首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the global decline in coral reef health is likely to have profound effects on reef associated fishes, these effects are poorly understood. While declining coral cover can reduce the abundance of reef fishes through direct effects on recruitment and/or mortality, recent evidence suggests that individuals may survive in disturbed habitats, but may experience sublethal reductions in their condition. This study examined the response of 2 coral associated damselfishes (Pomacentridae), Chrysiptera parasema and Dascyllus melanurus, to varying levels of live coral cover. Growth, persistence, and the condition of individuals were quantified on replicate coral colonies in 3 coral treatments: 100% live coral (control), 50% live coral (partial) and 0% live coral (dead). The growth rates of both species were directly related to the percentage live coral cover, with individuals associated with dead corals exhibiting the slowest growth, and highest growth on control corals. Such differences in individual growth between treatments were apparent after 29 d. There was no significant difference in the numbers of fishes persisting or the physiological condition of individuals between different treatments on this time-scale. Slower growth in disturbed habitats will delay the onset of maturity, reduce lifetime fecundity and increase individual's vulnerability to gape-limited predation. Hence, immediate effects on recruitment and survival may underestimate the longer-term impacts of declining coral on the structure and diversity of coral-associated reef fish communities.  相似文献   

2.
The global degradation of coral reefs is having profound effects on the structure and species richness of associated reef fish assemblages. Historically, variation in the composition of fish communities has largely been attributed to factors affecting settlement of reef fish larvae. However, the mechanisms that determine how fish settlers respond to different stages of coral stress and the extent of coral loss on fish settlement are poorly understood. Here, we examined the effects of habitat degradation on fish settlement using a two-stage experimental approach. First, we employed laboratory choice experiments to test how settlers responded to early and terminal stages of coral degradation. We then quantified the settlement response of the whole reef fish assemblage in a field perturbation experiment. The laboratory choice experiments tested how juveniles from nine common Indo-Pacific fishes chose among live colonies, partially degraded colonies, and dead colonies with recent algal growth. Many species did not distinguish between live and partially degraded colonies, suggesting settlement patterns are resilient to the early stages of declining coral health. Several species preferred live or degraded corals, and none preferred to associate with dead, algal-covered colonies. In the field experiment, fish recruitment to coral colonies was monitored before and after the introduction of a coral predator (the crown-of-thorns starfish) and compared with undisturbed control colonies. Starfish reduced live coral cover by 95–100%, causing persistent negative effects on the recruitment of coral-associated fishes. Rapid reductions in new recruit abundance, greater numbers of unoccupied colonies and a shift in the recruit community structure from one dominated by coral-associated fishes before degradation to one predominantly composed of algal-associated fish species were observed. Our results suggest that while resistant to coral stress, coral death alters the process of replenishment of coral reef fish communities.  相似文献   

3.
Studies on coral reef restoration through a two-step coral gardening protocol have lately proved it to be a viable solution for future reef restoration. This involves a first step of gardening small colonies in mid-water nurseries and a second step, their transplantation, upon reaching suitable size, onto the pre-surveyed damaged areas. We established in September 2007 two mid-water nurseries, each holding 10,000 fragments measuring 2 cm average initial size, at 4 m depths (high tide) in Zanzibar and Mafia Islands, Tanzania. Each nursery comprised six species, each of which was represented by three genotypes. During 9 months, we followed developments by analyzing and comparing survivorship and growth rates of fragments between the different nurseries, species and genotypes. A significant difference between species survival and growth rates was observed in acroporid species, in Pocillopora verrucosa and Millepora sp., which showed better success than Porites cylindrica. In both sites, Millepora suffered no mortality and other species exhibited low mortality, ranging (per coral genotype) between 3% and 24% in Zanzibar (most cases below 10%) and between 13% and 44% (mostly below 25%) in Mafia Island. Most of fragments’ mortality occurred during the first two nursery months. Coral species in Zanzibar nursery also performed better in growth rates than those in Mafia, but in both sites, farmed corals were ready for transplantation just 9 months after the nursery was set up. Economic evaluations involved in the overall nursery set-up and the results indicated that the coral gardening approach could be used in Tanzania to generate large quantities of coral colonies for the restoration of damaged reefs at relatively low cost.  相似文献   

