首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.  相似文献   

2.

Background and aims

Soil nutrients and light have major effects on the economics of arbuscular mycorrhizal (AM) symbioses. This study tests the main and interactive effects of soil fertility and light on AM fungal community.

Methods

We conducted a 3 year mesocosm experiment with a full two factorial design: light (full light or shade) and soil fertility (unfertilized or fertilized), on the Qinghai-Tibetan Plateau. Plant traits, soil characteristics and the AM fungal communities inside roots and in soils were measured.

Results

Shade reduced AM colonization of roots, fertilization reduced the hyphal abundance in the soil, and both factors reduced species richness of AM fungi inside plant roots. Fertilization exacerbated the negative impacts of shade on AM fungal abundance and diversity. We observed 15 phylotypes of AM fungi inside roots and ten morphotypes of AM fungal spores in the soil. Taxa responded differently to shade and fertilization and there was little congruence between the responses of fungi inside the roots and in the spore community.

Conclusions

Our findings indicate that both shade and fertilization reduce the abundance of AM fungi, but the two factors have different effects on the quality of plant roots as habitat for AM fungi.  相似文献   

3.
Arbuscular mycorrhizal (AM) fungi are ubiquitous symbionts of higher plants in terrestrial ecosystems, while the occurrence of the AM symbiosis is influenced by a complex set of abiotic and biotic factors. To reveal the regional distribution pattern of AM fungi as driven by multiple environmental factors, and to understand the ecological importance of AM fungi in natural ecosystems, we conducted a field investigation on AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China. In addition to plant parameters recorded in situ, soil samples were collected, and soil chemo-physical and biological parameters were measured in the lab. Statistical analyses were performed to reveal the relative contribution of climatic, edaphic and vegetation factors to AM fungal abundance, especially for extraradical hyphal length density (HLD) in the soil. The results indicated that HLD were positively correlated with mean annual temperature (MAT), soil clay content and soil pH, but negatively correlated with both soil organic carbon (SOC) and soil available N. The multiple regressions and structural equation model showed that MAT was the key positive contributor and soil fertility was the key negative contributor to HLD. Furthermore, both the intraradical AM colonization (IMC) and relative abundance of AM fungi, which was quantified by real-time PCR assay, tended to decrease along the increasing SOC content. With regard to the obvious negative correlation between MAT and SOC in the research area, the positive correlation between MAT and HLD implied that AM fungi could potentially mitigate soil carbon losses especially in infertile soils under global warming. However, direct evidence from long-term experiments is still expected to support the AM fungal contribution to soil carbon pools.  相似文献   

4.
Eschen R  Hunt S  Mykura C  Gange AC  Sutton BC 《Fungal biology》2010,114(11-12):991-998
Foliar fungal endophytes are ubiquitous, but understudied symbionts of most plant species; relatively little is known about the factors affecting their occurrence, diversity and abundance. We tested the effects of soil nutrient content and arbuscular mycorrhizal (AM) colonization on the occurrence of foliar endophytic fungi in Cirsium arvense in two field studies. In the first study, we assessed relationships between soil moisture, organic matter, carbon and nitrogen content and plant water, nitrogen and carbon content and AM colonization and the occurrence of foliar endophytic fungal species. In the second study, we manipulated soil nutrient content and AM colonization of potted seedlings and identified differences in endophytic fungal species composition of the leaves and stems. The results reveal that endophytes can occur either more or less frequently, depending on soil nutrient and plant water content and AM colonization. We propose that these patterns were the result of differences in fungal growth responses to nutrient availability in the leaves, which can be affected by resources obtained from the soil or symbiotic fungi in the roots.  相似文献   

5.
A majority of plant species has roots that are colonized by both arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) fungi. The latter group may include plant mutualists, commensals, parasites and pathogens. The co-occurrence of these two broad groups may translate into competition for root volume as well as for plant-derived carbon (C). Here we provide evidence that the relative availability of soil nitrogen (N) and phosphorus (P) (i.e., soil nutrient stoichiometry) controls the competitive balance between these two fungal guilds. A decrease in the soil available N:P ratio resulted in a lower abundance of AM fungi and a corresponding increase in NM fungi. However, when the same fertilization treatments were applied in a soil in which AM fungi were absent, lowering the soil available N:P ratio did not affect NM fungal abundance. Taken collectively, our results suggest that the increase in NM fungal abundance was not a direct response to soil nutrient stoichiometry, but rather a competitive release from AM fungi responding negatively to higher soil P. We briefly discuss the mechanisms that may be responsible for this competitive release.  相似文献   

