首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sulfide is both an inhibitor and a slow reductant of oxidized cytochrome c oxidase. When the enzyme is exposed to sulfide for short times (one minute or less) and frozen, the resultant electron paramagnetic resonance (EPR) signals show clearly: low spin heme a, low spin heme a3, the usual “EPR detectable” Cu2+ signal (g = 2.17, g = 2.03), and a new Cu2+ signal superimposed on the same region, with (g ~ 2.19, g = 2.05). This new signal presumably arises because the antiferromagnetic coupling postulated to exist between the iron atom of heme a3 and this copper is disrupted when heme a3 is driven to a low spin state by sulfide. The implications of this result with respect to models of the O2-binding site and redox geometry of oxidase are briefly discussed.  相似文献   

2.
Recombination of the isolated, fully reduced bd-type quinol oxidase from Escherichia coli with carbon monoxide was studied by pulsed absorption spectrophotometry with microsecond time resolution. Analysis of the kinetic phases of recombination was carried out using the global analysis of multiwavelength kinetic data (“Global fitting”). It was found that the unresolved photodissociation of CO is followed by a stepwise (with four phases) recombination with characteristic times (τ) of about 20 μs, 250 μs, 1.1 ms, and 24 ms. The 20-μs phase most likely reflects bimolecular recombination of CO with heme d. Two subsequent kinetic transitions, with τ ~ 250 μs and 1.1 ms, were resolved for the first time. It is assumed that the 250-μs phase is heterogeneous and includes two different processes: recombination of CO with ~7% of heme b595 and transition of heme d from a pentacoordinate to a transient hexacoordinate state in this enzyme population. The 24-ms transition probably reflects a return of heme d to the pentacoordinate state in the same protein fraction. The 1.1-ms phase can be explained by recombination of CO with ~15% of heme b558. Possible models of interaction of CO with different heme centers are discussed.  相似文献   

3.
The extracellular (1→3)-β-D-glucanase [(1→3)-β-D-glucan glucanohydrolase, E.C. 3.2.1.6] produced by Rhizopus arrhizzus QM 1032 was purified 165-fold by chromatography. The purified enzyme is basic, has a molecular weight of ≈ 10,000, and is unstable in dilute solution but may be stabilized by addition of human serum albumin. The pH-activity profile for the enzyme in the presence of serum albumin shows a peak at about pH 3.5–3.7 and a shoulder at pH 4.5–4.6, whereas in the absence of serum albumin the optimum pH is at pH 4.5–4.6, indicating the presence of two enzymic species, designated “pH 3. 5 activity” and “pH 4.6 activity”. In the presence of albumin the enzyme activity is resistant to inactivation by a wide range of reagents. Ammonium molybdate is, however, a powerful inhibitor of ldpH 3.5 activity” although a much poorer inhibitor of “pH 4.6 activity”. The enzyme activity is stable during heating at pH 3.5 in the presence of human serum albumin. Thus, 94.5 and 88.5 % of “pH 3.5 activity” and “pH 4.6 activity”, respectively, remained after heat treatment for 30 min at 68°. The enzyme is, however, essentially inactive at this temperature, even in the presence of albumin. To account for this finding, a temperature-dependent conformational change is proposed. The enzyme activity is not stable during heating at pH 4.6 in the presence of serum albumin. Km values for action on laminaran are 0.54 mg/ml (pH 3.5) and 0.27 mg/ml (pH 4.6). For lichenan the corresponding values are 3.33 and 2.38 mg/ml. The Vmax for enzyme action on lichenan is 35–40% higher than for action on laminaran at both pH values. Possible relationships between the two forms of the enzyme are briefly considered.  相似文献   

4.
Cortisol, a member of glucocorticoids, could potentiate the action of catecholamine by a non-genomic mechanism. Although this permissive effect has been well appreciated in the anti-asthmatic medication, the underlying signaling pathway has remained mysterious. Here, we show that extraneuronal monoamine transporter (EMT), a membraneous reuptake transporter for circulating catecholamine clearance, is the direct target of cortisol in its permissive effect. We found that BSA-conjugated cortisol, which functions as a cortisol but cannot penetrate cell membrane, enhanced the spasmolytic effect of β-adrenoceptor agonist (isoprenaline) in histamine-sensitized tracheal spirals of guinea pigs, and pharmacological inhibition of EMT with famotidine was powerful enough to imitate the permissive action of cortisol. To our surprise, EMT protein expression was high in the chondrocytes of tracheal cartilage, but was undetectable in tracheal smooth muscle cells. The functionality of EMT was further confirmed with measurement of catecholamine uptake by tracheal chondrocytes. Moreover, cortisol-initiated membrane signaling could activate protein kinase C (PKC), which phosphorylates EMT and induces its internalization via a lipid raft-dependent pathway. Both of the mechanisms slow down the reuptake process by chondrocytes, leading to extracellular catecholamine accumulation and results in a more profound adrenergic signaling activation in tracheal smooth muscle cells. Thus, an EMT-centered pathway was proposed to explain the permissive action of cortisol. Collectively, our results highlight the role of EMT in the crosstalk between glucocorticoid and catecholamine. EMT may represent a promising target for adrenergic signaling modulation.  相似文献   