4.
The worldwide degradation of reef ecosystems has promoted the advocators of restoration acts to the foreground. Here, we describe the results of the first step of large-scale restoration based on the “gardening with corals” concept. During June-September 2005, two coral nurseries were established in Bolinao, the Philippines, in front of Silaqui Island, in a shallow (2 m depth) sandy lagoon. Two types of nurseries were employed: (1) suspended nursery; (2) leg-fixed nursery. The nursery held a total number of 6824 ramets, from seven coral species representing different growth forms (branching, leaf-like and sub-massive forms) and different growth rates (fast and slow growing species). Each species was represented by several genotypes. During one year, we analyzed and compared survivorship, bleaching and growth rates of fragments between the different nurseries, species and genotypes. Survivorship, which was high in both nurseries, > 85%, fluctuated between the different species indicating that different species require different rearing methodologies. Mortality and detachment was subjected to environmental conditions, especially affected by the typhoons prevailing in this part of the world. The one-year nursery phase produced sizeable colonies, especially of branching forms, suitable for transplantation.  相似文献   

5.
Active restoration is being practiced to supplement conservation activities for the purpose of reversing the trend of reef degradation. In the last decade, the feasibility of different restoration approaches such as coral transplantation and restocking of other marine biota has been the focus of research and relatively few have examined experimentally its effects on the resultant communities. In this study, coral transplantation and giant clam restocking were applied on 25 degraded patch reefs (~ 25 m2) inside a marine sanctuary in Pangasinan, northwestern Philippines to examine their effects on the community structure of reef fishes. Five interventions or treatments were employed: 1) “coral” consisted of transplantation of a combination of Acropora spp. and Pocillopora spp. on concrete blocks; 2) “clam” consisted of restocking of Tridacna gigas; 3) “clam+coral” consisted of restocking of T. gigas with Acropora spp. transplanted on their shells; 4) “shell” consisted of deployment of T. gigas shells; and 5) “control” consisted of no intervention. Fish communities on the patch reefs were monitored monthly for 3 months before the intervention and were monitored further for 11 months after the intervention, including 1 recruitment season. After the intervention, the coral cover and the “other biota” category increased in the coral and clam+coral treatments, due to the transplanted corals and deployed giant clams. Consequently, the complexity of the substrate was enhanced. A month after the intervention, a rapid increase in the abundance and species richness of reef fishes on the coral, clam+coral and clam treatments was observed compared to the shell and control treatments. A change in species composition of reef fish assemblage was also apparent in the coral and clam+coral treatments relative to the clam, shell and control, especially 4 months after the intervention. The present experiment demonstrates the feasibility of improving the condition of degraded patch reefs, which can subsequently enhance the fish community. Results also show the importance of the underlying substratum and the abundance of live corals and clams to reef fishes.  相似文献   

6.
The role of microhabitat in structuring epifaunal communities on four corals of varying morphology in the genus Acropora (A. millepora, A. hyacinthus, A. pulchra, A. formosa) was determined on two fringing reefs in the central Great Barrier Reef. Greater abundance and species richness of epifauna on tightly branched coral species in comparison to their rarity or absence on open-branched species suggests that protection afforded by complex habitats is important in structuring coral epifaunal communities. Within species, neither total colony space nor live surface area of corals was correlated with either the abundance or species richness of associated epifauna. However, space between branches significantly affected the size of Tetralia crabs associated with different coral species. Patterns in the size distribution of Tetralia on two species of Acropora suggest that crabs select coral hosts according to branch spacing, changing host species as they grow larger.  相似文献   