6.
Arbuscular mycorrhizal (AM) symbiosis plays an important role in improving plant fitness and soil quality, particularly in fragile and stressed environments, as those in certain areas of Mediterranean ecosystems. AM fungal communities are usually affected by dynamic factors such as the plant community structure and composition, which in turn are imposed by seasonality. For this reason, a one-year-round time-course trial was performed by sampling the root system of two representative shrubland species (Rosmarinus officinalis and Thymus zygis) within a typical Mediterranean ecosystem from the Southeast of Spain. The 18S rDNA gene, of the AM fungal community in roots, was subjected to PCR-SSCP, sequencing, and phylogenetic analysis. Forty-three different AM fungal sequence types were found which clustered in 16 phylotypes: 14 belonged to the Glomeraceae and two to the Diversisporaceae. Surprisingly, only two of these phylotypes were related with sequences of morphologically defined species: Glomus intraradices and Glomus constrictum. Significant differences were detected for the relative abundance of some phylotypes while no effects were found for the calculated diversity indices. These results may help to design efficient mycorrhizal-based revegetation programs for this type of ecosystems.  相似文献   

7.
The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.  相似文献   

8.

Background and aims

The effect of plant species on their root-associated arbuscular mycorrhizal (AM) fungi is well studied, but how this effect operates at the cultivar level remains poorly understood. This study investigates how wheat cultivars shape their AM fungal communities.

Methods

Twenty-one new wheat cultivars were traditionally cultivated in a dryland of northwestern China, and their agronomic traits, soil characteristics and the abundance and community composition of AM fungi were measured.

Results

Both spore community in soils and AM fungal phylotypes inside roots were significantly influenced by cultivar even though hyphal abundance, spore density and AM fungal diversity were similar across cultivars. Three out of 16 AM fungal phylotypes interacted with most cultivars, whilst some phylotypes preferred to colonize cultivars with similar agronomic traits. Six wheat cultivars, all which had hosted 6 AM fungal phylotypes, seemed to be generalists. Nestedness analysis and stochastic model fitting revealed that the AM fungal communities colonizing roots were codetermined by deterministic and stochastic processes.

Conclusions

A complex pattern of cultivar-AM fungal interactions was observed in this study, and our results highlight that the host effect on the community assembly of AM fungi could be operating on the level of plant cultivar.  相似文献   

9.
Lovelock CE  Andersen K  Morton JB 《Oecologia》2003,135(2):268-279
Arbuscular mycorrhizal (AM) fungi are mutualists with plant roots that are proposed to enhance plant community diversity. Models indicate that AM fungal communities could maintain plant diversity in forests if functionally different communities are spatially separated. In this study we assess the spatial and temporal distribution of the AM fungal community in a wet tropical rainforest in Costa Rica. We test whether distinct fungal communities correlate with variation in tree life history characteristics, with host tree species, and the relative importance of soil type, seasonality and rainfall. Host tree species differ in their associated AM fungal communities, but differences in the AM community between hosts could not be generalized over life history groupings of hosts. Changes in the relative abundance of a few common AM fungal species were the cause of differences in AM fungal communities for different host tree species instead of differences in the presence and absence of AM fungal species. Thus, AM fungal communities are spatially distinguishable in the forest, even though all species are widespread. Soil fertility ranging between 5 and 9 Mg/ha phosphorus did not affect composition of AM fungal communities, although sporulation was more abundant in lower fertility soils. Sampling soils over seasons revealed that some AM fungal species sporulate profusely in the dry season compared to the rainy season. On one host tree species sampled at two sites with vastly different rainfall, relative abundance of spores from Acaulospora was lower and that of Glomus was relatively higher at the site with lower and more seasonal rainfall.  相似文献   

