首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using either [32]ATP or [3H]inositol as precursors which were injected intraventricularly into rat brain, decapitative ischemic treatment resulted in a more rapid loss of labeled phosphatidylinositol 4,5-biphosphates than phosphatidylinositol 4-phosphates in the initial 30 s-1 min. When polyphosphoinositides were labeled with [3H]inositol, the breakdown of these compounds was accompanied by a time-dependent appearance of labeled inositol phosphates. Although the level of radioactivity of inositol trisphosphate was low, a peak labeling activity was shown at 30 s. The radioactivity of inositol bisphosphate showed an increase after a delay of 30 s, and reached a peak at 1 min before declining to the baseline level at 5 min. There was also a lag period of 30 s for the appearance of labeled inositol monophosphate, after which the radioactivity continued to increase in a biphasic manner for the entire 5 min period. Results indicate that decapitative ischemic treatment to rats can serve as an experimental model for assessing in vivo stimulation of the receptor-mediated signal transduction mechanism related to polyphosphoinositide breakdown and subsequent turnover of inositol phosphates in brain.  相似文献   

2.
Few receptor-mediated phenomena have been detected in peripheral nerve. In this study, the ability of the muscarinic cholinergic receptor agonist carbamylcholine to enhance phosphoinositide (PPI) breakdown in sciatic nerve was investigated by measuring the accumulation of inositol phosphates. Rat sciatic nerve segments were prelabeled with myo-[3H]inositol and then incubated either with or without carbamylcholine in the presence of Li+. [3H]Inositol monophosphate ([3H]IP) accumulation contained most of the radioactivity in inositol phosphates, with [3H]inositol bisphosphate ([3H]IP2) and [3H]inositol trisphosphate ([3H]IP3) accounting for 7-8% and 1-2% of the total, respectively. In the presence of 100 microM carbamylcholine, [3H]IP accumulation increased by up to 150% after 60 min. The 50% effective concentration for the response was determined to be 20 microM carbamylcholine and stimulated IP generation was abolished by 1 microM atropine. Enhanced accumulation of IP2 and IP3 was also observed. Determination of the pA2 values for the muscarinic receptor antagonists atropine (8.9), pirenzepine (6.5), AF-DX 116 (11-[[2-[(diethylamino)methyl]-1-piperidinyl] acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one) (5.7), and 4-diphenylacetoxy-N-methylpiperidinemethiodide (4-DAMP) (8.6) strongly suggested that the M3 muscarinic receptor subtype was predominantly involved in mediating enhanced PPI degradation. Following treatment of nerve homogenates and myelin-rich fractions with pertussis toxin and [32P]NAD+, the presence of an ADP-ribosylated approximately 40-kDa protein could be demonstrated. The results indicate that peripheral nerve contains key elements of the molecular machinery needed for muscarinic receptor-mediated signal transduction via the phosphoinositide cycle.  相似文献   

3.
The ability of ANP to inhibit the hydrolysis of phosphoinositides was examined in [3H] myoinositol-labeled intact murine Leydig tumor (MA-10) cells. Arginine vasopressin (AVP) stimulated the formation of inositol monophosphate (IP1), inositol bisphosphate (IP2), and inositol trisphosphate (IP3) both in a time- and dose- dependent manner in MA-10 cells. ANP inhibited the AVP-induced formation of IP1, IP2, and IP3 in these cells. The inhibitory effect of ANP on the AVP-stimulated formation of IP1, IP2, and IP3 accounted for 30%, 38% and 42%, respectively, which was observed at the varying concentrations of AVP. ANP caused a dose-dependent attenuation in AVP-stimulated production of IP1, IP2 and IP3 with maximum inhibition at 100 nM concentration of ANP. The production of inositol phosphates was inhibited in the presence of 8- bromo cGMP in a dose-dependent manner, whereas dibutyryl-cAMP had no effect on the generation of these metabolites. The LY 83583, an inhibitor of guanylyl cyclase and cGMP production, abolished the inhibitory effect of ANP on the AVP-stimulated production of inositol phosphates. Furthermore, 10 M LY 83583 also inhibited the ANP-stimulated guanylyl cyclase activity and the intracellular accumulation of cGMP by more than 65–70%. The inhibition of eGMP-dependent protein kinase by H-8, significantly restored the levels of AVP-stimulated inositol phosphates in the presence of either ANP or exogenous 8-bromo cGMP. The results of this study suggest that ANP exerts an inhibitory effect on the production of inositol phosphates in murine Leydig tumor (MA-10) cells by mechanisms involving cGMP and cGMP-dependent protein kinase.Established Investigator of the American Heart Association  相似文献   