7.
The present study aimed to investigate the spatial structure of fish communities at juvenile and adult stages on coral reefs at Kudaka Island (Ryukyu Archipelago, Japan) and to relate spatial patterns in the structure of the fish communities to gradients in environmental variables. Diurnal visual censuses allowed us to record 2,602 juveniles belonging to 60 species and 1,543 adults belonging to 53 species from October to December 2005. The distribution of species highlighted that the juvenile community was organised into three distinct assemblages, rather than exhibiting gradual change in community structure along the cross-reef gradient. Correlations between spatial patterns of juvenile community and environmental variables revealed that the most significant factors explaining variation in community structure were coral rubble and coral slab. In contrast, the adult community was organised into one assemblage, and the most significant variation factors in community structure were depth, live coral in massive form, live coral in branched form, dead coral and sand. Overall, the present study showed that most juvenile and adult coral reef fish at Kudaka Island exhibited striking patterns in their distribution and depth and some biological factors (e.g., abundance of live coral, dead coral and coral rubble) might exert considerable influence on the distribution of fishes.  相似文献   

8.
During an unusual cold‐water event in January 2010, reefs along the Florida Reef Tract suffered extensive coral mortality, especially in shallow reef habitats in close proximity to shore and with connections to coastal bays. The threatened staghorn coral, Acropora cervicornis, is the focus of propagation and restoration activities in Florida and one of the species that exhibited high susceptibility to low temperatures. Complete mortality of wild staghorn colonies was documented at 42.9% of donor sites surveyed after the cold event. Remarkably, 72.7% of sites with complete A. cervicornis mortality had fragments surviving within in situ coral nurseries. Thus, coral nurseries served as repositories for genetic material that would have otherwise been completely lost from donor sites. The location of the coral nurseries at deeper habitats and distanced from shallow nearshore habitats that experienced extreme temperature conditions buffered the impacts of the cold‐water event and preserved essential local genotypes for future Acropora restoration activities.  相似文献   

9.
The ‘gardening concept’ for reef restoration focuses on coral colonies farming in mid-water nurseries before their transplantation onto denuded reef areas. Nurseries situated in a nutrient-enriched environment significantly curtail nursery time, but extend labor, as nursery construction and farmed corals must be frequently cleaned from competing fouling organisms. Mass farming of corals calls, therefore, for efficient and cheap maintenance methodologies, which we here tested by employing Aqua-guard M250, an anti-fouling agent used in the fish farming industry. We found that this anti-fouling paint, while reducing fouling organisms on nursery components during the crucial phase of coral ramets' development from nubbins and small fragments sizes to colony sizes suitable for transplantation, is not toxic to maricultured coral fragments that staged more than 2 cm away from the paint. Applying small quantities of such antifouling paint to coral nurseries, while restricting its use to nursery components that are not in direct contact with farmed coral material, reduces fouling coverage and cleaning procedures by 90%.  相似文献   

10.
A detailed understanding of the dual role of parrotfish as both key herbivores and potentially important corallivores is essential to the study of coral health and reef trophodynamics. Some Caribbean parrotfish regularly consume live coral, and discriminate both among coral species and among colonies within a particular species. While they prefer Montastraea spp. corals, which are dominant Caribbean reef builders, causes of selective and persistent grazing of certain colonies remain unknown. We manipulated coral exposure to parrotfish grazing through a long-term cage exclusion experiment in Belize, comparing initially grazed vs. intact (non-grazed) Montastraea spp. colonies. We measured nutrition-related characteristics (C:N ratio, %C, and %N) as well as defensive characteristics (nematocyst density and skeletal hardness) to determine if any of these variables accurately predicted parrotfish grazing. There were substantial reductions in coral nutritional quality (C:N) associated with parrotfish grazing, although these changes appear to be a consequence rather than a cause of parrotfish selectivity. Likewise, nematocyst densities were suppressed in grazed corals, also likely a result of chronic grazing stress. We found no intraspecific differences in skeletal hardness related to grazing. These results provide further demonstration of the physiological consequences of grazing, but the cause of preferential grazing by parrotfishes on certain Montastraea spp. colonies still requires further investigation.  相似文献   

11.