10.
? We tested the prediction that the abundance and diversity of arbuscular mycorrhizal (AM) fungi are influenced by resource availability and plant community composition by examining the joint effects of carbon dioxide (CO(2) ) enrichment, nitrogen (N) fertilization and plant diversity on AM fungi. ? We quantified AM fungal spores and extramatrical hyphae in 176 plots after 7 yr of treatment with all combinations of ambient or elevated CO(2) (368 or 560 ppm), with or without N fertilization (0 or 4 g Nm(-2) ), and one (monoculture) or 16 host plant species (polyculture) in the BioCON field experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. ? Extramatrical hyphal lengths were increased by CO(2) enrichment, whereas AM spore abundance decreased with N fertilization. Spore abundance, morphotype richness and extramatrical hyphal lengths were all greater in monoculture plots. A structural equation model showed AM fungal biovolume was most influenced by CO(2) enrichment, plant community composition and plant richness, whereas spore richness was most influenced by fungal biovolume, plant community composition and plant richness. ? Arbuscular mycorrhizal fungi responded to differences in host community and resource availability, suggesting that mycorrhizal functions, such as carbon sequestration and soil stability, will be affected by global change.  相似文献   

11.
Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.  相似文献   

12.
Soils support an enormous microbial diversity, but the ecological drivers of this diversity are poorly understood. Interactions between the roots of individual grass species and the arbuscular mycorrhizal (AM) fungi and bacteria in their rhizoplane were studied in a grazed, unimproved upland pasture. Individual root fragments were isolated from soil cores, DNA extracted and used to identify plant species and assess rhizoplane bacterial and AM fungal assemblages, by amplifying part of the small-subunit ribosomal RNA gene, followed by terminal restriction fragment length polymorphism analysis. For the first time we showed that AM fungal and bacterial assemblages are related in situ and that this relationship occurred at the community level. Principal coordinate analyses of the data show that the AM fungi were a major factor determining the bacterial assemblage on grass roots. We also report a strong influence of the composition of the plant community on AM fungal assemblage. The bacterial assemblage was also influenced by soil pH and was spatially structured, whereas AM fungi were influenced neither by the bacteria nor by soil pH. Our study shows that linkages between plant roots and their microbial communities exist in a complex web of interactions that act at individual and at community levels, with AM fungi influencing the bacterial assemblage, but not the other way round.  相似文献   

13.
Urbanization, with its cohort of environmental stressors, has a dramatic effect on wildlife, causing loss of biodiversity and decline in population abundance customarily associated with increasing levels of impervious surface and fragmentation of native habitats. Some studies suggest that faunal species from open habitats, and with higher abundance in natural environments, seem more likely to tolerate and live in urban environments. Here I evaluate how the level of urbanization affects lagartixas (Tropidurus hispidus) one of the most common lizards found in open vegetation ecosystems in NE Brazil. I surveyed a total of 47 transects across sites that differed in proportion of impervious surface (high, mild, peri‐urban, and rural). I also collected specific biotic (herbaceous cover, tree, and arthropod abundance) and abiotic (amount of shelters and impervious surfaces) factors that could affect lagartixas abundance. Ants were the most common arthropod both in the rural and urban environment. Lagartixas thrive in urban environments, and trees and shelter were key predictors of their abundance. Lagartixas show a clear association with use of artificial structures. The low densities of lagartixas in rural areas and higher density in urbanized areas suggest that they colonized urban areas due to the hard surfaces and they probably are not exploiting a novel habitat, but somewhat responding to conditions resembling those in which they evolved. Finally, lagartixas are extremely common in tropical cities, they have a suite of features that are associated with selective pressures in cities and they might play a key functional role in urban ecosystems making this lizard an excellent system for the study of ecology and adaptation to the urban environments.  相似文献   

14.
城市菌根真菌多样性、变化机制及功能应用   总被引:1,自引:0,他引:1  
陈云  马克明 《生态学报》2016,36(14):4221-4232
菌根真菌能够与大多数陆生植物的根系形成菌根共生体,具有改善宿主植物矿质营养、增强抗逆性、改良土壤结构等重要生态功能。城市化过程中气候、土壤、植被、土地利用等因素的改变,对菌根真菌的多样性产生了直接或间接的影响。目前城市菌根真菌的研究多侧重对其空间分布及群落组成的简单描述,缺乏针对城市典型生态现象及生态问题系统性的探讨。分别从城市菌根真菌的多样性变化、影响机制及功能应用等3方面进行了综述,全面揭示城市菌根真菌的研究现状及研究的复杂性,发现当前研究存在多样性评估简单化、研究层次单一化、内在机制现象化及功能应用停滞化等问题,认为今后应建立更为系统、综合、标准的研究体系以深刻而准确地认识与理解城市化对菌根真菌多样性的影响,为城市微生物资源的保存及绿地系统维持提供理论依据。  相似文献   