4.
The effects of chronic haloperidol administration on the accumulation of inositol phosphates were examined in rat brain slices pre-labeled with [3H]myo-inositol and incubated with various dopaminergic drugs. Rats were treated with haloperidol-decanoate or its vehicle (sesame oil) for two, four or six weeks. Dopamine and the selective D1 agonist, SKF38393, induced a significant increase in lithium-dependent accumulation of [3H]inositol monophosphate (IP1) in the frontal cortex, hippocampus and striatum of vehicle-treated animals, while the selective D2 agonist quinpirole did not show any effect on IP1 accumulation. The actions of dopamine and SKF38393 were blocked by the D1 antagonist, SCH23390, but not by the D2 antagonist, spiperone, in all three brain regions. Haloperidol treatment did not affect basal phosphoinositide turnover in the three brain regions. Four or six weeks of haloperidol treatment significantly decreased dopamine-induced IP1 accumulation in the striatum (by 30% and 25%, respectively), but not in the frontal cortex and the hippocampus. Four weeks of treatment with haloperidol significantly decreased IP1 levels in the striatal slices when measured in the presence of quinpirole. However, the accumulation of IP1 measured in the presence of SKF38393 was not significantly altered after haloperidol treatment. The loss of dopamine-sensitive IP accumulation was not observed in the presence of spiperone after haloperidol treatment. The number, but not the affinity, of [3H]sulpiride binding sites in the striatum was significantly increased (by 34–46%) after chronic haloperidol treatment. A timecourse study suggests that the inhibition by chronic haloperidol treatment of dopamine-induced phosphoinositide hydrolysis may involve an effect secondary to an increase in the number of dopamine D2 receptors in the striatum.  相似文献   

5.
Metabolic changes in brain phosphoinositides with respect to post-decapitative ischemic treatment were examined with rats labeled after i.p. injection of 32Pi and intracerebral injection of [3H]inositol. The ischemic treatment resulted in a large and rapid decrease (40% in 2 min) in labeled polyphosphoinositide (poly-Pl), regardless of the source of the labeling. The rapid disappearance of poly-PI labeling can be similarly detected in the synaptosomes and plasma membrane fractions. On the other hand, the ischemic treatment resulted in an increase (10%) in [32P]-labeling of phosphatidylinositol, indicating possible contribution due to the poly-PI phosphomonoesterase pathway. In addition to the decrease in labeling of poly-PI, there was a decrease in radioactivity of phosphatidic acids in brain homogenates and plasma membranes due to the ischemic treatment. The labeling pattern of other phospholipids was not altered by the ischemic treatment. With rats prelabeled with [3H]inositol, the amount of labeled inositol monophosphate in brain increased 4-fold after pretreatment with LiCl (8 meq/kg). While no obvious change in labeling of inositol bisphosphate and inositol monophosphate was observed, there was a 40% decrease in labeled inositol trisphosphate after 2 min ischemic treatment. Discussions were made regarding the advantage and disadvantages in labeling brain phosphoinositides with these two types of labeled precursors.  相似文献   

6.
Abstract: Intracerebral injection of [3H]inositoi into gerbil brain resulted in labeling of phosphoinositides and inositolphosphates in various subcellular membrane fractions. Phosphatidylinositol (PI) comprised >90% of the radioactivity of inositol lipids. However, the level of labeled poly-PI (with respect to PI) was higher in synaptosomes than in other membrane fractions. Ischemia induced in gerbils by ligation of the common carotid arteries resulted in a 30% decrease in labeled poly-PI in brain homogenates and this decrease was largely attributed to the poly-PI in synaptosomes (50% decrease). Among the inositol phosphates, the ischemia induction resulted in a decrease in labeling of inositol trisphosphate (63%) and inositol bisphosphate (38%), but labeling of inositol phosphate (IP) was increased by 59%. The results suggested a rapid turnover of the inositol phosphates in the gerbil brain. In general, changes in inositol lipids and inositol phosphates due to ischemia were attenuated after pretreatment with lithium (3 meq/kg) injected intraperitoneally 5 h prior to ligation. Surprisingly, lithium treatment alone did not cause an increase in IP labeling in the gerbil brain.  相似文献   

