首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Natural and human‐induced differences in frugivore assemblages can influence the seed dispersal distances of trees. An important issue in seed dispersal systems is to understand whether differences in seed dispersal distances also affect the genetic structure of mature trees. One possible approach to test for a relationship between seed dispersal and the genetic structure of mature trees is to compare the genetic structure of two closely related tree species between two biogeographical regions that differ in frugivore assemblages and seed dispersal distances. Previous studies on two Commiphora species revealed that Commiphora guillauminii in Madagascar has a much lower seed dispersal distance than Commiphora harveyi in South Africa. We tested whether the lower seed dispersal distance might have caused decreased gene flow, resulting in a stronger genetic structure in Madagascar than in South Africa. Location Madagascar and South Africa. Methods Using amplified fragment length polymorphism markers we investigated the genetic structure of 134 trees in Madagascar and 158 trees in South Africa at a local and a regional spatial scale. Results In concordance with our hypothesis, kinship analysis suggests that gene flow was restricted mostly to 3 km in Madagascar and to 30 km in South Africa. At the local spatial scale, the genetic differentiation among groups of trees within sample sites was marginally significantly higher in Madagascar (FST = 0.069) than in South Africa (FST = 0.021). However, at a regional spatial scale genetic differentiation was lower in Madagascar (FST = 0.053) than in South Africa (FST = 0.163). Main conclusions Our results show that lower seed dispersal distances of trees were linked to higher genetic differentiation of trees only at a local spatial scale. This suggests that seed dispersal affects the genetic population structure of trees at a local, but not at a regional, spatial scale.  相似文献   

2.
《Aquatic Botany》2007,87(2):111-115
In this study, 169 stream lily (Helmholtzia glaberrima) seedlings from six micro-drainages were genotyped with AFLP markers to quantify the impact that topographic landscape features and altitude may have in shaping patterns of genetic diversity within individual populations. A global analysis of genetic diversity detected significant genetic differentiation among micro-drainages (FST = 0.22, P < 0.01). The observed genetic structure of sampled sites conformed to a hierarchical model of gene flow. Assignment tests also supported a hierarchical model of gene flow as only one dispersal event among the sampled micro-drainages was detected. This suggests that opportunities for seed dispersal in H. glaberrima are highly constrained by patterns of hydrographic networks even at a local scale. In contrast, altitude had little impact on partitioning of genetic diversity as no increase in genetic diversity was evident among individuals in the upper (0.18 ± 0.02), and lower (0.17 ± 0.02) areas of micro-drainages. Overall these results suggest that the influence of freshwater landscape features can vary widely the effect on the patterns of genetic diversity of seedlings in stream lily populations.  相似文献   

3.
Propagule size has important consequences on the genetic structure of wind-dispersed species, as species with small propagules have higher capability of long-distance dispersal. Here, we studied reproductive modes and compared local and regional population structures in three Macaronesian lichenized fungi differing in propagule size. First, we quantified size distribution of propagules in each species. Second, genotype simulations based on microsatellite data were used to infer the reproductive mode. Third, using spatial analysis and population genetic approaches, we quantified the local and regional scale genetic structures of the fungal species. The three species differed in size distributions of propagules. The majority of populations exhibited clonal reproductive mode. Identical reproductive modes occurred often across species in the same sites, implying a possible relationship between reproductive mode and local site conditions. Contrary to expectation, at the local scale, the species exhibited similar patterns of spatial autocorrelation in genotypes. However, in agreement with the expectation based on propagule size, the species with highest frequency of small vegetative propagules (L. pulmonaria) exhibited lowest regional genetic differentiation. Nevertheless, altogether, our results show that propagule size is not a good predictor of population subdivision in lichenized fungi, neither at local nor regional spatial scale.  相似文献   