15.
Septate endophytes proliferating in the roots of grasslands’ plants shed doubts on the importance of arbuscular mycorrhizal (AM) symbioses in dry soils. The functionality and diversity of the AM symbioses formed in four replicates of three adjacent plant communities (agricultural, native, and restored) in Grasslands National Park, Canada were assessed in periods of moisture sufficiency and deficiency typical of early and late summer in the region. The community structure of AM fungi, as determined by polymerase chain reaction-denaturing gradient gel electrophoresis, varied with sampling time and plant community. Soil properties other than soil moisture did not change significantly with sampling time. The DNA sequences dominating AM extraradical networks in dry soil apparently belonged to rare taxa unreported in GenBank. DNA sequences of Glomus viscosum, Glomus mosseae, and Glomus hoi were dominant under conditions of moisture sufficiency. In total, nine different AM fungal sequences were found suggesting a role for the AM symbioses in semiarid areas. Significant positive linear relationships between plant P and N concentrations and active extraradical AM fungal biomass, estimated by the abundance of the phospholipid fatty acid marker 16:1ω5, existed under conditions of moisture sufficiency, but not under dry conditions. Active extraradical AM fungal biomass had significantly positive linear relationship with the abundance of two early season grasses, Agropyron cristatum (L.) Gaertn. and Koeleria gracilis Pers., but no relationship was found under dry conditions. The AM symbioses formed under conditions of moisture sufficiency typical of early summer at this location appear to be important for the nutrition of grassland plant communities, but no evidence of mutualism was found under the dry conditions of late summer.  相似文献   

16.
Arbuscular mycorrhizal (AM) fungi are important root symbionts that enhance plant nutrient uptake and tolerance to pathogens and drought. While the role of plant dispersal in shaping successional vegetation is well studied, there is very little information about the dispersal abilities of AM fungi. We conducted a trap-box experiment in a recently abandoned quarry at 10 different distances from the quarry edge (i.e. the potential propagule source) over eleven months to assess the short term, within-year, arrival of plant and AM fungal assemblages and hence their dispersal abilities. Using DNA based techniques we identified AM fungal taxa and analyzed their phylogenetic diversity. Plant diversity was determined by transporting trap soil to a greenhouse and identifying emerging seedlings. We recorded 30 AM fungal taxa. These contained a high proportion of ruderal AM fungi (30% of taxa, 79% of sequences) but the richness and abundance of AM fungi were not related to the distance from the presumed propagule source. The number of sequences of AM fungi decreased over time. Twenty seven plant species (30% of them ruderal) were recorded from the soil seed traps. Plant diversity decreased with distance from the propagule source and increased over time. Our data show that AM fungi with ruderal traits can be fast colonizers of early successional habitats.  相似文献   

17.
There is rising awareness that different arbuscular mycorrhizal (AM) fungi have different autoecology and occupy different soil niches and that the benefits they provide to the host plant are dependent on plant-AM fungus combination. However, the role and community composition of AM fungi in succession are not well known and the northern latitudes remain poorly investigated ecosystems. We studied AM fungal communities in the roots of the grass Deschampsia flexuosa in two different, closely located, successional stages in a northern Aeolian sand area. The AM fungal taxa richness in planta was estimated by cloning and sequencing small subunit ribosomal RNA genes. AM colonization, shoot δ 13C signature, and %N and %C were measured. Soil microbial community structure and AM fungal mycelium abundance were estimated using phospholipid (PLFA) and neutral lipid (NLFA) analyses. The two successional stages were characterized by distinct plant, microbial, and fungal communities. AM fungal species richness was very low in both the early and late successional stages. AM frequency in D. flexuosa roots was higher in the early successional stage than in the late one. The AM fungal taxa retrieved belonged to the genera generally adapted to Arctic or extreme environments. AM fungi seemed to be important in the early stage of the succession, suggesting that AM fungi may help plants to better cope with the harsh environmental conditions, especially in an early successional stage with more extreme environmental fluctuations.  相似文献   