7.
ITPK1 is the rate-limiting enzyme in the pathway leading to formation of the highly phosphorylated inositol phosphates including IP6 and the inositol pyrophosphates. One or more of these metabolites are essential for life as deletion of either of the kinases that form IP5 or IP6 in mice results in embryonic lethality. We have produced mice harboring a hypomorphic allele for Itpk1, and mice homozygous for this gene trap allele produce low but detectable levels of active enzyme. We have studied the expression of Itpk1 in various tissues and found that the enzyme is highly expressed in smooth muscle of vessels and other tissues. In addition, these mice have neural tube defects in 12% of homozygous embryos. Since the levels of enzyme expression vary greatly in homozygous animals, we speculate that relative deficiency of one or more inositol phosphates accounts for these defects. We plan to feed an inositol deficient diet or one with supplemental inositol to animals to demonstrate altered prevalence of neural tube defects.  相似文献   

8.
Most living organisms maintain cell autonomous circadian clocks that synchronize critical biological functions with daily environmental cycles. In mammals, the circadian clock is regulated by inputs from signaling pathways including glycogen synthase kinase 3 (GSK3). The drug lithium has actions on GSK3, and also on inositol metabolism. While it is suspected that lithium's inhibition of GSK3 causes rhythm changes, it is not known if inositol polyphosphates can also affect the circadian clock. We examined whether the signaling molecule inositol hexaphosphate (IP6) has effects on circadian rhythms. Using a bioluminescent reporter (Per2::luc) to measure circadian rhythms, we determined that IP6 increased rhythm amplitude and shortened period in NIH3T3 cells. The IP6 effect on amplitude was attenuated by selective siRNA knockdown of GSK3B and pharmacological blockade of AKT kinase. However, unlike lithium, IP6 did not induce serine-9 phosphorylation of GSK3B. The synthesis of IP6 involves the enzymes inositol polyphosphate multikinase (IPMK) and inositol pentakisphosphate 2-kinase (IPPK). Knockdown of Ippk had effects opposite to those of IP6, decreasing rhythm amplitude and lengthening period. Ipmk knockdown had few effects on rhythm alone, but attenuated the effects of lithium on rhythms. However, lithium did not change the intracellular content of IP6 in NIH3T3 cells or neurons. Pharmacological inhibition of the IP6 kinases (IP6K) increased rhythm amplitude and shortened period, suggesting secondary effects of inositol pyrophosphates may underlie the period shortening effect, but not the amplitude increasing effect of IP6. Overall, we conclude that inositol phosphates, in particular IP6 have effects on circadian rhythms. Manipulations affecting IP6 and related inositol phosphates may offer a novel means through which circadian rhythms can be regulated.  相似文献   

9.
The inositol phosphate metabolism network has been found to be much more complex than previously thought, as more and more inositol phosphates and their metabolizing enzymes have been discovered. Some of the inositol phosphates have been shown to have biological activities, but little is known about their signal transduction mechanisms except for that of inositol 1,4,5-trisphosphate. The recent discovery, however, of a number of binding proteins for inositol high polyphosphate [inositol 1,3,4,5-tetrakisphosphate (IP4), inositol 1,3,4,5,6-pentakisphosphate, or inositol hexakisphosphate] enables us to speculate on the physiological function of these compounds. In this article we focus on two major issues: (1) the roles of inositol high polyphosphates in vesicular trafficking, especially exocytosis, and (2) pleckstrin homology domaincontaining IP4 binding proteins involved in the Ras signaling pathway.  相似文献   