4.
The distribution of arable weeds extends over regions, where the species occur naturally in different kinds of habitats and regions, where they are mainly limited to arable fields.Here, we present a comparative study on the genetic structure of the arable weed Sherardia arvensis L. comprising populations from Mediterranean grasslands in Southern France and populations from arable fields in Germany. Enhanced by intensified land use since the 1960th, overall population density in Germany is very low compared to the density of populations in Southern France. We tested whether genetic variation within and among populations differ between France and Germany due to different patterns of distribution and land use. Therefore, we analysed 231 individuals of S. arvensis from 24 populations using AFLPs. Based on fragment analysis data we compared spatial genetic structure and genetic variation of populations from the two regions.Genetic variation within populations from the two regions (Shannon Index = 0.13 for both) and genetic variation among populations (26.8% and 30.0% in an analysis of molecular variance) were comparable. In both regions a drift-migration model supported the assumption of gene flow between populations. However, a clear correlation of geographical and genetic distances could only be reported for the indigenous populations from France (r = 0.46; P = 0.02), whereas in Germany a spatial genetic relationship between populations was missing (r = 0.16; P = 0.21).Our study revealed that neither French nor German populations are genetically impoverished. For French populations further the spatial genetic structure suggests that there is current gene flow between populations through pollinators and seed dispersal by cattle. For German populations comparable levels of genetic diversity and gene flow were detected, but gene flow was random. This can be traced back in all likelihood to diffuse dispersal by agriculture and the mechanical reshuffling of the individuals from the soil seed bank.  相似文献   

5.
Genetic variation in whiting Merlangius merlangus was examined using a 621 base pair fragment of the cytochrome c oxidase subunit I mitochondrial gene in 138 individuals sampled from Iceland, Norway and the North Sea. In total 10 segregating sites were observed defining 12 haplotypes. Three of the haplotypes were found at high frequencies (>5 %). All but one mutations were synonymous and the nonsynonymous mutation was found as a singleton. This suggests weak or no natural selection acting on the observed polymorphism making it useful for examination of population breeding structure. The genetic variation suggests that the whiting population has undergone sudden expansion in the past, estimated to have started 70 Kyr ago, during the last glacial period. Spatial genetic analysis reveals genetic uniformity across long geographic distances suggesting high level of gene flow. The long pelagic phase at early age, allowing for high dispersal rate, may partly explain the observed pattern.  相似文献   

6.
Studying community structure and dynamics of plant‐associated fungi is the basis for unravelling their interactions with hosts and ecosystem functions. A recent sampling revealed that only a few fungal groups, as defined by internal transcribed spacer region (ITS) sequence similarity, dominate culturable root endophytic communities of nonmycorrhizal Microthlaspi spp. plants across Europe. Strains of these fungi display a broad phenotypic and functional diversity, which suggests a genetic variability masked by ITS clustering into operational taxonomic units (OTUs). The aims of this study were to identify how genetic similarity patterns of these fungi change across environments and to evaluate their ability to disperse and adapt to ecological conditions. A first ITS‐based haplotype analysis of ten widespread OTUs mostly showed a low to moderate genotypic differentiation, with the exception of a group identified as Cadophora sp. that was highly diverse. A multilocus phylogeny based on additional genetic loci (partial translation elongation factor 1α, beta‐tubulin and actin) and amplified fragment length polymorphism profiling of 185 strains representative of the five dominant OTUs revealed a weak association of genetic differences with geography and environmental conditions, including bioclimatic and soil factors. Our findings suggest that dominant culturable root endophytic fungi have efficient dispersal capabilities, and that their distribution is little affected by environmental filtering. Other processes, such as inter‐ and intraspecific biotic interactions, may be more important for the local assembly of their communities.  相似文献   

