首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive Asian bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix) pose a substantial threat to North American aquatic ecosystems. Recently, environmental DNA (eDNA), genetic material shed by organisms into their environment that can be detected by non-invasive sampling strategies and genetic assays, has gained recognition as a tool for tracking the invasion front of these species toward the Great Lakes. The goal of this study was to develop new species-specific conventional PCR (cPCR) and quantitative (qPCR) markers for detection of these species in North American surface waters. We first generated complete mitochondrial genome sequences from 33 bighead and 29 silver carp individuals collected throughout their introduced range. These sequences were aligned with those from other common and closely related fish species from the Illinois River watershed to identify and design new species-specific markers for the detection of bighead and silver carp DNA in environmental water samples. We then tested these genetic markers in the laboratory for species-specificity and sensitivity. Newly developed markers performed well in field trials, did not have any false positive detections, and many markers had much higher detection rates and sensitivity compared to the markers currently used in eDNA surveillance programs. We also explored the use of multiple genetic markers to determine whether it would improve detection rates, results of which showed that using multiple highly sensitive markers should maximize detection rates in environmental samples. The new markers developed in this study greatly expand the number of species-specific genetic markers available to track the invasion front of bighead and silver carp and will improve the resolution of these assays. Additionally, the use of the qPCR markers developed in this study may reduce sample processing time and cost of eDNA monitoring for these species.  相似文献   

2.
Non‐indigenous species (NIS) reach every corner of the world, at times wreaking havoc on ecosystems and costing the global economy billions of dollars. A rapid and accurate biosurveillance tool tailored to a particular biogeographic region is needed to detect NIS when they are first introduced into an area as traditional detection methods are expensive and require specialized expertise. Metabarcoding of environmental and community DNA meets those biosurveillance requirements; a novel tool tailored to the Northwest Pacific Ocean is presented here using an approach that could revolutionize early detection of NIS. Eight newly designed genetic markers for multiple gene regions were implemented to meet the stringent taxonomic requirements for the detection of NIS across four major marine phyla. The tool was considered highly successful because it identified 12 known NIS in the study area and a further seven species representing potential new records. Overall community composition detected here was statistically different between substrate types; zooplankton sampling accounted for significantly higher species richness than filtered sea water in most cases, but this was dominated by mollusk and arthropod species. Both substrate types sampled were required to identify the wide taxonomic breadth of known NIS in the study area. Intensive sampling is known to be paramount for the detection of rare species, including new incursions of NIS, thus it is recommended to include diverse DNA sampling protocols based on species’ life‐history characteristics for broad detection capacity. Application of a metabarcoding‐based molecular biosurveillance tool optimized for biogeographic regions enables rapid and accurate early detection across a wide taxonomic range to allow quick implementation of eradication or control efforts and potentially mitigate some of the devastating effects of NIS worldwide.  相似文献   

3.
Accurate identification and differentiation of species of the genus Chironomus based on their morphological features is a difficult problem. Unambiguous species identification by means of molecular markers is possible at any stage of the life cycle. Polymerase chain reaction (PCR) with species-specific primers was used to develop molecular markers (amplicons) for identification of Chironomus piger, Ch. dorsalis, and Ch. pseudothummi. Nucleotide sequences of the internal transcribed spacer region (ITS) of the locus coding for ribosomal RNA were used to design species-specific primers for these target species. Each of the species-specific primer pairs yielded species-specific amplicons (molecular markers) only with the DNA of target species: Ch. piger, Ch. dorsalis, and Ch. pseudothummi. Test PCRs with the DNA of eighteen Chironomus species confirmed the specificity of the primers obtained. The molecular markers produced in PCR with the designed species-specific primers permit reliable identification of Ch. piger, Ch. dorsalis, and Ch. pseudothummi and their differentiation from other species of the genus Chironomus.  相似文献   