10.
Previous studies have shown that external calcium (Ca2+) is required for the effects of angiotensin II (AII) on aldosterone secretion in adrenal glomerulosa zone. Using bovine adrenal glomerulosa cells prepared by collagenase dispersion, we examined whether external Ca2+ is required for the activation of phospholipase C by AII. Adrenal glomerulosa cells were exposed to Ca-EGTA buffered media to provide accurate estimates of external free Ca2+ concentrations. Phospholipase C activation was evaluated by measurement of inositol phosphates production. At 0.1 M Ca2+ and less, sustained AII effects on inositol monophosphate (IP), inositol bisphosphate (IP2) and inositol trisphosphate (IP3) were markedly inhibited. Increasing the Ca2+ concentration to 50kM or greater fully restored All-induced inositol phosphates production. AII-induced increases in cytosolic Ca2+ measured by Quin-2 fluorescence, were diminished at lower external Ca2+ concentrations. Treating adrenal glomerulosa cells with Chelex-100, a strong Ca2+ binding resin, blocked early activation of phospholipase C by AII. Inhibition of IP3 production was also observed when inhibitors of Ca2+ movement across the plasma membrane were used, viz., La2+, TMB-8 and nifedipine. The requirement for Ca2+ during AII-induced activation of phospholipase C may be explained, at least partly by a requirement for Ca2+ at a site between the AII receptor and Phospholipase C.  相似文献   

11.
Global cerebral ischemia induced to Mongolian gerbils by ligation of common carotid arteries (CCAs) is known to result in injury to the hippocampal CA1 region. In this study, we examined whether neuronal injury can be depicted by measuring levels of mRNA encoding inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), neuron specific enolase (NSE) and -actin and whether these measurements can be use to assess ischemic tolerance. Gerbils were subjected either to cerebral ischemia induced by ligation of both CCAs for 5 min, or to an ischemic tolerance paradigm in which a 2 min ischemic preconditioning was performed 24 hr prior to the 5 min ischemia. At 48 hr after the 5 min ischemic insult, significant decreases in mRNA levels for IP3R1 (26%), NSE (38%) and -actin (50%) could be observed in the hippocampal CA1 region. Although levels of mRNA in the preconditioning group were decreased as compared to the sham control, the levels were significantly higher than those in the ischemic group. These results indicate the feasibility of using mRNA measurement as a parameter to assess cerebral ischemic damage. In addition, based on the differences in the decline in mRNA levels between the ischemia group and the preconditioned ischemia group, it can be concluded that this ischemic tolerance paradigm could offer partial protection (around 45%) against the injury due to the 5 min cerebral ischemic insult.  相似文献   

12.
The ability of tricyclic antidepressants, monoamine oxidase inhibitors, mianserin and ouabain to stimulate hydrolysis of inositol phosphates was examined in rat cerebral cortex slices using a direct assay which involves labelling with [3H]inositol and assaying [3H]inositol phosphates in the presence of lithium. Desimipramine, imipramine, chlorimipramine, mianserin, and ouabain stimulated [3H]inositol phosphate accumulation in a concentration-dependent manner. The monoamine oxidase inhibitors, pargyline and nialamide were without effect. The stimulation of [3H]inositol phosphate accumulation caused by the various substances was not blocked by the antagonists prazosin, ketanserin, atropine, or mepyramine. In contrast, the antagonists prazosin, ketanserin, atropine and mepyramine selectively blocked stimulation of [3H]inositol phosphate accumulation caused by noradrenaline, serotonin, carbachol and histamine respectively. When desimipramine was substituted for lithium in the assay procedure, carbachol was ineffectual in stimulating [3H]inositol phosphate accumulation. In these experiments the control (unstimulated) values were much higher than in the normal (when lithium is present) assay procedure. Desimipramine is quite effective in stimulating [3H]inositol phosphate accumulation either in the presence or absence of lithium in the incubation medium. This is not the case for carbachol where it was essential to have lithium in the incubation medium in order to obtain a stimulation of [3H]inositol phosphate accumulation. Furthermore, in the case of carbachol stimulation, most of the radioactivity was associated with a peak corresponding to inositol monophosphate, while for desimipramine stimulation two clear peaks corresponding to inositol monophosphate and inositol bisphosphate were apparent.  相似文献   