7.
Root endophytic fungi are seen as promising alternatives to replace chemical fertilizers and pesticides in sustainable and organic agriculture systems. Fungal endophytes structure formations play key roles in symbiotic intracellular association with plant-roots. To compare the morphologies of Ascomycete endophytic fungi in wheat, we analyzed growth morphologies during endophytic development of hyphae within the cortex of living vs. dead root cells. Confocal laser scanning microscopy (CLSM) was used to characterize fungal cell morphology within lactofuchsin-stained roots. Cell form regularity Ireg and cell growth direction Idir, indexes were used to quantify changes in fungal morphology. Endophyte fungi in living roots had a variable Ireg and Idir values, low colonization abundance and patchy colonization patterns, whereas the same endophyte species in dead (γ-irradiated) roots had consistent form of cells and mostly grew parallel to the root axis. Knot, coil and vesicle structures dominated in living roots, as putative symbiotic functional organs. Finally, an increased hypha septation in living roots might indicate local specialization within endophytic Ascomycota. Our results suggested that the applied method could be expanded to other septate fungal symbionts (e.g. Basidiomycota). The latter is discussed in light of our results and other recent discoveries.  相似文献   

8.
Water flow in river networks is frequently regulated by man‐made in‐stream barriers. These obstacles can hinder dispersal of aquatic organisms and isolate populations leading to the loss of genetic diversity. Although millions of small in‐stream barriers exist worldwide, their impact on dispersal of macroinvertebrates remains unclear. Therefore, we, therefore, assessed the effects of such barriers on the population structure and effective dispersal of five macroinvertebrate species with strictly aquatic life cycles: the amphipod crustacean Gammarus fossarum (clade 11), three snail species of the Ancylus fluviatilis species complex and the flatworm Dugesia gonocephala. We studied populations at nine weirs and eight culverts (3 pipes, 5 tunnels), built 33–109 years ago, mainly in the heavily fragmented catchment of the river Ruhr (Sauerland, Germany). To assess fragmentation and barrier effects, we generated genome‐wide SNP data using ddRAD sequencing and evaluated clustering, differentiation between populations up‐ and downstream of each barrier and effective migration rates among sites and across barriers. Additionally, we applied population genomic simulations to assess expected differentiation patterns under different gene flow scenarios. Our data show that populations of all species are highly isolated at regional and local scales within few kilometers. While the regional population structure likely results from historical processes, the strong local differentiation suggests that contemporary dispersal barriers exist. However, we identified significant barrier effects only for pipes (for A. fluviatilis II and III) and few larger weirs (>1.3 m; for D. gonocephala). Therefore, our data suggest that most small in‐stream barriers can probably be overcome by all studied taxa frequently enough to prevent fragmentation. However, it remains to be tested if the strong local differentiation is a result of a cumulative effect of small barriers, or if larger in‐stream barriers, land use, chemical pollution, urbanization, or a combination of these factors impede gene flow.  相似文献   

9.
The mutualism between fig plants and fig wasps has been recognized as one of the most specialized systems of symbiosis. Figs are pollinated by their highly specific pollinating fig wasps, and the pollinating fig wasps are raised within the syconia of figs. Recent studies indicated a difference between monoecious and dioecious figs in the dispersal range of pollinating wasps, which has potential consequences for gene flow. In this study, we detected the gene-flow pattern of the dioecious climbing fig, Ficus pumila L. var. pumila, at both local and regional scales. At the local scale, spatial autocorrelation analysis indicated strong genetic structure at short distances, a pattern of limited gene flow. This result was also supported by a high inbreeding coefficient (F IS = 0.287) and significant substructuring (F ST = 0.060; P < 0.001). Further analysis indicated that the effective gene dispersal range was 1,211 m, and the relative contribution of seed dispersal was smaller than that of pollen dispersal. The inferred effective range of pollen dispersal ranged from 989 to 1,712 m, while the effective seed dispersal range was less than 989 m. Lack of long-distance dispersal agents may explain the limited seed dispersal. The high density of receptive fig trees was the most likely explanation for limited pollen dispersal, and the position of syconia and relatively low wind speed beneath the canopy may contribute to this phenomenon. At the regional scale, significant negative correlations (kinship coefficient F ij ranging from −0.038 to −0.071) existed in all comparisons between the studied population and other populations, and the assignment test grouped almost all individuals of the studied population into a distinct cluster. Asynchronous flowering on the regional scale, which provides a barrier for the pollinating wasps to fly from the studied population to the other populations, is probably responsible for the limited gene flow on the regional scale.  相似文献   

