首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The distribution and ultrastructure of serotonin- and dopamine-immunoreactive (5-HTi and DAi) neurones have been investigated in the terminal ganglion of the cricket, Acheta domestica, using a pre-embedding chopper technique. Special attention has been paid to the immunoreactive structures in the neuropil. 5-HTi structures are extensively distributed and densely packed throughout the 5 neuromeres of the terminal ganglion and originate from several interneurones and efferent neurones. In contrast, DAi fibres are distributed sparsely although they extend to all neuromeres of the ganglion and originate from 6 interneurons only. For both 5-HTi and DAi neurones characteristic axonal projections and branching patterns can be distinguished. The 5-HTi axons exhibit rich varicose arborizations, whereas DAi neurones possess fewer varicosities in the neuropil. Electron microscopy shows that 5-HTi varicosities contain small ( 60 nm) and large ( 100 nm) agranular vesicles, and large ( 100 nm) granular vesicles, whereas in DAi varicosities small ( 60 nm) agranular and large ( 100 nm) granular vesicles are seen. Both 5-HTi and DAi varicosities form synaptic contacts. We conclude that both serotonin and dopamine may be used as neurotransmitters in the terminal ganglion of the cricket.Fellow of the Alexander von Humboldt-Stiftung  相似文献   

2.
Summary In the terminal ganglion of the cricket, Acheta domesticus, the somata of certain interneurones and efferent neurones consistently react to 5-HT immunohistochemistry. There are serially homologous pairs of bilateral interneurones seen in the neuromeres of the 7th to the 10th segment and hindgut neurones with their somata located at the posterior median end of the ganglion. In adult crickets, pairs of large efferent neurones with lateral somata supply specific genital muscles in the 8th and the 9th segment of females. In males, only one pair of these efferent neurones supplies genital muscles of the 9th segment only. These identified 5-HT-immunoreactive neurones are not detected in larval crickets before development of the genital apparatus.  相似文献   

3.
Summary In the lamina ganglionaris, the first optic ganglion of the fly, the inventory of cell types as well as the patterns of their connections are well known from light microscopic investigations. Even the synaptic contacts are known with relative completeness. However, the structural details visible on electron micrographs are very difficult to interpret in functional terms. This paper concentrates on two aspects: 1) the synaptic complex between a retinula cell axon and four postsynaptic elements, arranged in a constant elongated array (it is suggested that all synapses in which the retinula cell is presynaptic are of this kind), and 2) the gnarl complex in which a presynaptic specialization in one neuron is separated from another neuron by a complicated glial invagination. The participation of glia at postsynaptic sites seems to be quite common in this ganglion. Occasionally it seems that a glia cell is the only postsynaptic partner facing a presynaptic specialization within a neuron.  相似文献   

4.
Whether female crickets choose among males based on characteristics of the courtship song is uncertain, but in many species, males not producing courtship song do not mate. In the house cricket,Acheta domesticus, we examined whether a female chose or rejected a male based on his size, latency to chirp, latency to produce courtship song, or rate of the high-frequency pulse of courtship song (“court rate”). We confirmed that females mated only with males that produced courtship song, but we found no evidence that the other factors we measured affected a female’s decision to mate. In addition, we investigated whether the outcome of male agonistic encounters affected the subsequent production of courtship song. In one experiment, we observed courtship and mating behavior when a single female was placed with a pair of males following a 10-min interaction period between the two males. Winners of male agonistic encounters had higher mating success. However, winners and losers of agonistic encounters were not different in their likelihood or latency to produce courtship song or in the number of times they were disrupted by the other male in the pair. In a second experiment, we allowed two males to interact for a 10-min period, but following this interaction period, we placed a female with each male separately and observed courtship and mating behavior. The mating success of winners and losers was not different under these circumstances, and we found no differences between winners and losers in any subsequent courtship or mating behavior examined. We conclude that winning agonistic encounters influences a male’s mating success in ways other than his production of courtship song and this effect is lost when winning and losing males are separated and each is given an opportunity to mate.  相似文献   