4.
The pygmy rabbit (Brachylagus idahoensis) is a small lagomorph of the western United States that specializes in sagebrush (Artemisia spp.) habitat. Intensive habitat loss and modification have increased the vulnerability of pygmy rabbit populations, but the current geographic distribution and population status remain unclear. To aid in detection and population monitoring, we developed a species identification test that uses mitochondrial DNA species-specific primers to distinguish among six sympatric lagomorph species using DNA isolated from faecal pellets. Applying this test, we successfully identified the species of origin for all pellet samples that produced a positive PCR result (77% of 283 pellets collected). Pellets collected during the winter (December-February) had higher PCR success rate (93%) than pellets collected at other times of the year (72%). This test, using non-invasive genetic sampling of faecal pellets, provides an efficient method for assessing site occupancy and distribution of pygmy rabbits and other lagomorphs across large geographic areas.  相似文献   

5.
DNA profiling with microsatellite markers is a commonly used genetic method of studying the great apes. An efficient method of generating the genetic data is amplification of multiple microsatellites in a single PCR reaction. Here we describe a PCR multiplex in which 9 genetic markers can be amplified simultaneously, thereby saving time, expenses and DNA. This marker system can discriminate between all the great ape species except bonobos and chimpanzees. Furthermore, the cumulative probability of identity values were low for all 4 species tested.  相似文献   

6.
开发SSR引物方法之研究动态   总被引:44,自引:2,他引:44  
李明芳  郑学勤 《遗传》2004,26(5):769-776
SSR标记是一种基于DNA长度多态性的分子标记技术,是进行群体遗传结构分析、构建遗传连锁图谱非常有效的工具。由于SSR标记是特异引物标记,必须在知道某个物种DNA序列的前提下,才能设计引物进行PCR扩增,故而存在一个引物开发的问题。从SSR标记的发展历程来看,开发SSR引物的方法有经典的构建与筛选基因组文库的方法、微卫星富集法、省略筛库法和数据库搜索法等四种。本文综述了这四种方法的操作流程及其在实际应用中的优缺点,并对近年来SSR引物在相近的物种间转移使用的情况作了介绍. Abstract: SSRs is one of molecular markers technology based on DNA length polymorphism and an efficient tool for population genetic studies and primary genetic linkage maps construction. Because of a special primer marker, It’s necessary to know a species DNA sequence in order to design primers for PCR testing. That is to say, there is a problem of SSR primer development. For the progress of SSR marker technology, the methods of developing SSR primer could be divided into four kinds: traditional constructing and screening genome library procedure, the SSR richment procedure, avoiding screening genome library procedure and database search procedure. This paper reviewed these four methods’operation processes and their advantages and disadvantages. In addition, transferability of SSR primers in closely related species were introduced in recent years.  相似文献   

7.
Environmental DNA (eDNA) sampling, the detection of species‐specific genetic material in water samples, is an emerging tool for monitoring aquatic invasive species. Optimizing eDNA sampling protocols can be challenging because there is imperfect understanding of how each step of the protocol influences its sensitivity. This paper develops a probabilistic model that characterizes each step of an eDNA sampling protocol to evaluate the protocol's overall detection sensitivity for one sample. The model is then applied to analyse how changes over time made to the eDNA sampling protocol to detect bighead (BH) and silver carp (SC) eDNA have influenced its sensitivity, and hence interpretation of the results. The model shows that changes to the protocol have caused the sensitivity of the protocol to fluctuate. A more efficient extraction method in 2013, new species‐specific markers with a qPCR assay in 2014, and a more efficient capture method in 2015 have improved the sensitivity, while switching to a larger elution volume in 2013 and a smaller sample volume in 2015 have reduced the sensitivity. Overall, the sensitivity of the current protocol is higher for BH eDNA detection and SC eDNA detection compared to the original protocol used from 2009 to 2012. The paper shows how this model of eDNA sampling can be used to evaluate the effect of proposed changes in an eDNA sampling and analysis protocol on the sensitivity of that protocol to help researchers optimize their design.  相似文献   

8.
Unique DNA sequences are present in all species and can be used as biomarkers for the detection of cells from that species. These DNA sequences can most easily be detected using the polymerase chain reaction (PCR), which allows very small quantities of target DNA sequence to be amplified even when the target is mixed with large amounts of nontarget DNA. PCR amplification of DNA markers that are present in a wide range of species has proven very useful for studies of species diversity in environmental samples. The taxonomic range of species to be identified from environmental samples may often need to be restricted to simplify downstream analyses and to ensure that less abundant sequences are amplified. Group-specific PCR primer sets are one means of specifying the range of taxa that produce an amplicon in a PCR. We have developed a range of group-specific PCR primers for studying the prey diversity found in predator stomach contents and scats. These primers, their design and their application to studying prey diversity and identity in predator diet are described.  相似文献   