Background

The drastic decline in the abundance of Caribbean acroporid corals (Acropora cervicornis, A. palmata) has prompted the listing of this genus as threatened as well as the development of a regional propagation and restoration program. Using in situ underwater nurseries, we documented the influence of coral genotype and symbiont identity, colony size, and propagation method on the growth and branching patterns of staghorn corals in Florida and the Dominican Republic.

Methodology/Principal Findings

Individual tracking of> 1700 nursery-grown staghorn fragments and colonies from 37 distinct genotypes (identified using microsatellites) in Florida and the Dominican Republic revealed a significant positive relationship between size and growth, but a decreasing rate of productivity with increasing size. Pruning vigor (enhanced growth after fragmentation) was documented even in colonies that lost 95% of their coral tissue/skeleton, indicating that high productivity can be maintained within nurseries by sequentially fragmenting corals. A significant effect of coral genotype was documented for corals grown in a common-garden setting, with fast-growing genotypes growing up to an order of magnitude faster than slow-growing genotypes. Algal-symbiont identity established using qPCR techniques showed that clade A (likely Symbiodinium A3) was the dominant symbiont type for all coral genotypes, except for one coral genotype in the DR and two in Florida that were dominated by clade C, with A- and C-dominated genotypes having similar growth rates.

Conclusion/Significance

The threatened Caribbean staghorn coral is capable of extremely fast growth, with annual productivity rates exceeding 5 cm of new coral produced for every cm of existing coral. This species benefits from high fragment survivorship coupled by the pruning vigor experienced by the parent colonies after fragmentation. These life-history characteristics make A. cervicornis a successful candidate nursery species and provide optimism for the potential role that active propagation can play in the recovery of this keystone species.  相似文献   

12.
The high biodiversity of coral reefs is attributable to the many invertebrate groups which live in symbiotic relationships with other reef organisms, particularly those which associate with the living coral habitat. However, few studies have examined the diversity and community structure of coral-dwelling invertebrates and how they vary among coral species. This study quantified the species richness and composition of animals associated with four common species of branching corals (Acropora nasuta, A. millepora, Pocillopora damicornis, and Seriatopora hystrix) at Lizard Island in the northern Great Barrier Reef. One hundred and seventy-eight nominal species from 12 different phyla were extracted across 50 replicate colonies of each coral host. A single coral colony, approximately 20 cm in diameter, harbored as many as 73 individuals and 24 species. There were substantial differences in invertebrate species composition among coral hosts of different families as well as genera. Twenty-seven species (15% of all taxa collected) were found on only one of the four different coral species, which may potentially indicate some level of specialization among coral hosts. The distinct assemblages on different coral species, and the presence of potential specialists, suggests invertebrate communities will be sensitive to the differential loss of branching coral species resulting from coral reef degradation.  相似文献   