13.
The addition of nerve growth factor (NGF) or basic fibroblast growth factor (bFGF) to PC12 cells prelabeled with [3H]inositol and preincubated for 15 min in the presence of 10 mM LiCl stimulated the production of inositol phosphates with maximal increases of 120-180% in inositol monophosphate (IP), 130-200% in inositol bisphosphate (IP2), and 45-50% in inositol trisphosphate (IP3) within 30 min. The majority of the overall increase (approximately 85%) was in IP; the remainder was recovered as IP2 and IP3 (approximately 10% as IP2 and 5% as IP3). Under similar conditions, carbachol (0.5 mM) stimulated about a 10-fold increase in IP, a sixfold increase in IP2, and a fourfold increase in IP3. The mass level of 1,2-diacylglycerol (DG) in PC12 cells was found to be dependent on the incubation conditions; in growth medium [Dulbecco's modified Eagle's medium (DME) plus serum], it was around 6.2 mol %, in DME without serum, 2.5 mol %, and after a 15-min incubation in Dulbecco's phosphate-buffered saline, 0.62 mol %. The addition of NGF and bFGF induced an increase in the mass level of DG of about twofold within 1-2 min, often rising to two- to threefold by 15 min, and then decreasing slightly by 30 min. This increase was dependent on the presence of extracellular Ca2+, and was inhibited by both phenylarsine oxide (25 microM) and 5'-deoxy-5'-methylthioadenosine (3 mM). Under similar conditions, 0.5 mM carbachol stimulated the production of DG to the same extent as 200 ng/ml NGF and 50 ng/ml bFGF. Because carbachol is much more effective in stimulating the production of inositol phosphates, the results suggest that both NGF and bFGF stimulate the production of DG primarily from phospholipids other than the phosphoinositides.  相似文献   

14.
In this study we have used a density perturbation method to isolate anti-Thy-1 antibody-induced Thy-1 caps from mouse T-lymphoma cells in the absence of detergents, and then compared the phospholipid composit on of these capped membranes with that of uncapped membranes. Initial phospholipid analysis by two-dimensional thin layer chromatography (2-D TLC) reveals a significant increase in the amount of 32P-labeled phosphatidylcholine in the Thy-1 capped membrane. In contrast, no significant changes are observed in the labeling of phosphatidylserine, phosphatidylethanolamine, or the sphingomyelins. Therefore, it is suggested that phosphatidylcholine may be involved in the organization and/or regulation of Thy-1 antigen redistribution. The composition of phosphoinositide in uncapped and capped membranes was analysed separately using one-dimensional thin layer chromatography (1-D TLC) to resolve phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol 4, 5-bisphosphate (PIP2) from all other phospholipids. This analysis reveals a significant reduction in levels of PIP and PIP2, but not PI, in Thy-1 caps. Through the use of ion exchange column chromatography, we have found an increased production of all three species of inositol phosphates during anti-Thy-1 antibody-induced capping. Inositol 1, 4, 5 -triphosphate (IP3) shows the most significant increase, compared to the much smaller increases in inositol 4, 5-bisphosphate (IP2) and inositol monophosphate (IP). These results suggest that the binding of anti-Thy-1 antibody to Thy-1 antigen activates phospholipase C which, in turn, initiates polyphosphoinositide turnover and IP3 production. It is proposed that these observed effects are the result of early signal transducing events which are prerequisite steps in Thy-1 receptor cap formation.  相似文献   

15.
We have shown previously that inositol-1,4,5-trisphosphate (IP3) stimulates an efflux of 45Ca2+ from fusogenic carrot protoplasts (M Rincón, WF Boss [1987] Plant Physiol 83: 395-398). In light of these results, we suggested that IP3 might serve as a second messenger for the mobilization of intracellular Ca2+ in higher plant cells. To determine whether or not IP3 and other inositol phosphates were present in the carrot cells, the cells were labeled with myo-[2-3H]inositol for 18 hours and extracted with ice-cold 10% trichloroacetic acid. The inositol metabolites were separated by anion exchange chromatography and by paper electrophoresis. We found that [3H]inositol metabolites coeluted with inositol bisphosphate (IP2) and IP3 when separated by anion exchange chromatography. However, we could not detect IP2 or IP3 when the inositol metabolites were analyzed by paper electrophoresis even though the polyphosphoinositides, which are the source of IP2 and IP3, were present in these cells. Thus, [3H] inositol metabolites other than IP2 and IP3 had coeluted on the anion exchange columns. The data indicate that either IP3 is rapidly metabolized or that it is not present at a detectable level in the carrot cells.  相似文献   