5.
In young virginAcheta domesticus females, the spiking response of the prothoracic L3 auditory interneuron discriminates between calling songs (CSs) with phonotactically attractive and unattractive syllable periods (SPs), which parallels phonotactic discrimination. Presentation of a CS with an originally attractive SP, but with the intensity modulated so as to minimize L3's selective response, results in a CS with little phonotactic attractiveness. Conversely, a CS with an originally unattractive SP becomes much more attractive when the CS is intensity modulated in ways that duplicate L3's selective response. L3's discriminatory response to CS SP deteriorates with age, in parallel with decreased phonotactic selectiveness (females, older than 14 days, typically are unselective for CS SPs). SP-selective processing, which was not apparent in these old L3s, is immediately restored by removing the contralateral ear. SP-specific information is resident in a network of neurons within the prothoracic ganglion that results in the SP selective responses of the L3 neuron in young females. Changes in the SP-selective responses of the L3 neuron are highly correlated with corresponding changes in the female's phonotactically selective behavior.  相似文献   

6.
7.
Summary In the pineal organ of the lovebird, Uroloncha domestica, bulbous, cup-shaped and elongated outer segments of photoreceptor-like pinealocytes are demonstrated by scanning electron microscopy. These scarce outer segments, 4–11 m in length, extend into the pineal lumen. The present structural observations speak in favor of photosensitive pinealocytes in the pineal organ of Uroloncha domestica. The relation of the photoreceptor-like pinealocytes to acetylcholinesterase-positive nerve cells and a nervous connection between the pineal and the brain indicate that the pineal organ of this passeriform species may be the site of neuroendocrine and photoreceptive functions.Supported by a fellowship from the Japan Society for the Promotion of Science to M. UeckSupported by a grant from the Ministry of Education of Japan to K. Wake and by a grant of the Deutsche Forschungsgemeinschaft to M. Ueck  相似文献   

8.
We analyzed the anatomy of two diffuse neurohemal systems for serotonin in the head of the Colorado potato beetle Leptinotarsa decemlineata by means of immunohistochemistry. One system is formed by axons from two bilateral pairs of neurons in the frontal margin of the suboesophageal ganglion that enter the ipsilateral mandibular nerve, emerge from this nerve at some distance from the suboesophageal ganglion, and cover all branches of the mandibular nerve with a dense plexus of immunoreactive axon swellings. The other system is formed by axons from two large neurons in the frontal ganglion that enter the ipsilateral frontal connectives, emerge from these connectives, and form a network of axon swellings on the labroforntal, pharyngeal, and antennal nerves and on the surface of the frontal ganglion. Immunohistochemical electron microscopy demonstrated that the axon swellings are located outside the neural sheaths of the nerves and hence in close contact with the hemolymph. We therefore suggest that these plexuses represent extensive neurohemal systems for serotonin. Most immunoreactive terminals are in direct contact with the hemolymph, and other terminals are closely associated with the muscles of the mandibles, labrum, and anterior pharynx, as well as with the salivary glands, indicating that these organs are under serotoninergic control.  相似文献   

9.
1. The modulatory effect of serotonin on CA1 pyramidal cells in the hamster (Mesocricetus auratus) hippocampus was examined over a range of temperatures. 2. Following repetitive Schaffer collateral/commissural stimulation, changes in the amplitude of population spikes (the synchronous firing of CA1 pyramidal cells) were recorded in the hamster, a hibernator. Amplitudes were measured after 10 microM serotonin was added to and then withdrawn from the perfusing medium with the temperature of the bath fixed at different temperatures. 3. Between 35 degrees C and 15 degrees C a depression in population spike amplitude of at least 10% was seen in 36 of 43 trials, with an average depression of 68%. No significant temperature dependence of the depressive effect was seen. 4. Following the removal of serotonin from the perfusate, the spike amplitude was enhanced over the same range of temperatures, averaging 33% higher than control values. The enhancement was most pronounced at 35 degrees C and 15 degrees C and smallest at 25 degrees C. 5. Thus, over the entire temperature range of 35 degrees C to 15 degrees C, serotonin exerted a dual modulatory effect on the spike amplitude, a depression followed by an enhancement. Serotonin's modulatory effects on pyramidal cell excitation persist over temperatures encountered as the hamster enters hibernation.  相似文献   