10.
The fine-scale genetic structure of Tetranychus urticae Koch was studied to estimate local gene flow within a rose tree habitat in a commercial greenhouse using seven microsatellite markers. Two beds of rose trees with different population densities were selected and 18 consecutive quadrats of 1.2 m length were sequentially established in each bed. Heterozygote deficiency was positive within quadrats, which was most likely a result of the Wahlund effect because the mites usually form small breeding colonies. Low population density and frequent inbreeding could also accelerate genetic differentiation among the breeding colonies. A short-range (2.4–3.6 m) positive autocorrelation and clear genetic cline among quadrat populations was detected within a bed. This suggests that gene flow was limited to a short range even if population density was substantially increased. Therefore, large-scale dispersal such as aerial dispersal contributed very little to gene flow in the greenhouse.  相似文献   

11.
Fungal endophytic communities and potential host preference of root-inhabiting fungi of boreal forest understory plants are poorly known. The objective of this study was to find out whether two neighboring plant species, Deschampsia flexuosa (Poaceae) and Trientalis europaea (Primulaceae), share similar root fungal endophytic communities and whether the communities differ between two sites. The study was carried out by analysis of pure culture isolates and root fungal colonization percentages. A total of 84 isolates from D. flexuosa and 27 isolates from T. europaea were obtained. The roots of D. flexuosa harbored 16 different isolate types based on macromorphological characteristics, whereas only 4 isolate types were found in T. europaea. The root colonization by dark septate and hyaline septate hyphae correlated with isolate numbers being higher in D. flexuosa compared to T. europaea. The different isolate types were further identified on the basis of internal transcribed spacer sequence and phylogenetic analysis. An isolate type identified as dark septate endophyte Phialocephala fortinii colonized 50 % of the T. europaea and 21 % of the D. flexuosa specimens. In addition, Meliniomyces variabilis, Phialocephala sphaeroides, and Umbelopsis isabellina were found colonizing the grass, D. flexuosa, for the first time and Mycena sp. was confirmed as an endophyte of D. flexuosa. Site-specific differences were observed in the abundance and diversity of endophytic fungi in the roots of both study plants, but the differences were not as predominant as those between plant species. It is concluded that D. flexuosa harbors both higher amount and more diverse community of endophytic fungi in its roots compared to T. europaea.  相似文献   

12.
The evolutionary viability of an endangered species depends upon gene flow among subpopulations and the degree of habitat patch connectivity. Contrasting population connectivity over ecological and evolutionary timescales may provide novel insight into what maintains genetic diversity within threatened species. We employed this integrative approach to evaluating dispersal in the critically endangered Coahuilan box turtle (Terrapene coahuila) that inhabits isolated wetlands in the desert‐spring ecosystem of Cuatro Ciénegas, Mexico. Recent wetland habitat loss has altered the spatial distribution and connectivity of habitat patches; and we therefore predicted that T. coahuila would exhibit limited movement relative to estimates of historic gene flow. To evaluate contemporary dispersal patterns, we employed mark–recapture techniques at both local (wetland complex) and regional (intercomplex) spatial scales. Gene flow estimates were obtained by surveying genetic variation at nine microsatellite loci in seven subpopulations located across the species’ geographical range. The mark–recapture results at the local spatial scale reveal frequent movement among wetlands that was unaffected by interwetland distance. At the regional spatial scale, dispersal events were relatively less frequent between wetland complexes. The complementary analysis of population genetic substructure indicates strong historic gene flow (global FST = 0.01). However, a relationship of genetic isolation by distance across the geographical range suggests that dispersal limitation exists at the regional scale. Our approach of contrasting direct and indirect estimates of dispersal at multiple spatial scales in T. coahuila conveys a sustainable evolutionary trajectory of the species pending preservation of threatened wetland habitats and a range‐wide network of corridors.  相似文献   