13.
Coral communities of Biscayne National Park (BNP) on offshore linear bank-barrier reefs are depauperate of reef corals and have little topographic relief, while those on lagoonal patch reefs have greater coral cover and species richness despite presumably more stressful environmental regimes closer to shore. We hypothesized that differences in rates of coral recruitment and/or of coral survivorship were responsible for these differences in community structure. These processes were investigated by measuring: (1) juvenile and adult coral densities, and (2) size-frequency distributions of smaller coral size classes, at three pairs of bank- and patch-reefs distributed along the north-south range of coral reefs within the Park. In addition, small quadrats (0.25 m2) were censused for colonies <2 cm in size on three reefs (one offshore and one patch reef in the central park, and one intermediate reef at the southern end), and re-surveyed after 1 year. Density and size frequency data confirmed that large coral colonies were virtually absent from the offshore reefs, but showed that juvenile corals were common and had similar densities to those of adjacent bank and patch reefs. Large coral colonies were more common on inshore patch reefs, suggesting lower survivorship (higher mortality) of small and intermediate sized colonies on the offshore reefs. The more limited small-quadrat data showed similar survivorship rates and initial and final juvenile densities at all three sites, but a higher influx of new recruits to the patch reef site during the single annual study period. We consider the size-frequency data to be a better indicator of juvenile coral dynamics, since it is a more time-integrated measurement and was replicated at more sites. We conclude that lack of recruitment does not appear to explain the impoverished coral communities on offshore bank reefs in BNP. Instead, higher juvenile coral mortality appears to be a dominant factor structuring these communities. Accepted: 9 September 1999  相似文献   

14.
Parrotfishes (family Scaridae) are important agents in marine bioerosion. Here, the feeding ecology of seven species of parrotfishes was studied on Egyptian Red Sea reefs. The most abundant species on both the reef flat and slope was Chlorurus sordidus. In contrast, C. gibbus had the lowest abundance on the reef flat, and Cetoscarus bicolor was the least abundant species on the reef slope. Scarus niger exhibited the highest feeding rate (98.9 bites 5 min− 1), followed by C. sordidus (76.5 bites 5 min− 1), whereas the rates for C. bicolor and C. gibbus were low (29.4 and 31.9 bites 5 min− 1, respectively). The daily feeding patterns of all seven species showed agreement in that activity was relatively constant over the day, with highest values in the early afternoon (1400 h) and a steady decrease until 1800 h. C. sordidus was more similar to S. niger and S. ghobban in showing somewhat higher activities in the morning (0800 h) followed by a slight decrease until noon. The average bite volumes of C. gibbus and C. bicolor were high (0.114 and 0.110 cm3, respectively), whereas S. niger had the lowest average value (0.002 cm3). Based on their feeding intensity, C. gibbus, S. ghobban and C. bicolor have high bioerosion rates on the Egyptian Red Sea reefs. Overall, S. ghobban is the most important bioeroder because it is more abundant than the other two species. All parrotfish species fed on dead coral and hard substrates which are rich in algae, but C. gibbus, C. bicolor and S. ghobban also fed on live coral on both reef zones; C. sordidus avoided live coral. The fresh scars on live coral were bigger than on dead coral because the three large parrotfish (C. gibbus, C. bicolor and S. ghobban) fed mainly on live corals.  相似文献   

15.
The continuous worldwide degradation of coral reefs raises an urgent need for novel active restoration techniques as traditional conservation practices have failed to impede the incessant reefs' decline. While applying the “gardening coral reefs” methodology in Eilat (Red Sea, Israel), we examined reproductive outputs of naturally-grown and outplanted, nursery-farmed Stylophora pistillata colonies from three coral-transplantation trials (November 2005, May 2007, and September 2008), along three reproductive seasons. Surprisingly, transplanted colonies showed better reproductive capacities than the natal Stylophora colonies during > 4 post-transplantation years. A higher percentage of nursery-farmed colonies released planula larvae as compared to naturally-grown colonies. Gravid transplants also shed more planulae per colony, yielding significantly augmented numbers of total planulae over naturally developed S. pistillata colonies. Our results indicate that nursery-grown corals may be used to enhance reef resilience by contributing to the larval pool, forming an engineered larval dispersal instrument for reef rehabilitation.  相似文献   