9.
As an alternative to traditional, morphology-based methods, molecular techniques can provide detection of multiple species within the HAB community and, more widely, the phytoplankton community in a rapid, accurate and simultaneous qualitative analysis. These methods require detailed knowledge of the molecular diversity within taxa in order to design efficient specific primers and specific probes able to avoid cross-reaction with non-target sequences. Isolates from Florida coastal communities were sequence-analyzed and compared with the GenBank database. Almost 44% of the genotypes obtained did not match any sequence in GenBank, showing the existence of a large and still unexplored biodiversity among taxa. Based on these results and on the GenBank database, we designed 14 species-specific probes and 4 sets of specific primers. Multiple simultaneous detection was achieved with a bead array method based on the use of a flow cytometer and color-coded microspheres, which are conjugated to the developed probes. Following a parallel double PCR amplification, which employed universal primers in a singleplex reaction and a set of species-specific primers in multiplex, detection was performed in a cost effective and highly specific analysis. This multi-format assay, which required less than 4 h to complete from sample collection, can be expanded according to need. Up to 100 different species can be identified simultaneously in a single sample, which allows for additional use of this method in community analyses extended to all phytoplankton species. Our initial field trials, which were based on the 14 species-specific probes, showed the co-existence and dominance of two or more species of Karenia during toxic blooms in Florida waters.  相似文献   

10.
The genetic integrity of crossfertile bovine- or cattle-like species may be endangered by species hybridization. Previously, amplified fragment length polymorphism, satellite fragment length polymorphism and microsatellite assays have been used to analyze the species composition of nuclear DNA in taurine cattle, zebu, banteng and bison populations, while mitochondrial DNA reveals the origin of the maternal lineages. Here, we describe species-specific markers of the paternally transmitted Y-chromosome for the direct detection of male-mediated introgression. Convenient PCR-restriction fragment length polymorphism and competitive PCR assays are shown to differentiate the Y-chromosomes of taurine cattle, American bison and European bison, and to detect the banteng origin of Indonesian Madura and Bali cattle bulls.  相似文献   

11.
Preventing the arrival, establishment, and spread of aquatic invasive species is an important step in protecting our aquatic environments. The use of detection tools, like DNA barcoding technologies, high-throughput sequencing and environmental DNA (eDNA) monitoring, is becoming increasingly important in preventing the introduction of potential invasive species. The combination of eDNA with realtime PCR (qPCR) provide the opportunity to have a rapid and specific detection. In this study, we developed a DNA sequence library that has sufficient depth and species coverage such that high-risk species can be confidently discriminated from legitimately imported and native species. A total of 12 species-specific qPCR assays were developed for the detection of 13 potential invasive species (pAIS) in bulk water samples. Detection of these species was also compared with a HTS approach. We have demonstrated the high sensitivity of qPCR assays using eDNA at very low densities, suggesting we could detect a low number of individuals mixed with non-target species in a simulated live shipment. For the detection of a targeted list of species, qPCR is advantageous. The mini-barcodes developed in this project offered a good sensitivity of detection, and HTS is a discovery tool that can be desirable when unlisted or numerous species need to be identified.  相似文献   

12.
AIMS: To develop and establish a methodology for an oriented and fast identification of species taxa-specific molecular markers useful for the identification of micro-organisms. METHODS AND RESULTS: From the complete microbial genomes available in Pfam database, taxa-specific protein domains were identified which lead to the selection of taxa-specific loci. This strategy was used to identify six genetic markers: four specific for Pseudomonas syringae pv. tomato, one specific for P. syringae pv. syringae and one specific for P. putida. The discriminatory potential of these loci was evaluated by Southern hybridization using several pseudomonad species and pathovars, by dot-blot hybridization and by multiplex PCR optimized for the simultaneous detection of P. putida, P. syringae pv. syringae and P. syringae pv. tomato. Sensitivity assays indicated a detection limit of approximately 10 pg of chromosomal DNA template needed for each bacterium. CONCLUSIONS: The proposed methodology was efficient on the selection of six Pseudomonas-specific markers able to discriminate Pseudomonas at the species and pathovar level. SIGNIFICANCE AND IMPACT OF THE STUDY: The oriented search of taxa-specific molecular probes described in this work, which can be easily extended to other groups of bacteria, will improve the accuracy and expedite the identification of micro-organisms by DNA-based molecular methods.  相似文献   