13.
田甲佳  刘贺  杨季婷  王毅  刘良燕 《广西植物》2023,43(7):1201-1212
为研究云南马铃薯(Solanum tuberosum)内生真菌的多样性,该文以采自云南省德宏芒市、大理喜洲和临沧双江3个地区的马铃薯植株为研究对象,采用组织块分离法、尖端菌丝挑取法对马铃薯根、茎及块茎中的内生真菌进行分离纯化,并采用形态学鉴定方法和ITS序列分析法对分离得到的内生真菌进行鉴定,对内生真菌的定殖率、分离率及多样性指数进行计算和分析。结果表明:(1)共分离得到内生真菌98株,其中从德宏芒市的样品中获得40株,从大理喜洲的样品中获得27株,从临沧双江的样品中获得31株。(2)经鉴定,分离得到的马铃薯内生真菌共涵盖10目10科13属,大多为子囊菌门和担子菌门,优势菌为镰刀菌属(Fusarium)和青霉属(Penicillium),褶皱裸孢壳(Emericella rugulosa)、接骨木镰刀菌(Fusarium sambucinum)、毛韧革菌(Stereum hirsutum)、Psathyrella sulcatotuberculosaEpicoccum catenisporum 5种真菌均为首次从马铃薯植株中分离得到。(3)马铃薯块茎内生真菌的定殖率最高,根部内生真菌定殖率最低; 内生真菌的分离率以马铃薯根部为最高,而茎部最低; 不同组织中内生真菌的多样性指数趋势均为根>块茎>茎。从综合来看,云南马铃薯植株中的内生真菌具有较高的多样性,不同地区的马铃薯样品中内生真菌优势菌不同,马铃薯根部具有最丰富的内生真菌种群和最高的分离率,是最适合进行内生真菌分离的材料。该研究结果为后期探究马铃薯内生真菌对病原菌的拮抗作用奠定了基础,也为马铃薯内生真菌多样性研究提供了参考数据。  相似文献   

14.
The North‐Western Mediterranean basin is well known for its high number of relictual endemic taxa, and has been indicated as one of the world’s major biodiversity hotspots at the species level. A possible contributing factor may be long‐term persistence of populations and their prolonged stability. This study was designed to investigate the phylogeographic structure of three common species of the genus Lepidocyrtus (Hexapoda: Collembola), soil‐dwelling arthropods characterized by limited dispersal capabilities and generally associated with forest habitats. We observed a remarkable geographic structure, with numerous deeply divergent genetic lineages occupying islands as well as mainland sites with no apparent gene flow among most sites, even across distances of only tens of kilometres. The reconstructed time frame for the evolution of these lineages suggests divergence between 5 and 15 Ma. This indicates a remarkably ancient origin and long‐term persistence of individual lineages over a fine geographic scale despite the occurrence of abrupt sea level and climatic fluctuations in the area. This further suggests that currently recognized morphological species might be a serious underestimation of the true springtail biodiversity within this region.  相似文献   

15.
Directed dispersal by animal vectors has been found to have large effects on the structure and dynamics of plant populations adapted to frugivory. Yet, empirical data are lacking on the potential of directed dispersal by rotational grazing of domestic animals to mediate gene flow across the landscape. Here, we investigated the potential effect of large‐flock shepherding on landscape‐scale genetic structure in the calcareous grassland plant Dianthus carthusianorum, whose seeds lack morphological adaptations to dispersal to animals or wind. We found a significant pattern of genetic structure differentiating population within grazed patches of three nonoverlapping shepherding systems and populations of ungrazed patches. Among ungrazed patches, we found a strong and significant effect of isolation by distance (r = 0.56). In contrast, genetic distance between grazed patches within the same herding system was unrelated to geographical distance but significantly related to distance along shepherding routes (r = 0.44). This latter effect of connectivity along shepherding routes suggests that gene flow is spatially restricted occurring mostly between adjacent populations. While this study used nuclear markers that integrate gene flow by pollen and seed, the significant difference in the genetic structure between ungrazed patches and patches connected by large‐flock shepherding indicates the potential of directed seed dispersal by sheep across the landscape.  相似文献   