18.
董菁  左进  吝涛  刘君涛  王宁 《生态学报》2022,42(6):2237-2250
屋顶绿化的降雨径流调控效益对城市水安全与可持续发展具有重要作用,尤其是在土地资源紧缺与环境问题突出的高度城市化地区,然而目前针对城市尺度进行屋顶绿化降雨径流调控效益的研究较少。以厦门岛142 km~2的典型高度城市化地区为研究对象,采用ArcGIS与SCS-CN水文模型,研究了四种屋顶绿化实施场景在四种不同重现期(2、5、10、20年)降雨事件下各汇水区屋顶绿化的降雨径流调控效益,并依其空间分异特征制定差异化生态建设策略。结果显示,(1)平均地表径流减少率随城市屋顶绿化量的增加从0.91%增加至4.51%,随降雨强度的增加从2.86%下降到2.01%。屋顶绿化对南部城市核心区中山路商圈汇水区的地表径流削减作用最为显著,在2年重现期降雨事件和100%屋顶绿化实施场景下地表径流减少了8.84%。(2)厦门岛易积水区域主要分布在高崎机场、西北部港口、筼筜湖、五缘湾和环岛路;在四种屋顶绿化实施场景下,平均积水深度降低1.68、4.68、6.45、14.43 cm,平均积水面积减少6.11、16.89、23.29、52.06 hm~2,而随着降雨强度的增加,积水面积减少率幅度降低,屋顶绿化对中低...  相似文献   

19.
Arbuscular mycorrhizal (AM) fungi are ubiquitous and ecologically important microbes in grasslands. Both the host plant species and soil properties have been suggested as potentially important factors structuring AM fungal communities based on studies within local field sites. However, characterizations of the communities in relation to both host plant identity and soil properties in natural plant communities across both local and broader geographic scales are rare. We examined the AM fungal spore communities associated with the same C4 grasses in two Eastern serpentine grasslands, where soils have elevated heavy metals, and two Iowa tallgrass prairie sites. We compared AM fungal spore communities among host plants within each site, looked for correlations between fungal communities and local soil properties, and then compared communities among sites. Spore communities did not vary with host plant species or correlate with local soil chemical properties at any site. They did not differ between the two serpentine sites or between the two prairie sites, despite geographic separation, but they did differ between serpentine and prairie. Soil characteristics are suggested as a driving force because spore communities were strongly correlated with soil properties when data from all four sites are considered, but climatic differences might also play a role.  相似文献   

20.
黄静  尹海伟  孔繁花  刘宏庆  孙涛 《生态学报》2023,43(22):9107-9120
屋顶绿化作为基于自然解决方案的一种生态战略,可以有效缓解城市的一系列生态环境问题。为了更好的挖掘屋顶绿化在城市生态系统中的应用潜力,需要从屋顶绿化生态系统调节服务出发,全面且定量地认识屋顶绿化与城市生态系统的关联机制。阐述了屋顶绿化的构成要素,屋顶绿化生态系统调节服务的内在机制;回顾了屋顶绿化生态系统主要调节服务与政策推动建设效果;从屋顶绿化推行制约因素及生态系统调节服务研究等方面进行了展望。目前,屋顶绿化研究主要侧重于环境调节服务。在水环境调节方面,当前多针对屋顶绿化的水环境调节功能开展研究,还需进一步从屋顶绿化生态系统水循环的角度探究,明确屋顶绿化在什么条件下是径流的污染源。在热环境调控方面,多数研究集中在量化屋顶绿化对城市热环境的影响,而驱动屋顶绿化降温效应的内在机制与城市热环境调节服务之间的定量联系还尚需深入研究。在建筑能耗方面,目前仍然缺乏建筑物的能源性能建模所需的屋顶绿化物理参数,需要基于长时间观测数据构建能量传输模型,从建筑-基质-植被-大气耦合的角度,综合研究屋顶绿化能量流动的过程与机制,明晰屋顶绿化与裸露屋顶之间的能量流动差异。在政策推动效应方面,我国屋顶绿化政策类型相对单一,缺乏覆盖整个屋顶绿化生命周期的推广政策。建议多维度、大范围的推动屋顶绿化建设,以期更好的改善城市生境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号