC-MS analyses on culture samples at low dissolved-oxygen concentration (DOC  =  0.06 mg.L−1) suggested, apart for catechol, the presence of 2-hydroxymuconic acid, 4-oxalocrotonate and 4-hydroxy-2-oxovalerate, three intermediates of the meta route. RT-PCR analysis on oxygenase-coding genes of S. solfataricus 98/2 showed that the gene coding for the C23D was expressed only on phenol. In 2D-DIGE/MALDI-TOF analysis, the C23D was found and identified only on phenol. This set of results allowed us concluding that S. solfataricus 98/2 degrade phenol through the meta route.  相似文献   

15.
Screening of microorganisms capable of producing alginate lyase enzyme is commonly carried out by investigating their abilities to grow on alginate-containing solid media plates and occurrence of a clearance zone after flooding the plates with agents such as 10% (w/v) cetyl pyridinium chloride (CPC), which can form complexes with alginate. Although the CPC method is good, advantageous, and routinely used, the agar in the media interferes with the action of CPC, which makes judgment about clearance zones very difficult. In addition, this method takes a minimum of 30 min to obtain the zone of hydrolysis after flooding and the hydrolyzed area is not sharply discernible. An improved plate assay is reported herein for the detection of extracellular alginate lyase production by microorganisms. In this method, alginate-containing agar plates are flooded with Gram's iodine instead of CPC. Gram's iodine forms a bluish black complex with alginate but not with hydrolyzed alginate, giving sharp, distinct zones around the alginate lyase producing microbial colonies within 2–3 min. Gram's iodine method was found to be more effective than the CPC method in terms of visualization and measurement of zone size. The alginate-lyase-activity area indicated using the Gram's iodine method was found to be larger than that indicated by the CPC method. Both methods (CPC and Gram's iodine) showed the largest alginate lyase activity area for Saccharophagus degradans (ATCC 43961) followed by Microbulbifer mangrovi (KCTC 23483), Bacillus cereus (KF801505) and Paracoccus sp. LL1 (KP288668) grown on minimal sea salt medium. The rate of growth and metabolite production in alginate-containing minimal sea salt liquid medium, followed trends similar to that of the zone activity areas for the four bacteria under study. These results suggested that the assay developed in this study of Gram's iodine could be useful to predict the potential of microorganisms to produce alginate lyase. The method also worked well for screening and identification of alginate lyase producers and non-producers from environmental samples on common laboratory media. They did this by clearly showing the presence or absence of clearance zones around the microbial colonies grown. This new method is rapid, efficient, and could easily be performed for screening a large number of microbial cultures. This is the first report on the use of Gram's iodine for the detection of alginate lyase production by microorganisms using plate assay.  相似文献   

16.
A new disposable amperometric bi-enzyme sensor system for detecting phenols has been developed. The phenol sensor developed uses horseradish peroxidase modified screen-printed carbon electrodes (HRP-SPCEs) coupled with immobilized tyrosinase prepared using poly(carbamoylsulfonate) (PCS) hydrogels or a poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ) matrix. Optimization of the experimental parameters has been performed with regard to buffer composition, pH, operating potential and storage stability. A co-operative reaction involving tyrosinase and HRP occurs at a potential of -50 mV versus Ag/AgCl without the requirement for addition of extraneous H(2)O(2), thus, resulting in a very simple and efficient system. Comparison of the electrode responses with the 4-aminoantipyrine standard method for phenol sample analysis indicated the feasibility of the disposable sensor system for sensitive "in-field" determination of phenols. The most sensitive system was the tyrosinase immobilized HRP-SPCE using PCS, which displayed detection limits for phenolic compounds in the lower nanomolar range e.g. 2.5 nM phenol, 10 nM catechol and 5 nM p-cresol.  相似文献   

17.
M Shoda  S Udaka 《Applied microbiology》1980,39(6):1129-1133
A phenol-utilizing yeast, Trichosporon cutaneum POB 14, which has a partially constitutive activity of catechol 1,2-oxygenase, utilized phenol in preference to glucose in a medium containing both phenol (200 mg/liter) and glucose (0.15%) as carbon sources. The glucose consumption was not observed until the concentration of phenol decreased to around 10 mg/liter. This phenomenon was confirmed by [U-14C]glucose uptake experiments. The intracellular activities of hexokinase (EC 2.7.1.1) and catechol 1,2-oxygenase (EC 1.13.1.1) changed inversely when phenol was added during growth in the glucose medium.  相似文献   