5.
Induction of hepatic heme oxygenase activity by bromobenzene   总被引:2,自引:0,他引:2  
Hepatic heme oxygenase, an enzyme which converts heme to carbon monoxide and bile pigment in vitro, is inducible by heme but also by large “toxic” doses of such nonheme substances as hormones, endotoxin, and heavy metal ions. When we gave rats a single hepatotoxic dose of allyl alcohol, ethionine, acetaminophen, furosemide, or endotoxin, hepatic heme oxygenase activity rose modestly (two- to fivefold) after 20 h. In contrast, administration of bromobenzene (5 mmol/kg) induced heme oxygenase in the liver an average of 15-fold after 20 h but was without effect on the enzyme in the kidney or spleen. The change in heme oxygenase was accompanied by a loss in cytochrome P-450 concentration and, in rats labeled with 5-δ-amino[14C]levulinic acid, an increased rate of degradation of hepatic [14C]heme to 14CO. Induction of heme oxygenase by bromobenzene was blocked by cycloheximide, an inhibitor of protein synthesis, but not by actinomycin D, an inhibitor of RNA synthesis. This suggests that bromobenzene stimulates de novo enzyme synthesis at the step of translation. Subtoxic doses of bromobenzene (less than 1 mmol/kg) gave proportionately greater induction of heme oxygenase. Furthermore, induction of the enzyme remained unaffected when bromobenzene hepatotoxicity was blocked by pretreatment of rats with SKF-525A, 3-methylcholanthrene, or cysteine (which supplements liver sulfhydryl content), or when hepatotoxicity was enhanced by pretreatment with phenobarbital or with diethylmaleate (which depletes hepatic glutathione). These data suggest that with induction of heme oxygenase by bromobenzene, neither liver cell necrosis nor alteration in hepatic sulfhydryl metabolism is indispensible. The latter characteristic differs from induction of the enzyme by metal ions in which depletion of sulfhydryl-containing constituents has been thought to be essential. We conclude that bromobenzene is a novel inducer of heme oxygenase activity in the liver, differing from other nonheme substances in potency and specificity for the liver, and in utilizing mechanism(s) which require neither production of hepatotoxicity, depletion of hepatic glutathione, nor sensitivity to actinomycin D.  相似文献   

6.
7.
The evolution of enzyme action in vivo is examined, in the light of established thermodynamic correlates of biological evolution. Adopting a “process” view of matter in the “living state,” the authors focus the analysis on the transition-state theory of reaction rates. Thus, the free-energy change associated with the transition-state barrier is seen as a primary target in the evolution of cellular metabolism. The utility and limitations of reductionistic approaches to enzyme evolution, based on the single enzyme, are explored first. Then, canvassing the wealth of evidence on the role of enzyme organization in vivo, the authors synthesize a “cytosociological” view of enzyme evolution. In this view, a composite (resultant) of individual transition-state barriers is deemed a more appropriate “potential function” for modification in the higher evolution of cell metabolism. The suggested direction of evolutionary changes in this function, dictated by the increasing “socialization” of enzyme action in vivo, stands as a novel postulate. This approach is shown to be completely consonant with current thinking on the thermodynamics of biological evolution, and to provide further insight into the nature of material transformations in the “living state”.  相似文献   

8.
Yeast flavocytochrome b 2 tranfers reducing equivalents from lactate to oxygen via cytochrome c and cytochrome c oxidase. The enzyme catalytic cycle includes FMN reduction by lactate and reoxidation by intramolecular electron transfer to heme b 2. Each subunit of the soluble tetrameric enzyme consists of an N terminal b 5-like heme-binding domain and a C terminal flavodehydrogenase. In the crystal structure, FMN and heme are face to face, and appear to be in a suitable orientation and at a suitable distance for exchanging electrons. But in one subunit out of two, the heme domain is disordered and invisible. This raises a central question: is this mobility required for interaction with the physiological acceptor cytochrome c, which only receives electrons from the heme and not from the FMN? The present review summarizes the results of the variety of methods used over the years that shed light on the interactions between the flavin and heme domains and between the enzyme and cytochrome c. The conclusion is that one should consider the interaction between the flavin and heme domains as a transient one, and that the cytochrome c and the flavin domain docking areas on the heme b 2 domain must overlap at least in part. The heme domain mobility is an essential component of the flavocytochrome b 2 functioning. In this respect, the enzyme bears similarity to a variety of redox enzyme systems, in particular those in which a cytochrome b 5-like domain is fused to proteins carrying other redox functions.  相似文献   