16.
Abstract: The direct effect of melatonin and related agonists on Li+-amplified phosphoinositide breakdown was studied in chick brain slices prelabeled with myo-[2-3H]-inositol. The melatonin receptor agonist 6-chloromelatonin (10–100 µM) increased, in a concentration-dependent manner, the accumulation of inositol phosphates (IP) in chick brain slices. This effect of 6-chloromelatonin (10 µM) was rapid as transient increases in IP3/IP4 (maximal increase, 29% at 20 s) and IP2 levels (maximal increase, 36% at 1 min) were observed, followed by a slower but sustained increase in IP1 level (30% at 5 min), when the amount of IP3/IP4 and IP2 had already been decreased to the control level. The phosphoinositide response elicited by 6-chloromelatonin (10 µM) was dependent on the presence of extracellular calcium. Direct stimulation of membrane phospholipase C by 6-chloromelatonin (10 µM) in isolated myo-[2-3H]inositol-prelabeled optic tectum membranes was dependent on the presence of guanosine-5′-O-(3-thio)triphosphate (1 µM), thus suggesting that G protein(s) link melatonin receptor activation to phospholipase C stimulation. The competitive melatonin receptor antagonist luzindole (10–100 µM) inhibited in a concentration-dependent manner the IP1 accumulation stimulated by 6-chloromelatonin (10–100 µM); however, it did not affect the accumulation stimulated by 5-hydroxytryptamine (10 µM). By contrast, methysergide (10 µM) completely inhibited 5-hydroxytryptamine (10 µM)-, but not 6-chloromelatonin (10 µM)-, induced IP1 accumulation. Melatonin receptor agonists increased IP1 accumulation in a concentration-dependent manner reaching different maximal responses. N-Acetyl-5-hydroxytryptamine was more potent than melatonin in increasing IP1 accumulation, suggesting activation of a melatonin receptor site other than the ML-1 melatonin receptor (i.e., N-acetyl-5-hydroxytryptamine ≥ melatonin). In conclusion, these results demonstrate that activation of a melatonin receptor with pharmacological characteristics different from those of the ML-1 subtype leads to activation of the phospholipase C-mediated signal transduction pathway.  相似文献   

17.
Extracellular ATP caused a dose-dependent accumulation of inositol phosphates and a rise in cytosolic free Ca2+ ([Ca2+]i) in C6 glioma cells with an EC50 of 60±4 and 10±5 M, respectively. The threshold concentration of ATP (3 M) for increasing [Ca2+]i was approximately 10-fold less than that for stimulating phosphoinositide (PI) turnover. The PI response showed a preference for ATP; ADP was about 3-fold less potent than ATP but had a comparable maximal stimulation (11-fold of the control). AMP and adenosine were without effect at concentrations up to 1 mM. ATP-stimulated PI metabolism was found to be partially dependent on extracellular Ca2+ and Na+ but was resistant to tetrodotoxin, saxitoxin, amiloride, ouabain, and inorganic blockers of Ca2+ channels (Co2+, Mn2+, La3+, or Cd2+). In Ca2+-free medium, ATP caused only a transient increase in [Ca2+]i as opposed to a sustained [Ca2+]i increase in normal medium. The ATP-induced elevation of [Ca2+]i was resistant to Na+ depletion and treatment with saxitoxin, verapamil and nisoldipine, but was attentuated by La3+. The differences in the characteristics of ATP-caused P1 hydrolysis and [Ca2+]i rise suggest that ATP receptors are independently coupled to phospholipase C and receptor-gated Ca2+ channels. Because of the robust effect of ATP in stimulating PI turnover and the apparent absence of P1-purinergic receptors, the C6 glioma cell line provides a useful model for investigating the transmembrane signalling pathway induced by extracellular ATP. The mechanisms underlying the unexpected finding of [Na+]o dependency for ATP-induced PI turnover require further investigation.Abbreviations PI phosphoinositide - [Ca2+]i cytosolic free Ca2+ concentration - PDBu phorbol 12, 13-dibutyrate - PSS physiological saline solution - IP inositol phosphates - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - IP4 inositol (1,3,4,5) tetrakisphosphate - PLC phospholipase C  相似文献   