10.
Morphological changes induced by capsaicin were studied in the serotonergic metacerebral giant neurons of the cerebral ganglia of Helix pomatia under in vitro conditions. Capsaicin at a concentration of 10-4 M caused characteristic structural alterations in the giant serotonergic neurons but did not significantly influence serotonin immunoreactivity in the neurons. At the lightmicroscopic level, the most conspiciuous structural alterations were swelling of the cell bodies, which contained a swollen pale nucleus. Under the electron microscope, the nuclei,mitochondria and the cisternae of the endoplasmic reticulum were swollen in the capsaicin-affected metacerebral giant neurons. Electron-microscopic cytochemical techniques for calcium demonstration revealed electron-dense deposits in the swollen mitochondria and in the cisternae of the endoplasmic reticulum, suggesting an increased Ca2+ influx. The serotonergic metacerebral giant neurons could be labelled by cobalt (1 mM) in the presence of capsaicin (10-4 M) suggesting that capsaicin opens the cation chanels of the capsaicin-sensitive neuronal membrane. The morphological and cytochemical alterations induced by capsaicin in the serotonergic metacerebral giant neurons of Helix pomatia closely resemble those induced in sensory neurons of mammalian dorsal root ganglion.This work was supported by OTKA grants No.: 2477, T016861, T017127 and ETT 587/93  相似文献   

11.
Summary The stomach, small intestine and large intestine of the toad, Bufo marinus, were processed for formaldehyde-induced fluorescence histochemistry. After extrinsic denervation or pretreatment with 6-hydroxydopamine to remove catecholamine fluorescence, yellow fluorescence typical of 5-hydroxytryptamine was observed in neurones in the small intestine only. The cell bodies and their processes were confined to the myenteric plexus. Additional pretreatment with 5-hydroxytryptamine enhanced the fluorescence of neurones in the small intestine and revealed yellowfluorescent nerve fibres, but not cell bodies, in the longitudinal and circular muscle layers and myenteric plexus of the large intestine. No fluorescent neurones were observed in the stomach. Following reserpine treatment, which removed native yellow fluorescence in the small intestine, exposure to 5-hydroxytryptophan produced yellow fluorescence in axons in both small and large intestine; exposure to tryptophan never restored fluorescence. The neurotoxin, 5,7-dihydroxytryptamine had no effect on the distribution of yellow-fluorescent neurones in the small and large intestine. No 5-HT-containing mast cells were present in either the small or large intestine. Thin layer chromatography with three different mobile phases showed a 5-hydroxytryptamine-like compound in extracts of mucosa-free small and large intestine but not of stomach.  相似文献   