9.
Molecular dynamics (MD) simulations of three models based on the crystal structure of the E343K variant of human ferrochelatase were performed in this study. The “open” and “closed” conformations of the enzyme obtained by simulations are in agreement with the corresponding crystal structures. The snapshots and the structure analysis indicate that alterations of the hydrogen bonds and the positions of E347 and E351 lead to a conformational change in the π-helix. The hydrogen bonded form of residue R164 could be regarded as a signal indicating alteration of the active site conformation. When R164 forms a hydrogen bond with D95, the active site is closed, and when a hydrogen bond is formed with E171, the active site is open. Interestingly, the protoporphyrin with Fe2+ is observed to move noticeably out of the enzyme while the protoporphyrin lacking Fe2+ remains almost fixed. Alterations of the hydrogen bonds between the propionate of the heme and R115, K118 and S303 trigger movement of the heme out of the active site. Residues E347 and E351, which are located on the π-helix and form an acidic path leading to a salt bridge interaction with the propionate of the heme, accelerate the release process.  相似文献   

10.

Background

Residual alcohol effects on physiological and psychological symptoms are commonly experienced the morning after alcohol consumption. The purpose of this study was to assess the effects of L-ornithine on subjective feelings and salivary stress markers the morning after alcohol consumption and to investigate whether L-ornithine acutely accelerates ethanol metabolism.

Methods

This study had a randomized, placebo-controlled, double-masked crossover design. Subjects were all healthy Japanese adults with the ‘flusher’ phenotype for alcohol tolerance. In experiment 1, 11 subjects drank 0.4 g/kg body weight alcohol 1.5 h before their usual bedtime. Half an hour after drinking, they ingested either a placebo or 400 mg ornithine. The next morning on awakening, subjects completed a questionnaire containing a visual analog scale (VAS), the Oguri-Shirakawa-Azumi sleep inventory MA version (OSA-MA), and a profile of mood states (POMS) and collected a saliva sample for measurement of salivary stress markers (cortisol, secretory immunoglobulin A, and α-amylase). In experiment 2, placebo or 400 mg ornithine were administrated to 16 subjects both before and after drinking, and the feeling of drunkenness, breath ethanol concentration and one-leg standing time were repeatedly investigated until 180 min after alcohol consumption.

Results

There were significant decreases in “awareness”, “feeling of fatigue” and “lassitude” VAS scores and in “anger-hostility” and “confusion” POMS scores and a significant increase in “sleep length” in the OSA-MA test. Salivary cortisol concentrations on awakening were reduced after ornithine supplementation. There were no differences between ornithine and placebo in any of the subjective or physiological parameters of acute alcohol metabolism.

Conclusions

Taking 400 mg ornithine after alcohol consumption improved various negative feelings and decreased the salivary stress marker cortisol the next morning. These effects were not caused by an increase in acute alcohol metabolism.
  相似文献   

11.
A class of systems is characterized by the asymmetrical distribution of a sink and a source reaction, the asymmetry of the global chemical equation (energy liberation) and by an asymmetrical one-wave space profile. These systems belong to the family of primary chemical cells and can deplete and enrich the media they separate. A “ one way ” transport-reaction chain is needed for specific “ real ” active transport. A two enzyme model of this class is described in which the spatial asymmetry is due to a (diffusive) pH gradient; this distribution of “ potential ” enzyme activities is called the “ functional structure ”. Equal potential enzyme activities and absence of reactive back action on local pH are assumed in the “ square model ” version of the pump. Analytical expressions of the enzymatic diffusion reactions are derived for zero and first order kinetics, i.e. in function of substrate concentrations. Tables of equations are presented. The intrinsic properties of the pump are characterized by (dimensionless) transport reaction parameters, (membrane composition); the “ potential ” activity is controlled by the pH gradient; the “ effective ” pumping is also a function of the substrate concentrations on the boundaries.  相似文献   

