首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Valladares and Gianoli (2007) tried to answer a key question, “how much ecology do we need to know to restore Mediterranean ecosystems?” by focusing on (1) plant–plant interactions; (2) environmental heterogeneity and the potential adaptation of transplanted plants; and (3) phenotypic plasticity of the planted species. We consider their choice of topics incomplete and potentially misleading because (1) it is clearly biased toward a narrow set of research topics (phenotypic plasticity, facilitation, and climate change); (2) it assumes that active restoration, and specifically revegetation, is needed; and (3) it conveys a false perception that other basic ecological aspects of Mediterranean ecosystems are sufficiently known. Instead, we review the current knowledge on seed dispersal, succession, and ecosystem functioning for Mediterranean ecosystems. We argue that decades of research on these topics have yielded few practical guidelines for restoration, something that needs to be urgently corrected. First, the current “establishment limitation paradigm” for plant recruitment does not acknowledge the role of dispersal limitation at large spatial scales. More attention should be paid to nucleation processes and directed seed dispersal mediated by animals. Second, studies of vegetation dynamics and succession in the Mediterranean have led to an overly simplistic view of successional dynamics. How fast and deterministic succession is remains mostly unexplored; long‐term monitoring of successional dynamics at different spatial scales is urgently needed. Third, information on the functional status of Mediterranean ecosystems is required to identify processes hindering natural recovery after disturbances and to set priorities on the areas and ecosystem components to be restored.  相似文献   

2.
We compared early plant succession in four abandoned pastures of differing age since abandonment and a nearby secondary forest site in northwestern Ecuador. Two “Open” pastures had no tree canopy covering, and two “Guava” pastures had a well-developed canopy cover of Psidium guajava. No site had been seeded with pasture grasses. All pastures were compared in a chronological sequence; two were monitored for 18 months. Species richness was consistently higher in Guava sites than in Open sites and it continued to increase over time, whereas it remained static in Open sites. Species richness was highest in secondary forest. Recruitment of tree saplings in Guava sites was lower than in secondary forest; however, it was nearly absent in Open sites. The seed bank contained predominantly herbaceous species at all sites, and was highly dissimilar to aboveground vegetation. Dominance-diversity curves for Guava sites showed a more equitable distribution of species that increased over time. In contrast, dominance-diversity curves for Open sites were static and indicated dominance by a few aggressive species. Soil characteristics among sites were variable; however, a principal components analysis on soils isolated the older Open site from all others. The older Open site had the lowest species richness and was dominated by Baccharis trinervis, an aggressive shrub species. The site appears to be in a state of arrested succession and some form of restorative intervention may be necessary to initiate succession toward a forested condition. Succession in Guava sites appears headed toward secondary forest, whereas it does not in Open sites.  相似文献   

3.
4.
Duane A. Peltzer  David A. Wardle 《Oikos》2016,125(8):1121-1133
Soil chronosequences are a powerful tool for understanding how limitation of plant growth by nutrients and light changes throughout ecosystem development, but experimental tests of how availability of these resources interact to influence plant performance as ecosystem development proceeds are rare. We utilise the well‐characterised Franz Josef soil chrononosequence in New Zealand, a sequence of sites caused by a retreating glacier that spans ca 120 000 years and that includes all stages of ecosystem development from primary succession through to retrogression. Soil fertility is relatively low at either end of the sequence due to limitation of biological processes initially by N and ultimately by P whereas light availability is lowest at intermediate stages of the sequence dominated by tall forest. Growth and leaf traits of nine woody plant species, including those that occur widely along the chronosequence and those that are restricted to short portions of it, were quantified in a mesocosm experiment. Phytometers of these species were each grown in each of nine soils collected from throughout the chronosequence at either high (30%) or low (2%) light levels; these soil and light conditions represent the full variation observed along the sequence. Plant growth and biomass were greatest in soils from intermediate stages of the chronosequence and in high light. However, the stimulatory effects of soil fertility largely disappeared under shaded conditions that are characteristic of intermediate stages of ecosystem development. Our results demonstrate that long‐term changes in soil fertility and light availability that occur throughout ecosystem development had direct effects on plant species performance, but that there were stronger interactive effects of soils and light availability. Because light and soil resource availability shift predictably but have different trajectories throughout ecosystem development, our results help to understand variation in plant species performance and community assembly along complex environmental gradients.  相似文献   