12.
ABSTRACT. An L-shaped auditory intemeuron (LI) has been recorded from extracellularly and intracellularly, and identified morphologically (by Lucifer yellow or cobalt injection) in the prothoracic ganglion of mature female Acheta domesticus. The morphology of the LI is very similar to ascending, prothoracic acoustic interneurons that are most sensitive to higher carrier frequencies in both A. domesticus and other gryllid species. Its terminations in the brain are similar to ascending acoustic interneurons found in other gryllids. The LI neuron is most sensitive to 4–5 kHz model calling songs (CSs), the main carrier frequency of the natural call. Thresholds to high frequencies (8–15 kHz) are 15–20 dB higher. Increasing CS intensities of up to 15 dB above threshold at 4–5 kHz result in increased firing rates by the LI. More than 15 dB increase in intensity causes saturation with little increase in spiking rate until the intensity surpasses 80 dB. In response to 70 dB or higher stimulus intensities, the LI responds to the second and third CS syllables with one or two spikes, pauses, and then produces a burst of nerve impulses with the same or greater latency than for lower intensity stimuli. In response to CS syllables of changing duration (10–30 ms) this neuron responds with a rather constant duration burst of impulses. Syllable periods of the CS stimuli were accurately encoded by the LI. Progressively stronger injection of hyperpolarizing current reduces, and ultimately stops spiking of the LI in response to CS stimuli. More intense stimulation with reduced hyperpolarization shows an initial spike, pause and burst of spikes. Intracellular recording from axonal regions of the neuron shows large spikes, small EPSPs and a developing hyperpolarization through the response to a CS chirp. Inhibitory input to the LI is demonstrated at 4.5, 8 and 16 kHz. This probably explains the specialized response characteristics of the LI which enhanced its encoding of CS syllable period.  相似文献   

13.
Summary Neurons immunoreactive with antibodies to serotonin (5-HT) were mapped in the thoracico-abdominal ganglia of the blowfly, Calliphora erythrocephala, during postembryonic development. Reconstructions from serial sections of tissue processed with a preincubation PAP-method permitted a detailed analysis of the morphological changes occurring in 5-HT-immunoreactive (5-HTi) neurons.All the 5-HTi cell bodies in the thoracico-abdominal ganglia of the 3rd instar larva, except two in the metathoracic ganglion, retain their immunochemical phenotype throughout pupal development. Hence, all the adult 5-HTi neurons in these ganglia differentiate during embryonic development. The finer processes of the larval 5-HTi neurons undergo a substantial regression during the first 24 h of pupal development, and thereafter new branches form on the primary processes of the same cell bodies. The slight change in relative position of 5-HTi cell bodies and the reorganization of the neuropil into an adult pattern occur during the first half of pupal development. The neuropil mass and extent of 5-HTi processes continue to increase during the following days and appear to be fully developed two days (80% of pupal development) before hatching.On the basis of the presented data, some of the basic processes are discussed that lead to the transformation of the larval nervous system into its adult form.  相似文献   

14.
Each olfactory (antennal) lobe of the moth Manduca sexta contains a single serotonin (5-HT) immunoreactive neuron whose processes form tufted arbors in the olfactory glomeruli. To extend our present understanding of the intercellular interactions involved in glomerulus development to the level of an individual, identified antennal lobe neuron, we first studied the morphological development of the 5-HT neuron in the presence and absence of receptor axons. Development of the neuron's glomerular tufts depends, as it does in the case of other multiglomerular neurons, on the presence of receptor axons. Processes of the 5-HT neuron are excluded from the region in which the initial steps of glomerulus construction occur and thus cannot provide a physical scaffolding on which the array of glomeruli is organized. Because the neuron's processes are present in the antennal lobe neuropil throughout postembryonic development, 5-HT could provide signals that influence the pattern of development in the lobe. By surgically producing 5-HT-depleted antennal lobes, we also tested the importance of 5-HT in the construction of olfactory glomeruli. Even in the apparent absence of 5-HT, the glomerular array initiated by the receptor axons was histologically normal, glial cells migrated to form glomerular borders, and receptor axons formed terminal branches in their normal region within each glomerulus. In some cases, 5-HT-immunoreactive processes from abnormal sources entered the lobe and formed the tufted intraglomerular branches typical of most antennal lobe neurons, suggesting that local cues strongly influence the branching patterns of developing antennal lobe neurons. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Summary The postembryonic development of serotonin-immunoreactive (5-HTi) neurons was studied in the optic lobe of the blowfly. In the adult fly there are 24 5-HTi neurons invading each optic lobe. The perikarya of two of these neurons are situated in the dorso-caudal part of the protocerebrum (LBO-5HT neurons; large bilateral optic lobe 5-HTi neurons). The cell bodies of the remaining 22 neurons are located anteriorly at the medial base of the medulla (2 innervating the lobula, LO-5HT neurons; and 20 neurons innervating the medulla, ME-5HT neurons). The two central neurons (LBO-5HT neurons) are derived from metamorphosing larval neurons, while the ME- and LO-5HT neurons are imaginai optic lobe neurons differentiating during pupal development.The 5-HTi neurons of the optic lobe seem to have different ancestors. The LBO-5HT neurons are probably derived from segmental protocerebral neuroblasts, whereas the ME-and LO-5HT neurons are most likely derived from the inner optic anlage. The first 5-HTi fibers to reach the imaginal optic lobes are seen in the late third instar larva and are derived from the LBO-5HT neurons. The first ME- and LO-5HT neurons become immunoreactive at 24 h (10%) pupal development. At about 96 h (40%) of pupal development all the 5-HTi neurons of the optic lobes have differentiated and attained their basic adult morphology. The further development mainly entails increase in volume of arborizations and number of finer processes. The differentiation and outgrowth of 5-HTi processes follows that of, e.g., columnar neurons in the optic lobe neuropils. Hence, 5-HTi processes invade neuropil relatively late in the differentiation of the optic lobe.  相似文献   