12.
The post-natal changes in enkephalin (ENK) levels, ENK receptor density and ENK degrading enzyme activities have been established in cerebral cortex and striatum. Met- and Leu-ENK levels both increase by 7- to 11-fold, but in an independent manner compatible with their presence in distinct neuronal systems. 3H-ENK binding sites increase only 4-fold in striatum, as reported for receptor sites labeled with 3H-opiate antagonists.The development of striatal “enkephalinase” i.e. of the particulate enzyme activity cleaving the Gly-Phe bond of ENKs is more of less parallel in time-course to that of ENK levels and receptors, with a 6-fold increase from birth. In contrast total ENK hydrolysing activity shows little change. The developmental pattern of angiotensin-converting enzyme (ACE) is clearly distinct from that of “enkephalinase”, thus confirming that the two enzymes are different species.  相似文献   

13.
Although many putative heme transporters have been discovered, it has been challenging to prove that these proteins are directly involved with heme trafficking in vivo and to identify their heme binding domains. The prokaryotic pathways for cytochrome c biogenesis, Systems I and II, transport heme from inside the cell to outside for stereochemical attachment to cytochrome c, making them excellent models to study heme trafficking. System I is composed of eight integral membrane proteins (CcmA–H) and is proposed to transport heme via CcmC to an external “WWD” domain for presentation to the membrane-tethered heme chaperone, CcmE. Herein, we develop a new cysteine/heme crosslinking approach to trap and map endogenous heme in CcmC (WWD domain) and CcmE (defining “2-vinyl” and “4-vinyl” pockets for heme). Crosslinking occurs when either of the two vinyl groups of heme localize near a thiol of an engineered cysteine residue. Double crosslinking, whereby both vinyls crosslink to two engineered cysteines, facilitated a more detailed structural mapping of the heme binding sites, including stereospecificity. Using heme crosslinking results, heme ligand identification, and genomic coevolution data, we model the structure of the CcmCDE complex, including the WWD heme binding domain. We conclude that CcmC trafficks heme via its WWD domain and propose the structural basis for stereochemical attachment of heme.  相似文献   

14.
In plants, algae, and many bacteria, the heme and chlorophyll precursor, [delta]-aminolevulinic acid (ALA), is synthesized from glutamate in a reaction involving a glutamyl-tRNA intermediate and requiring ATP and NADPH as cofactors. In particulate-free extracts of algae and chloroplasts, ALA synthesis is inhibited by heme. Inclusion of 1.0 mM glutathione (GSH) in an enzyme and tRNA extract, derived from the green alga Chlorella vulgaris, lowered the concentration of heme required for 50% inhibition approximately 10-fold. The effect of GSH could not be duplicated with other reduced sulfhydryl compounds, including mercaptoethanol, dithiothreitol, and cysteine, or with imidazole or bovine serum albumin, which bind to heme and dissociate heme dimers. Absorption spectroscopy indicated that heme was fully reduced in incubation medium containing dithiothreitol, and addition of GSH did not alter the heme reduction state. Oxidized GSH was as effective in enhancing heme inhibition as the reduced form. Co-protoporphyrin IX inhibited ALA synthesis nearly as effectively as heme, and 1.0 mM GSH lowered the concentration required for 50% inhibition approximately 10-fold. Because GSH did not influence the reduction state of heme in the incubation medium, and because GSH could not be replaced by other reduced sulfhydryl compounds or ascorbate, the effect of GSH cannot be explained by action as a sulfhydryl protectant or heme reductant. Preincubation of enzyme extract with GSH, followed by rapid gel filtration, could not substitute for inclusion of GSH with heme during the reaction. The results suggest that GSH must specifically interact with the enzyme extract in the presence of the inhibitor to enhance the inhibition.  相似文献   

15.
A novel peroxidase-like artificial enzyme, named “caseoperoxidase”, was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme–imidazole–β-casein–SDS exhibited high activity growth and kcat performance toward the native horseradish peroxidase demonstrated by the steady state kinetics using UV–vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein) was selected as an appropriate apo-protein for the heme active site because of its innate flexibility and exalted hydrophobicity. This selection was confirmed by homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation and provided a suitable protective role for the heme active-site. Additional experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme.  相似文献   

16.
  • 1.1. As previously shown, 14 mM d-glucose, a non-insulinotropic concentration in isolated chicken pancreas, permits an insulin release in response to d-glyceraldehyde, (d-GA; a glycolytic fuel) and l-leucine or α-ketoisocaproic acid (α-KIC) (non-glycolytic fuels), which alone are not initiators of insulin release in this species.
  • 2.2. The “permissive” effect of d-glucose was also observed in the presence of d-mannose (which, as shown herein, is not insulinotropic alone).
  • 3.3. The specificity of glucose for this “permissive” effect was, therefore, subsequently questioned in the presence of 10mM α-KIC by substituting various glycolytic and non-glycolytic fuels to glucose.
  • 4.4. d-GA (at 5 and 15mM), d-mannose (30 and 50 mM), or the association of l-glutamine + l-asparagine permitted an insulin release in response to α-KIC.
  • 5.5. The response was, however, delayed with d-GA, only occasionally with 50 mM d-mannose, and required high concentrations and was delayed in the presence of l-glutamine + l-asparagine as compared to that obtained with 14mM d-glucose + α-KIC.
  • 6.6. In conclusion, the threshold of fuel-induced insulin release is much higher in the chicken than in mammals and this threshold is most efficiently lowered by glucose.
  相似文献   