5.
During secondary succession on abandoned agricultural fields the diversity and abundance of insect communities often increases, whereas the performance and nutritional quality of early successional plants often declines. As the diversity and abundance of insects on a single plant are determined by characteristics of the environment as well as of the host plant, it is difficult to predict how insects associated with a single plant species will change during succession. We examined how plant characteristics of the early successional plant species ragwort (Jacobaea vulgaris), and the herbivores and parasitoids associated with these plants change during secondary succession. In ten grasslands that differed in time since abandonment (3–26 years), we measured the size and primary and secondary chemistry of individual ragwort plants. For each plant we also recorded the presence of herbivores in flowers, leaves and stems, and reared parasitoids from these plant parts. Ragwort plants were significantly larger but had lower nitrogen concentrations in recently abandoned sites than in older sites. Pyrrolizidine alkaloid (PA) composition varied among plants within sites but also differed significantly among sites. However, there was no relationship between the age of a site and PA composition. Even though plant size decreased with time since abandonment, the abundance of stem-boring insects and parasitoids emerging from stems significantly increased with site age. The proportion of plants with flower and leaf herbivory and the number of parasitoids emerging from flowers and leaves was not related to site age. Parasitoid diversity significantly increased with site age. The results of our study show that ragwort and insect characteristics both change during secondary succession, but that insect herbivore and parasitoid abundances are not directly related to plant size or nutritional quality.  相似文献   

6.
Heitkamp  Felix  Raupp  Joachim  Ludwig  Bernard 《Plant and Soil》2009,321(1-2):259-278
Diversity, structure and productivity of above-ground compartment of terrestrial ecosystems have been generally considered as the main drivers of the relationships between diversity and ecosystem functioning. More recently it has been suggested that plant population dynamics may be linked with the development of the below-ground community. The biologically active soil zone where root-root and root-microbe communications occur is named “Rhizosphere” where root exudates play active roles in regulating rhizosphere interactions. Root exudation can regulate the soil microbial community, withstand herbivory, facilitate beneficial symbioses, modify the chemical and physical soil properties and inhibit the growth of competing plant species. In this review, we explore the current knowledge assessing the importance of root exudates in plant interactions, in communications between parasitic plants and their hosts and how some soil microbial components could regulate plant species coexistence and change relationships between plants. This review will be focussed on several well documented biological processes regulating plant-plant communications such as exotic plant species invasions, negative root-root communication (allelopathy) and parasitic plant / host plant interactions and how some soil microbial components can interfere with signal traffic between roots. The reported data show that the overall effect of one plant to another results from multiple interacting mechanisms where soil microbiota can be considered as a key component.  相似文献   