16.
A main goal of population geneticists is to study patterns of gene flow to gain a better understanding of the population structure in a given organism. To date most efforts have been focused on studying gene flow at either broad scales to identify barriers to gene flow and isolation by distance or at fine spatial scales in order to gain inferences regarding reproduction and local dispersal. Few studies have measured connectivity at multiple spatial scales and have utilized novel tools to test the influence of both environment and geography on shaping gene flow in an organism. Here a seascape genetics approach was used to gain insight regarding geographic and ecological barriers to gene flow of a common reef sponge, Stylissa carteri in the Red Sea. Furthermore, a small‐scale (<1 km) analysis was also conducted to infer reproductive potential in this organism. At the broad scale, we found that sponge connectivity is not structured by geography alone, but rather, genetic isolation in the southern Red Sea correlates strongly with environmental heterogeneity. At the scale of a 50‐m transect, spatial autocorrelation analyses and estimates of full‐siblings revealed that there is no deviation from random mating. However, at slightly larger scales (100–200 m) encompassing multiple transects at a given site, a greater proportion of full‐siblings was found within sites versus among sites in a given location suggesting that mating and/or dispersal are constrained to some extent at this spatial scale. This study adds to the growing body of literature suggesting that environmental and ecological variables play a major role in the genetic structure of marine invertebrate populations.  相似文献   

17.
18.
Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., < 0.005) turned non-significant after the application of a multiple comparison method. However, our overall results imply that the community structures of ectomycorrhizal and endophytic fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants'' control of fungus–fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts'' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus–fungus interactions in plant root systems.  相似文献   

19.
Using genetic markers, we investigated the genetic structure of three clonal aquatic moss species, Calliergon megalophyllum Mikut., Fontinalis antipyretica Hedw. and F. hypnoides Hartm. on two scales: among populations in a connected lake system (large‐scale spatial genetic structure) and among individuals within populations (fine‐scale spatial genetic structure). Mean genetic diversities per population were 0.138, 0.247 and 0.271, respectively, and total diversities equalled 0.223, 0.385 and 0.421, respectively. Relative differentiation levels (FST values of 0.173, 0.280 and 0.142, respectively) were significant but showed that there is a moderate amount of gene flow taking place within the lake system connected with narrow streams. Bayesian STRUCTURE analysis provided some indication that the direction of water flow influences population genetic structuring in the studied aquatic mosses. We propose that dispersal leading to gene flow in C. megalophyllum, F. antipyretica and F. hypnoides takes place both along water via connecting streams and by animal vectors, such as waterfowl. Nevertheless, the slight genetic structuring pattern along the direction of water flow suggests that dispersal of shoots or their fragments along water is a means of dispersal in these mosses. The absence of sexual reproduction and spores may have caused the observed spatial genetic structure within populations, including aggregations of similar genotypes (clones or closely related genotypes) at short distances in populations otherwise showing an isolation by distance effect. Regardless of the results pointing to the dominance of vegetative propagation, it is impossible to completely rule out the potential role of rare long‐distance spore dispersal from areas where the species are fertile.  相似文献   

20.
Knowledge of the pathways of colonization is critical for risk assessment and management of weeds. In this study we adopted a landscape genetics approach to assess the impact of human disturbances and large-scale environmental features on the colonization of a global agricultural weed, Raphanus raphanistrum. We used nuclear microsatellite and chloroplast DNA sequence data to quantify the pattern of genetic diversity in 336 plants collected from 13 sites throughout the Cape Floristic Region, South Africa, one of the world’s recognized global biodiversity hotspots. The lack of strong spatial genetic structure suggests that R. raphanistrum colonized throughout the Cape Floristic Region via both local diffusive spread and long-distance jump dispersal. Furthermore, 47 % of analyzed plants contained Raphanus sativus (cultivated radish) chloroplast genomes, indicating historical and/or contemporary gene flow between wild and cultivated radish populations. The prevalence of high genetic diversity and long-distance gene flow are discussed in the context of ecological risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号