18.
A gas chromatography-mass spectrometry method for measurement of the main urinary metabolites of benzene, namely, phenol, catechol, hydroquinone, 1,2,4-trihydroxybenzene (trihydroxybenzene), t,t-muconic acid (muconic acid), and S-phenylmercapturic acid (phenylmercapturic acid), is reported. The method is considerably simpler than existing assays. It was applied to urine from benzene-exposed subjects and controls from Shanghai, China. When subjects were divided into controls (n = 44), those exposed to 31 ppm benzene (n = 19), Spearman correlations with exposure category were >/= 0.728 (p < 0.0001) for all metabolites except trihydroxybenzene. When exposed subjects were compared on an individual basis, all metabolites, including trihydroxybenzene, were significantly correlated with benzene exposure (Pearson r >/= 0.472, p /= 0.708, p < 0.0001). Ratios of individual metabolite levels to total metabolite levels provided evidence of competitive inhibition of CYP 2E1 enzymes leading to increased production of phenol, catechol, and phenylmercapturic acid at the expense of hydroquinone, trihydroxybenzene, and muconic acid. Since all metabolites were detected in all control subjects, the method can be applied to persons exposed to environmental levels of benzene.  相似文献   

19.
Tyrosinase is a member of the type 3 copper enzyme family involved in the production of melanin in a wide range of organisms. The ability of tyrosinases to convert monophenols into diphenols has stimulated studies regarding the production of substituted catechols, important intermediates for the synthesis of pharmaceuticals, agrochemicals, polymerization inhibitors, and antioxidants. Despite its enormous potential, the use of tyrosinases for catechol synthesis has been limited due to the low monophenolase/diphenolase activity ratio. In the presence of two water miscible ionic liquids, [BMIM][BF4] and ethylammonium nitrate, the selectivity of a tyrosinase from Bacillus megaterium (TyrBm) was altered, and the ratio of monophenolase/diphenolase activity increased by up to 5-fold. Furthermore, the addition of sodium dodecyl sulphate (SDS) at levels of 2–50 mM increased the activity of TyrBm by 2-fold towards the natural substrates l-tyrosine and l-Dopa and 15- to 20-fold towards the non-native phenol and catechol. The R209H tyrosinase variant we previously identified as having a preferential ratio of monophenolase/diphenolase activity was shown to have a 45-fold increase in activity towards phenol in the presence of SDS. We propose that the effect of SDS on the ability of tyrosinase to convert non-natural substrates is due to the interaction of surfactant molecules with residues located at the entrance to the active site, as visualized by the newly determined crystal structure of TyrBm in the presence of SDS. The effect of SDS on R209 may enable less polar substrates such as phenol and catechol, to penetrate more efficiently into the enzyme catalytic pocket.  相似文献   

20.
Aggregation and the activation of the granulocyte (PMN) superoxide (O2-) generating system occur when certain stimuli are added to resting cells. It had previously been postulated that PMN aggregation is essential for maximal O2- production. This study was undertaken to test the hypothesis that PMN aggregation is required for full expression of PMN O2- production. We examined aggregation and O2- production induced by four stimuli; concanavalin A (Con A), phorbol myristate acetate (PMA), N-formylmethionyl-leucyl-phenylalanine (FMLP), and ionophore A23187. Cytochalasin B enhanced aggregation by all four stimuli but only enhanced the rate of O2- production by Con A; 2-deoxyglucose inhibited aggregation by all stimuli. Dissociation of PMN aggregation and O2- production was achieved by using NEM, TPCK, and divalent cations. NEM and TPCK prevent Con A-induced O2- production but have no effect on Con A-induced aggregation. PMA-stimulated PMN generate O2- in the presence or absence of Ca++ and Mg++. In contrast, PMA stimulated maximum PMN aggregation only in the presence of both Ca++ and Mg++. Thus PMN can generate O2- without aggregating, and PMN can aggregate without producing O2-. PMN from patients with chronic granulomatous disease do not generate O2- or undergo membrane potential depolarization in response to PMA. These PMN aggregated when stimulated with PMA, providing evidence that depolarization is not required for PMN aggregation. We conclude that aggregation and the activation of the O2- generating system, though temporally related, are not necessarily causally related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号