7.
Abstract Aim and location Alluvial flood plains support higher levels of vascular plant species richness than other terrestrial ecosystems. Whereas the spatial and temporal heterogeneity of these ecosystems has been considered the local determinant of high plant richness, regional influences, such as regional species pools have received little attention. In this study we surveyed plant species richness across the entire Nyack catchment (c. 21,000 ha), in Glacier National Park, USA, to determine the relation of upland ecosystem community structure to biodiversity patterns on montane floodplains that are relatively extensive and flood‐scoured ecosystems. Method We surveyed floodplain and other terrestrial ecosystems within the Nyack catchment using 50 × 2 m plots to record species present and visual estimates of percentage cover. Species pools from flood plains and three other terrestrial ecosystems (low elevation forests, sub‐Alpine forests and alpine) were analysed with nested subset analysis, detrended correspondence analysis (DCA), and an index of beta diversity to identify dissimilarity in species composition and richness, and the separate contributions of generalists (species occurring in more than one ecosystem) and specialists to richness in each ecosystem. Analysis of variance and post hoc Tukey–Kramer tests were used to identify where in the Nyack catchment each species was most abundant. Species life form and dispersal strategies were analysed to better understand influences on beta diversity. Results Our data show that in this pristine system, floodplain ecosystems host 202 (63%) of the 320 vascular plants identified within Nyack catchment. Of these species, the nested subset analysis showed that 146 (72%) are found in at least one adjacent upland ecosystem. While the DCA ordination scatter plots show statistically significant separations of ecosystems on the first two axes, values of beta diversity showed that substantial similarity exists between floodplain and all upland species pools. Further, of the 146 floodplain species shared with upland ecosystems, 61% were more frequent in upland ecosystems, whereas 55% were more abundant in uplands than flood plains (Tukey–Kramer P ≤ 0.05). Significant numbers of specialists were found on flood plains (24% of floodplain species), but also within upland ecosystems, where 23% and 40% of low elevation forest and alpine species were found to be specialists, respectively. Whereas 83% of herb generalists were wind dispersed, <70% of specialists were animal dispersed, indicating that similarity in species pools may be driven by wind dispersal. Main conclusions These results suggest a re‐evaluation of the contribution of floodplain ecosystems to regional plant species richness. While flood plains host specialists, other ecosystems had equal or higher levels of regional ‘endemism’. Furthermore, these data suggest that conservation of high levels of biodiversity on floodplain ecosystems may require consideration of upland ecosystems throughout the catchment as the majority of species were relatively rare on flood plains, indicating they may be sink habitats for some species.  相似文献   

8.
Yang  Junjie  Xu  Minjie  Pang  Shuang  Gao  Lili  Zhang  Zijia  Wang  Zhiping  Zhang  Yunhai  Han  Xingguo  Zhang  Ximei 《中国科学:生命科学英文版》2022,65(1):142-150

Anthropogenic disturbances may decrease as we take measures to control them. However, the patterns and mechanisms of post-disturbance ecosystem succession have rarely been studied. Here we reported that disturbance level determined the importance of stochastic relative to deterministic changes in ecosystem components (plant community composition, soil microbial community composition, and soil physicochemical indices), and thus predefined the pattern of post-disturbance ecosystem succession. We proposed a theoretical framework with five disturbance levels corresponding to distinct succession patterns. We conducted a nitrogen addition experiment in a temperate steppe, monitored these ecosystem components during “disturbance” treatment (2010–2014) and post-treatment “succession” (2014–2018). The disturbance level experienced by each component in each treatment was inferred by fitting the observed succession patterns into the theoretical framework. The mean disturbance level of these components was found to increase quadratically with nitrogen addition rate. This was because increasing nitrogen addition reduced the importance of stochastic relative to deterministic changes in these components, and these changes had a quadratic relationship with disturbance level. Overall, our results suggested that by monitoring the importance of stochastic relative to deterministic changes in an ecosystem, we can estimate disturbance levels and predict succession patterns, as well as propose disturbance-level-dependent strategies for post-disturbance restoration.

  相似文献   

9.
The concept of ecological memory provides a new perspective for research on forest succession by including historical factors and the initial state of ecological processes. However, there are still significant gaps between the concept and its application. We selected nine proxy indicators (plant species, soil seed banks, soil microbes, soil animals, birds, soil age, soil pollen, soil mineral distribution, and light environment) and developed a method to quantify ecological memory and succession in a subtropical forest succession in South China. Taking the climax-monsoon evergreen broad-leaved forest as the reference ecosystem, we found that ecological memory increased nonlinearly and accumulated following a specific assembly rule during succession. Memory concerning major soil microbes and soil animals, which improve the soil substrate, mainly accumulated from the initial to the early successional stage. Memory concerning the number of bird species and the availability of light, which ensure a source of regenerative seeds and the survival of understory seedlings, mainly accumulated from the early to middle successional stages. Memory concerning vegetation and soil seed banks mainly accumulated late in succession, guaranteeing that the ecosystem would reach the regional climax stage. Prospective memory was greater than retrospective memory in every successional stage except the late stage, which indicated that all stages but the late stage were undergoing progressive succession. Our study demonstrates that the concept of ecological memory and the proposed evaluation framework are useful for guiding research on succession and restoration, and especially for assessing how “far” a restored ecosystem is from a reference ecosystem or how far a restored ecosystem has deviated from its natural succession trajectory.  相似文献   