18.
1. The mechanism of acetylcholine-stimulated breakdown of phosphatidyl-myo-inositol 4,5-bisphosphate and its dependence on extracellular Ca(2+) was investigated in the rabbit iris smooth muscle. 2. Acetylcholine (50mum) increased the breakdown of phosphatidylinositol bisphosphate in [(3)H]inositol-labelled muscle by 28% and the labelling of phosphatidylinositol by 24% of that of the control. Under the same experimental conditions there was a 33 and 48% increase in the production of (3)H-labelled inositol trisphosphate and inositol monophosphate respectively. Similarly carbamoylcholine and ionophore A23187 increased the production of these water-soluble inositol phosphates. Little change was observed in the (3)H radioactivity of inositol bisphosphate. 3. Both inositol trisphosphatase and inositol monophosphatase were demonstrated in subcellular fractions of this tissue and the specific activity of the former was severalfold higher than that of the latter. 4. The acetylcholine-stimulated production of inositol trisphosphate and inositol monophosphate was inhibited by atropine (20mum), but not tubocurarine (100mum); and it was abolished by depletion of extracellular Ca(2+) with EGTA, but restored on addition of low concentrations of Ca(2+) (20mum). 5. Calcium-antagonistic agents, such as verapamil (20mum), dibenamine (20mum) or La(3+) (2mm), also abolished the production of the water-soluble inositol phosphates in response to acetylcholine. 6. Release of inositol trisphosphate from exogenous phosphatidylinositol bisphosphate by iris muscle microsomal fraction (;microsomes') was stimulated by 43% in the presence of 50mum-Ca(2+). 7. The results indicate that increased Ca(2+) influx into the iris smooth muscle by acetylcholine and ionophore A23187 markedly activates phosphatidylinositol bisphosphate phosphodiesterase and subsequently increases the production of inositol trisphosphate and its hydrolytic product inositol monophosphate. The marked increase observed in the production of inositol monophosphate could also result from Ca(2+) activation of phosphatidylinositol phosphodiesterase. However, there was no concomitant decrease in the (3)H radioactivity of this phospholipid.  相似文献   

19.
The influence of lindane upon phosphatidylinositol hydrolysis in rat brain cortex slices has been investigated using anion-exchange chromatography in order to separate the water-soluble inositol metabolites. Acetylcholine, noradrenaline, and lindane induce the accumulation of myo-[2-3H]inositol as the water-soluble inositol metabolites. However, the cholinergic muscarinic antagonist atropine inhibited the stimulatory response of carbachol, but practically unmodified the effect that lindane has on inositol phosphate production. Also, prazosin anti-1 adrenoreceptors blocked noradrenaline-induced phosphoinositide hydrolysis, but had no effect on lindane-induced increase of inositol phosphate levels. The results suggest that lindane does not exert a general effect on the receptor-stimulated formation of inositol phosphates by both muscarinic and 1-adrenergic agonists.  相似文献   

20.
5-Hydroxytryptamine (5-HT; 3 x 10(-8)-1 x 10(-5)M) produced a dose-dependent increase in phosphatidylinositol/polyphosphoinositide (PI) turnover in mouse cortical slices, as measured by following production of 3H-labelled inositol phosphates (IPs) in the presence of 10 mM LiCl. Analysis of individual IPs, in slices stimulated for 45 min, indicated substantial increases in inositol monophosphate (IP1; 140%) and inositol bisphosphate (IP2; 95%) contents with smaller increases in inositol trisphosphate (IP3; 51%) and inositol tetrakisphosphate (IP4; 48%) contents. The increase in IP3 level was solely in the 1,3,4-isomer. This response was inhibited by the nonselective 5-HT antagonists methysergide, metergoline, and spiperone. It was also inhibited by the selective 5-HT2 antagonists ketanserin and ritanserin but not by the 5-HT1 antagonists isapirone, (-)-propranolol, or pindolol. 5-HT-stimulated IP formation was also unaltered by atropine, prazosin, and mepyramine. Lesioning brain 5-HT neurones using 5,7-dihydroxytryptamine (5,7-DHT; 50 micrograms i.c.v.) produced a 210% (p less than 0.01) increase in the number of 5-HT2-mediated head-twitches induced by 5-methoxy-N,N-dimethyltryptamine (2 mg/kg). However, 5,7-DHT lesioning had no effect on 5-HT-stimulated PI turnover in these mice. Similarly, an electroconvulsive shock (90 V, 1 s) given five times over a 10-day period caused an 85% (p less than 0.01) increase in head-twitch responses but no change in 5-HT-stimulated PI turnover. Decreasing 5-HT2 function by twice-a-day injection of 5 mg/kg of zimeldine or desipramine (DMI) produced 50% (p less than 0.01) and 56% (p less than 0.01), respectively, reductions in head-twitch behaviour.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号