13.
Detecting the presence of rare species has interested ecologists and conservation biologists for many years. A particularly daunting application of this problem pertains to the detection of non-indigenous species (NIS) as they colonize new ecosystems. Ethical issues prevent experimental additions of NIS to most natural systems to explore the relationship between sampling intensity and the detection probability of a colonizing NIS. Here we examine this question using a recently introduced water flea, Cercopagis pengoi , in Lake Ontario. The species has biphasic population development, with sexually-produced 'spring morphs' developing prior to parthenogenetically-produced 'typical' morphs. Thus, this biphasic morphology allows distinction between new colonists (spring morphs) from subsequent generations. We repeatedly sampled Hamilton Harbour, Lake Ontario for the presence of both spring and typical morphs. Probability of detection was positively related to both the number of samples taken and animal density in the lake; however, even highly intensive sampling (100 samples) failed to detect the species in early spring when densities were very low. Spatial variation was greatest when densities of Cercopagis were intermediate to low. Sub-sampling, which increased space between adjacent samples, significantly decreased the number of samples required to reach greater, calculated detection probabilities on these dates. Typical sampling protocols for zooplankton have a low probability (< 0.2) of detecting the species unless population density is high. Results of this study suggest that early detection of colonizing, aquatic NIS may be optimized through use of a risk-based sampling design, combined with high sampling intensity in areas deemed most vulnerable to invasion, rather than less intensive sampling at a wider array of sites.  相似文献   

14.
The development of DNA markers that can closely discriminate between Liriope and Ophiopogon species is vital for efficient and accurate identification of these species, and to ensure the quality, safety, and efficacy of medicines made from these plants. We developed species-specific molecular markers for these two genera. Forty RAPD primers were tested to detect polymorphism; species-specific RAPD bands were gel-purified, cloned, and sequenced. Primers for sequence-characterized amplified regions (SCARs) were then designed, based on nucleotide sequences of specific RAPD primers. SCAR markers SA06 and SB05, specific to Ophiopogon japonicus, amplified 460- and 553-bp DNA fragments, respectively. The marker SA12 amplified a 485-bp fragment specific to Liriope platyphylla. This is the first report of a species-specific SCAR marker for this group. These markers will be useful for rapid identification of closely related Liriope and Ophiopogon species.  相似文献   

15.
Environmental DNA (eDNA) is DNA that has been isolated from field samples, and it is increasingly used to infer the presence or absence of particular species in an ecosystem. However, the combination of sampling procedures and subsequent molecular amplification of eDNA can lead to spurious results. As such, it is imperative that eDNA studies include a statistical framework for interpreting eDNA presence/absence data. We reviewed published literature for studies that utilized eDNA where the species density was known and compared the probability of detecting the focal species to the sampling and analysis protocols. Although biomass of the target species and the volume per sample did not impact detectability, the number of field replicates and number of samples from each replicate were positively related to detection. Additionally, increased number of PCR replicates and increased primer specificity significantly increased detectability. Accordingly, we advocate for increased use of occupancy modelling as a method to incorporate effects of sampling effort and PCR sensitivity in eDNA study design. Based on simulation results and the hierarchical nature of occupancy models, we suggest that field replicates, as opposed to molecular replicates, result in better detection probabilities of target species.  相似文献   