10.
Floristic composition and soil characteristics (moisture, pH, nutrient contents) in abandoned upland rice paddies of different ages were analyzed to clarify the regenerative aspects of succession as a tool for habitat restoration. The study sites represented five seral stages: newly abandoned paddy fields; successional paddy fields abandoned for 3, 7, and 10 years; and a 50‐year‐old Alnus japonica forest. A vegetation sere was apparent in changes of dominant plant species in the order Alopecurus aequalis var. amurensis (annual grass), Aneilema keisak (annual forb), Juncus effusus var. decipiens (rush), Salix koriyanagi (willow), and Alnus japonica (alder) communities. These temporal stages resemble the spatial zonation of vegetation in local riparian floodplain ecosystems, indicating a hydrosere, with soil moisture decreasing over time. Age distributions and life forms of the dominant plant species support a “tolerance” model of secondary succession, in which the established species persist into later successional stages. Persistence of earlier colonizers led to a net cumulative increase in species richness and a more even distribution of species cover with increasing field age. Between 10 and 50 years, vegetation stabilizes as an alder community. Soil moisture content decreased steadily with paddy field age after an initial rise immediately after their abandonment, whereas pools of organic matter, N, P, K, Ca, and Mg, increased with field age. The pace and direction of recovery of native vegetation and natural soil properties in these abandoned rice paddies resembled classic old field succession, a form of secondary succession that often serves as a template for guiding restoration efforts. Active intervention, in particular dismantling artificial levees, could accelerate the recovery process, but natural habitat recovery generally appears sufficiently robust to achieve “passive” restoration of this rare community without intervention.  相似文献   

11.
12.
本文采用由植被的空间序列推断时间上演替系列的方法对甘南亚高山草甸弃耕地上的植物群落组成进行了分析。结果表明:(1)弃耕初期,莎草,禾草类在群落中的地位从开始时的71%急剧地下降到弃耕十二年时的6%;以后随着密丛型的莎草,禾草的侵入,它们地位又开始上升而恢复到30%一40%:杂类草的地位在开始时上升较快,而到了后期又有所下降;毒害草在群落中的地位基本稳定,保持在10%左右。 (2)群落的种丰富度、均匀度、Simpson多样性指数随弃耕年限增加而增大,而群落优势度随弃耕年限而减小。 (3)优势度—多样性曲线在弃耕初期为几何分布型,中后期演变为对数正态分布型,而对放牧顶极群落又近似于MacArthur分布型。  相似文献   

13.
Ecologists traditionally use environmental parameters to predict successional shifts in compositional characteristics of local species assemblages (environmental control). Another important focus in ecology is to understand functional roles of species assemblages in determining local environmental properties (diversity control). Then, the question emerges: which is the cause, and which is the consequence? To clarify the causal relationships between species assemblages and environmental properties, we focused on seral changes in species/functional diversity of vascular plants in tundra ecosystems of the High Arctic. We found that, although species richness was influenced by soil properties in the earlier stages of primary succession, the causalities were reversed in the later stages. We also found functional differentiation among coexisting species in the later stage, suggesting that the ‘complementarity effect’ of diversity on ecosystem functions likely increased with ecosystem development through time. By contrast, particular species had little disproportional influence on soil properties, suggesting that the ‘selection effect’ as an alternative mechanism was less important. This result was likely attributed to the importance of facilitation in the marginal High Arctic environment. Plant–microsite associations are shaped by feedback mechanisms and therefore, neither plant nor microsite is a single absolute predictor of the other. Although our observational study has limitations, we demonstrates a possibility that the relative magnitude of the influence of one on the other can change in the process of succession, emphasizing that the causalities underlying biodiversity–ecosystem function relationships change through succession.  相似文献   