16.
Geoffrey Coast 《Peptides》2011,32(3):500-508
Serotonin stimulates secretion by Malpighian tubules (MT) of a number of insects, and functions as a diuretic hormone in Rhodnius prolixus and in larval Aedes aegypti. Serotonin is here shown to be a potent stimulant of secretion by MT of the house cricket, Acheta domesticus, with an apparent EC50 of 9.4 nmol L−1, although its diuretic activity is just 25% of the maximum achievable with either the native CRF-related peptide, Achdo-DH, or a crude extract of the corpora cardiaca. In this respect, the diuretic activity of serotonin is similar to that of the cricket kinin Achdo-KI, and when tested together their actions are not additive, which suggests they target the same transport process. Consistent with this suggestion, the activity of serotonin is chloride-dependent and is associated with a non-selective stimulation of NaCl and KCl transport. In common with Achdo-KI, serotonin has no effect on cAMP production by isolated MT, and both act synergistically with exogenous 8bromo-cAMP in stimulating fluid secretion, most likely by promoting the release of Ca2+ from intracellular stores. A number of serotonin agonists and antagonists were tested to determine the pharmacological profile of receptors on cricket MT. The results are consistent with the diuretic activity of serotonin being mediated through a 5-HT2-like receptor.  相似文献   

17.
Summary Antibodies against serotonin and 5-methoxytryptamine reveal indolaminergic neurons innervating the proximal part of the efferent arterial vasculature, the filament epithelia, the central venous sinus, and certain other serotonergic cells of the teleost gill filament. In the same area, acetylcholinesterase-positive and indoleaminergic neurons have already been described. We propose that these populations of neurons belong to a single neuronal type but express different agents. Our current results support this idea; in particular, they point to the presence of a single type of serotonin-containing nerve terminal, impinging on vascular smooth muscle. These results are in agreement with physiological data showing (i) the existence of non-cholinergic (atropine-resistant) vasoconstriction of the gill vasculature after nerve stimulation, and (ii) a potent vasoconstrictory action of infused serotonin. In addition, the above-mentioned serotonergic neurons have synaptic contacts with catecholaminergic nerve fibers, suggesting the existence of a modulatory relationship between the sympathetic and the cranial autonomic nerves supplying the teleost gill. Finally, these neurons show morphological relationships with a previously undescribed type of branchialserotonergic cell. The role of the parasympathetic nerve plexus of the teleost gill filament in the control of respiration and ionoregulation is discussed.  相似文献   