16.
The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives.  相似文献   

17.
Noninvasive methods using genetic markers have been suggested as ways to overcome difficulties associated with documenting the presence of elusive species. We present and assess a novel, reliable and effective molecular genetic technique for the unequivocal genetic identification of faeces from the endangered Iberian lynx (Lynx pardinus). From mitochondrial DNA (mtDNA) cytochrome b and D-loop region sequences, we designed four species-specific primers (for products 130-161 bp long) that were considered to be likely to amplify degraded DNA. We compared two DNA extraction methods, various DNA amplification conditions and the robustness and specificity of the primer pairs with 87 lynx samples from 5 potentially different lynx populations and with 328 samples of other carnivore species. The utility of the identification technique was tested with faeces of different ages, with faeces from controlled field experiments, and with faeces collected from locales with possible lynx populations from throughout the state of Andalusia, Spain (8052 km2). Faecal mtDNA extraction was more efficient using PBS wash of the faeces instead of a faeces homogenate. Our assay increased from 92.6 to 99% efficiency with a second amplification and a reduction in template concentration to overcome polymerase chain reaction (PCR) inhibition. Our assay never produced false positives, and correctly identified all lynx faeces. Of 252 faeces samples of unknown species collected throughout Andalusia, 26.6% (from three different areas) were classified as Iberian lynx, 1.4% showed evidence of PCR inhibition and 1.2% were of uncertain origin. This method has proven to be a reliable technique that can be incorporated into large-scale surveys of Iberian lynx populations and exemplifies an approach that can easily be extended to other species.  相似文献   

18.
A version of the polymerase chain reaction (PCR), termed degenerate oligonucleotide-primed PCR (DOP-PCR), which employs oligonucleotides of partially degenerate sequence, has been developed for genome mapping studies. This degeneracy, together with a PCR protocol utilizing a low initial annealing temperature, ensures priming from multiple (e.g., approximately 10(6) in human) evenly dispersed sites within a given genome. Furthermore, as efficient amplification is achieved from the genomes of all species tested using the same primer, the method appears to be species-independent. Thus, for the general amplification of target DNA, DOP-PCR has advantages over interspersed repetitive sequence PCR (IRS-PCR), which relies on the appropriate positioning of species-specific repeat elements. In conjunction with chromosome flow sorting, DOP-PCR has been applied to the characterization of abnormal chromosomes and also to the cloning of new markers for specific chromosome regions. DOP-PCR therefore represents a rapid, efficient, and species-independent technique for general DNA amplification.  相似文献   

19.
The use of DNA microarrays for detection and identification of bacteria and genes of interest from various environments (e.g. soil, sediment, water column...) is a major challenge for microbiologists working on functional diversity. So far, most of the genomic methods that have been described rely on the use of taxonomic markers (such as 16S rRNA) that can be easily amplified by PCR prior to hybridization on microarrays. However, taxonomical markers are not always informative on the functions present in these bacteria. Moreover, genes for which sequence database is limited or that lack any conserved regions will be difficult to amplify and thus to detect in unknown samples. Furthermore, PCR amplification often introduces biases that lead to inaccurate analysis of microbial communities. An alternative solution to overcome these strong limitations is to use genomic DNA (gDNA) as target for hybridisation, without prior PCR amplification. Though hybridization of gDNA is already used for comparative genome hybridization or sequencing by hybridization, yet to the high cost of tiling strategies and important data filtering, its adaptation for use in environmental research poses great challenges in terms of specificity, sensitivity and reproducibility of hybridization. Considering the very faint number of publications that have described hybridization of gDNA to microarrays for environmental applications, we confront in this review the different approaches that have been developed so far, and propose alternative strategies that may contribute to improve the development of microarrays for studying the microbial genetic structure and composition of samples of high environmental and ecological value.  相似文献   

20.
目的筛选豚鼠基因组的多态性微卫星标记,为豚鼠遗传质量控制及基因定位等工作奠定基础。方法采用磁珠富集法和豚鼠基因组数据库筛选法获取微卫星位点序列,通过分析和初步筛选,挑选部分候选位点,根据其序列设计引物,对5种不同来源的豚鼠基因组DNA标本进行PCR扩增,以期获得多态性分子标记。结果本实验采用磁珠富集法共获得微卫星序列304个,设计引物125对,最终获得多态性位点1个,暂未发现多态性的特异性位点17个;用数据库筛选法共获得微卫星序列292个,设计并合成相应引物178对,最终发现多态性位点25个,暂未发现多态性的特异性位点28个。结论本实验获得26个多态性微卫星标记,45个潜在的候选标记,为微卫星标记在豚鼠遗传质量监测及突变基因定位等工作的应用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号