14.
林窗干扰研究   总被引:24,自引:0,他引:24  
林窗是森林生态系统中一种普遍存在的现象,无论是健康的系统还是已经受到过度干扰的系统,林窗作为森林生态系统发展的重要驱动力,影响着森林的物种组成、结构以及森林的演替方向。因此,林窗研究能够为受干扰森林生态系统的恢复提供理论指导,并为森林生态系统的管理提供科学依据。本文从总结有关林窗的基本理论入手,重点介绍了近年来对林窗概念、基本特征、林窗产生后的生境条件变化以及生物对林窗环境变化的响应等研究概况,并对目前林窗研究的手段以及热点问题进行了总结,以期为今后的相关研究提供参考。  相似文献   

15.
Secondary forests are becoming increasingly widespread in the tropics, but our understanding of how secondary succession affects carbon (C) cycling and C sequestration in these ecosystems is limited. We used a well-replicated 80-year pasture to forest successional chronosequence and primary forest in Puerto Rico to explore the relationships among litterfall, litter quality, decomposition, and soil C pools. Litterfall rates recovered rapidly during early secondary succession and averaged 10.5 (± 0.1 SE) Mg/ha/y among all sites over a 2-year period. Although forest plant community composition and plant life form dominance changed during succession, litter chemistry as evaluated by sequential C fractions and by 13C-nuclear magnetic resonance spectroscopy did not change significantly with forest age, nor did leaf decomposition rates. Root decomposition was slower than leaves and was fastest in the 60-year-old sites and slowest in the 10- and 30-year-old sites. Common litter and common site experiments suggested that site conditions were more important controls than litter quality in this chronosequence. Bulk soil C content was positively correlated with hydrophobic leaf compounds, suggesting that there is greater soil C accumulation if leaf litter contains more tannins and waxy compounds relative to more labile compounds. Our results suggest that most key C fluxes associated with litter production and decomposition re-establish rapidly—within a decade or two—during tropical secondary succession. Therefore, recovery of leaf litter C cycling processes after pasture use are faster than aboveground woody biomass and species accumulation, indicating that these young secondary forests have the potential to recover litter cycling functions and provide some of the same ecosystem services of primary forests.  相似文献   

16.
Fragmentation and loss of habitat are critical components of the global change currently threatening biodiversity and ecosystem functioning. We studied the effects of habitat loss through fragmentation on food web structure, by constructing and analyzing plant‐herbivore and host‐parasitoid food webs including more than 400 species and over 120 000 feeding records, in 19 Chaco Serrano remnants of differing areas. Food web structure was altered by habitat fragmentation, with different metrics being affected depending on interaction type, and with all changes being driven by the reduced size of networks in smaller fragments. Only connectance varied in both quantitative and qualitative analyses, being negatively related to area. In addition, the interactions were represented by proper successive subsets, modulated mainly by resource availability (plant–herbivore) or consumer specialization (host–parasitoid), as forest size decreased. The results suggest that habitat loss has led to food web contraction around a central core of highly‐connected species, for plant–herbivore as well as for host–parasitoid systems. The study provides new insights into the effects of human perturbations on complex biological systems.  相似文献   

17.
Question: How is vegetation succession on coal mine wastes under a Mediterranean climate affected by the restoration method used (topsoil addition or not)? How are plant successional processes influenced by local landscape and soil factors? Location: Reclaimed coal mines in the north of Palencia province, northern Spain (42°47′‐42°50′ N, 4°32′‐4°53′ W). Methods: In Jun–Jul 2008, vascular plant species cover was monitored in 31 coal mines. The mines, which had been restored using two restoration methods (topsoil addition or not), comprised a chronosequence of different ages from 1 to 40 yr since restoration started. Soil and environmental factors at each mine were monitored and related to species cover using a combination of ordination methods and Huisman–Olff–Fresco modeling. Results: Plant succession was affected by restoration method . Where topsoil was added, succession was influenced by age since restoration and soil pH. Where no topsoil was added, soil factors seem to arrest succession. Vegetation composition on topsoiled sites showed a gradient with age, from the youngest, with early colonizing species, to oldest, with an increase in woody species. Vegetation on non‐topsoiled sites comprised mainly early‐successional species. Response to age and pH of 37 species found on topsoiled mines is described. Conclusions: Restoration of coal mines under this Mediterranean climate can be relatively fast if topsoil is added, with a native shrub community developing after 15 yr. However, if topsoil is not used, it takes more than 40 yr. For topsoiled mines, the species found in the different successional stages were identified, and their tolerance to soil pH was derived. This information will assist future restoration projects in the area.  相似文献   