16.
Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.  相似文献   

17.
In marine species with a pelagic larval stage, search behavior and selection of a suitable reef habitat can maximize the settlement success of recently settled juveniles and their subsequent performance (growth and survival of juveniles). Our objective was to test this hypothesis for a single target coral reef fish species (Chromis viridis) at Moorea Island. C. viridis settle on living coral colonies of Porites rus already populated with conspecifics. In the present study (conducted in experimental cages), we found that: 1) mortality rate of recently settled juveniles of C. viridis was lower in the settlement habitat (living coral colonies of P. rus) than in other habitats having physical structure different from those of P. rus colonies; 2) C. viridis juveniles preferentially colonized coral heads of P. rus with conspecifics present rather than uninhabited coral heads and they also preferentially colonized uninhabited coral heads rather than coral heads with heterospecifics; 3) mortality rate of C. viridis juveniles did not vary with the presence or absence of conspecifics or heterospecifics on P. rus colonies. Overall, the study allows us to highlight that site selection by juveniles for habitat containing conspecifics does not benefit their short term mortality rates, suggesting that in the short term at least, site selection has little importance.  相似文献   

18.
The Caribbean staghorn coral, Acropora cervicornis, was once a dominant habitat creating coral, but its populations have declined dramatically in recent decades. Numerous restoration efforts now utilize coral gardening techniques to cultivate this species, growing colonies on fixed structures or from line/suspended nurseries. Line nurseries have become increasingly popular because of their small footprint and ease of use, replacing fixed structures in many nurseries. To evaluate the efficacy of the line technique, this study evaluated growth, condition, and survivorship of A. cervicornis nursery colonies of three distinct genotypes grown via two line nursery techniques (suspended and direct line attachment [vertical]). Direct line attachment of nursery colonies resulted in poor survival (43%) and growth (9.5 ± 1.33 cm/year), whereas suspended culture had 100% survival and increased growth (61.1 ± 4.19 cm/year). Suspended culture had significantly reduced disease prevalence and prevented colony predation. Suspended coral growth was also comparable to a neighboring fixed structure nursery (55.2 ± 7.86 cm/year), and found to be as effective in propagating corals as fixed structures.  相似文献   

19.
Eighteen sites along the southern Egyptian Red Sea coastline were surveyed for the organ pipe coral Tubipora musica with reference to relative abundance of juveniles, adults, flourishing live, traces of recently collected, traces of older collected and dead colonies. The study was done using a 30-m long graded tape, throughout the period April 2004 to October 2004. T. musica is categorized as vulnerable according to IUCN (2001) as there is an estimated population size reduction of 50% over the last 10 years, based on the index of abundance and the decline in area of occupancy. Sites 3 (1 km south Dorry) and 5 (Northern Sharm El-Fokairy), having the highest traces of recently collected Tubipora, are characterized by a lot of fishing activity as well as being near the shore, indicating insufficient shore patrolling. Flourishing live Tubipora colonies were found in considerable amounts in Wadi El Mahara, probably because of the very strong waves breaking on the reef crest, the zone containing the Tubipora colonies, making it difficult to access for collection. Juveniles of T. musica were found to be flourishing and attaching to rocks, dead corals and rubble on the reef crest of Wadi El Mahara, an observation that can be used in farming and rehabilitating other reefs denuded of the species.  相似文献   

20.
Seaweeds are a refuge from stressful conditions associated with life on rocky intertidal shores, and there is evidence that different macrophytes support different assemblages of mobile epifauna. Introduction of non-indigenous macroalgae may have a great impact on associated epifaunal assemblages and ecosystem processes in coastal areas. Previous studies have reported conflicting evidences for the ability of epifauna to colonize non-indigenous species. Here, we analyzed epifaunal assemblages associated with three species of macroalgae that are very abundant on intertidal shores along the Galician coast: the two native species Bifurcaria bifurcata and Saccorhiza polyschides and the invasive species Sargassum muticum. We collected samples of each species from three different sites at three different times to test whether variability of epifaunal assemblages was consistent over space and time. Epifaunal assemblages differed between the three macroalgae. Results suggested that stability and morphology of habitat played an important role in shaping the structure of epifaunal assemblages. This study also showed that the invasive S. muticum offered a suitable habitat for many invertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号