17.
The three-dimensional structure of beef liver catalase has been determined to 2.5 å resolution by a combination of isomorphous and molecular replacement techniques. Heavy-atom positions were found using vector search and difference Fourier methods. The tetrameric catalase molecule has 222 symmetry with one of its dyads coincident with a crystallographic 2-fold axis. The known polypeptide sequence has been unambiguously fitted to the electron density map. The heme is well buried in a hydrophobic pocket, 20 Å below the surface of the molecule, and accessible through a hydrophobic channel. Residues that line the heme pocket belong to two different subunits. Tyr357 is the proximal heme ligand and the catalytically important residues on the distal side are residues His74 and Asnl47. The tertiary structure consists of four domains: an extended non-globular amino-terminal arm, which stabilizes the quaternary structure; an anti-parallel, eight-stranded β-barrel providing the residues on the distal side of the heme; a rather random “wrapping domain” around the subunit exterior including the proximal heme ligand; and a final λ-helical structure resembling the E, F, G and H helices of the globins.  相似文献   

18.
The quest for molecular mechanisms that guide axons or specify synaptic contacts has largely focused on molecules that intuitively relate to the idea of an “instruction.” By contrast, “permissive” factors are traditionally considered background machinery without contribution to the information content of a molecularly executed instruction. In this essay, I recast this dichotomy as a continuum from permissive to instructive actions of single factors that provide relative contributions to a necessarily collaborative effort. Individual molecules or other factors do not constitute absolute instructions by themselves; they provide necessary context for each other, thereby creating a composite that defines the overall instruction. The idea of composite instructions leads to two main conclusions: first, a composite of many seemingly permissive factors can define a specific instruction even in the absence of a single dominant contributor; second, individual factors are not necessarily related intuitively to the overall instruction or phenotypic outcome.  相似文献   

19.
Ensifer meliloti is a nitrogen-fixing symbiont of the alfalfa legume able to use heme as an iron source. The transport mechanism involved in heme acquisition in E. meliloti has been identified and characterized, but the fate of heme once inside the cell is not known. In silico analysis of E. meliloti 1021 genome revealed no canonical heme oxygenases although two genes encoding putative heme degrading enzymes, smc01518 and hmuS, were identified. SMc01518 is similar to HmuQ of Bradyrhizobium japonicum, which is weakly homologous to the Staphylococcus aureus IsdG heme-degrading monooxygenase, whereas HmuS is homolog to Pseudomonas aeruginosa PhuS, a protein reported as a heme chaperone and as a heme degrading enzyme. Recombinant HmuQ and HmuS were able to bind hemin with a 1:1 stoichiometry and displayed a Kd value of 5 and 4 µM, respectively. HmuS degrades heme in vitro to the biliverdin isomers IX-β and IX-δ in an equimolar ratio. The HmuQ recombinant protein degrades heme to biliverdin IX-δ only. Additionally, in this work we demonstrate that humS and hmuQ gene expression is regulated by iron and heme in a RirA dependent manner and that both proteins are involved in heme metabolism in E. meliloti in vivo.  相似文献   

20.
Interaction of alcohol and drugs in the liver appears to involve common microsomal oxidative enzymes which utilize cytochrome P-450. Since alcohol augments the toxicity of a variety of drugs, the regulation of the P-450 hemoprotein, a primary component in hepatic drug metabolizing systems, may play a vital role in this phenomenon. We utilize an adult rat liver culture system as a model to explore the action of levels of alcohol below that which is necessary to produce intoxication in humans. The addition of 16 mM ethanol (70 mg/dl) to these hepatocytes results in a 49.5% decrease in cytochrome P-450 activity after 24 h, and a 3-fold increase in the activity of δ-aminolevulinate synthase, the rate-limiting enzyme in hepatic heme biosynthesis. Furthermore, ethanol treatment also causes a transient decrease in the level of intracellular heme. However, the diminished level of total heme does not appear to act as a repressor for δ-aminolevulinate synthase, since it occurs after the initial stimulation of the enzyme by ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号