18.
Many major biomes throughout the world are dominated by plants with clonal growth forms. While many recent studies have examined the effects of clonality on the growth of individual plants, relatively few studies have tested the community level effects of clonality as a function of environmental characteristics. By investigating six sand dune sites that have undergone different numbers of years of natural restoration constituting a succession sere, we quantified if the abundance and importance of clonal plants was related to successional age in the stressful environment of a semi-arid sand dune region in northeastern China. We expected that clonal plants would dominate at every stage of the succession sere. We also predicted that species diversity would decrease in later stages of the succession sere due to the extremely high proportion of clonal plants in the community. Our results showed that, through 45 years of succession, the total plant species richness and Shannon–Wiener diversity index continually increased. While the species number of clonal plants was consistently low during the succession, the importance of clonal plants increased gradually from none at 3 years to 49 % of the total, approximately equal to that of aclonal plants, at the 45-year site. Clonal plants with phalanx strategies were more important than guerillas at all ages in sand dune succession. At the beginning and early stages of sand dune succession, aclonal plants were more important than clonal plants, perhaps due to greater seed propagation. The distribution or arrangement of aclonal and clonal plants in the whole process of sand dune complemented each other. The results presented give new perceptions on the function of biodiversity in maintaining ecosystems.  相似文献   

19.
Plant root associations with microbes such as mycorrhizal fungi or N-fixing bacteria enable ecosystems to tap pools of nitrogen (N) that might otherwise be inaccessible, including atmospheric N or N in large soil organic molecules. Such microbially assisted N-foraging strategies may be particularly important in late-successional retrogressive ecosystems where productivity is low and soil nutrients are scarce. Here, we use natural N-stable isotopic composition to constrain pathways of N supplies to different plant functional groups across a well-studied natural soil fertility gradient that includes a highly retrogressive stage. We demonstrate that ectomycorrhizal fungi, ericoid mycorrhizal fungi, and N-fixing bacteria support forest N supplies at all stages of ecosystem succession, from relatively young, N-rich/phosphorus (P)-rich sites, to ancient sites (ca. 500 ky) where both N supplies and P supplies are exceedingly low. Microbially mediated N sources are most important in older ecosystems with very low soil nutrient availability, accounting for 75–96% of foliar N at the oldest, least fertile sites. These isotopically ground findings point to the key role of plant–microbe associations in shaping ecosystem processes and functioning, particularly in retrogressive-phase forest ecosystems.  相似文献   

20.
Native grasslands are among the most imperiled of the North American ecosystems, with only ∼4% of their pre-settlement area remaining, but some grassland habitats are being restored and maintained through such methods as prescribed burning and mowing, which may provide habitat for animal species endemic to this ecosystem. I determined how succession of the plant community, due to a four-year rotational burn in 16 grassland fragments, influenced species richness and local abundances of small mammals in Illinois, USA. Species richness was relatively low in grasslands that were recently burned and highest in older successional grasslands. The most abundant species, Microtus ochrogaster, M. pennslyvanicus, Peromyscus maniculatus, P. leucopus, and Reithrodontomys megalotis showed very different responses to succession; Microtus spp. were most abundant in older successional grasslands, preferring areas with more cover of bunchgrasses, whereas the other three species were relatively abundant in grasslands of all successional ages. P. maniculatus was most abundant in any habitat that had ample open ground. The grasslands at my study site are a mixture of restored and non-restored grasslands. Overall, adding additional time between burns and restoring more of the grasslands by planting bunchgrasses that are native to this area may increase abundances of most mammal species at my study site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号