18.
Summary Preliminary ultrastructural studies on the effects of 5,6-Dihydroxytryptamine (5,6-DHT) on the anterior byssus retractor muscle (ABRM) of Mytilus show degeneration of 2 types of monoaminergic nerves after 10 days of drug treatment. One type contained large granular vesicles (560–1,680 Å) while the other had small granular vesicles (200–640 Å). These axons may possibly represent serotonergic and dopaminergic nerves, thought to innervate this muscle.Two other types of profiles seemed to be unaffected by the drug. One conforms to cholinergic nerves while the other has a predominance of large opaque vesicles (1,200–2,500 Å). The significance of these findings is discussed in the light of recent observations on the neurotoxic effects of 5,6-DHT on vertebrate and molluscan nerves.The author is grateful to Professor G. Burnstock for research facilities and Professor B. M. Twarog for advice and encouragement. This work was supported by the Ramaciotti Foundation  相似文献   

19.
Antisera to the neuropeptides corazonin (Crz) and crustacean cardioactive peptide (CCAP) and to the diapause hormone (DH) react with small sets of neurones in the cephalic ganglia of the crickets Dianemobius nigrofasciatus and Allonemobius allardi. The distribution of their immunoreactivities is similar in the two species and overlaps with the locations of presumed circadian clock components in the optic lobes, protocerebrum, tritocerebrum, suboesophageal ganglion (SOG) and frontal ganglion. D. nigrofasciatus contains two Crz-immunoreactive (Crz-ir) cells in each optic lobe, six cell groups in the protocerebrum, four in the tritocerebrum, and one in SOG, whereas A. allardi harbours only five Crz-ir groups in the protocerebrum and four in the tritocerebrum. CCAP immunoreactivity occurs in both species in four protocerebrum cell clusters, four tritocerebrum cell clusters, four SOG cell clusters, one frontal ganglion cell cluster, and two optic lobe cell clusters; D. nigrofasciatus possesses two additional cells with unique links to the lamina in the optic lobe. DH-related antigens are present in four cell clusters in the optic lobe, six (D. nigrofasciatus) or eight (A. allardi) in the protocerebrum, four in the tritocerebrum, and three (A. allardi) or five (D. nigrofasciatus) in the SOG. Some of the detected cells also react with antibody to the clock protein Period (PER) or lie close to PER-ir cells. Crickets reared at two different photoperiods do not differ in the distribution and intensity of immunoreactivities. No changes have been detected during the course of diurnal light/dark cycles, possibly because the antisera react with persistent prohormones, whereas circadian fluctuations may occur at the level of their processing or of hormone release. The projection of immunoreactive fibres to several brain regions, the stomatogastric nervous system and the neurohaemal organs indicates multiple functions of the respective hormones. The work was supported by the “Research for Future” program of the Japan Society for the Promotion of Science (JSPS, 99L01205) and by the JSPS Postdoctoral Fellowship for Foreign Researchers (no. P 04197).  相似文献   

20.
Summary The adrenergic innervation of the pulmonary vasculature of the file snake Acrochordus granulatus was examined by use of glyoxylic acid-induced fluorescence. Perivascular plexuses of blue-green fluorescent nerves are observed around the common pulmonary artery, the anterior and posterior pulmonary arteries, the arterioles leading to the gas exchange capillaries of the lung, the venules draining the lung, and the anterior and posterior pulmonary veins. Adrenergic nerves are also associated with the visceral smooth muscle of the lung septa and other tissues. Thus, adrenergic control of pulmonary blood flow may occur either at the common pulmonary artery or more regionally within the lung. Regional control of blood flow in the elongate lung of this snake may be important in matching pulmonary perfusion with the distribution of respiratory gas. Glyoxylic acid-histochemistry and immunohistochemistry revealed that populations of cells located in the common pulmonary artery contain the indoleamine 5-hydroxy-tryptamine. Many of the cells are intimately associated with varicose blue-green fluorescent nerves. It is proposed that the 5-hydroxytryptamine-containing cells may be involved in intravascular chemoreception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号