首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorptive endocytosis of alpha-N-acetylglucosaminidase from human urine by isolated rat hepatocytes is inhibited by glycoproteins, polysaccharides and sugars that are known to bind to cell-surface receptors specific for either terminal galactose/N-acetylgalactosamine residues, terminal mannose residues or mannose 6-phosphate residues. Recognition of alpha-N-acetylglucosaminidase by a cell-surface receptor specific for terminal galactose/N-acetylgalactosamine residues is supported by the observations (a) that neuraminidase pretreatment of the enzyme enhances endocytosis, (b) that beta-galactosidase treatment decreases endocytosis and (c) that neuraminidase pretreatment of hepatocytes decreases alpha-N-acetylglucosaminidase endocytosis. Recognition of alpha-N-acetylglucosaminidase via receptors recognizing mannose 6-phosphate residues is lost after treatment of the enzyme with alkaline phosphatase and endoglucosaminidase H. The effect of endoglucosaminidase H supports the view that the mannose 6-phosphate residues reside in N-glycosidically linked oligosaccharide side chains of the high-mannose type. The weak inhibition of endocytosis produced by compounds known to interact with cell-surface receptors specific for mannose residues suggests that this recognition system plays only a minor role in the endocytosis of lysosomal alpha-N-acetylglucosaminidase by hepatocytes.  相似文献   

2.
Adsorptive endocytosis of lysosomal enzymes by fibroblasts and hepatocytes involves binding to cell surface receptors that recognize on lysosomal enzymes a phosphorylated carbohydrate, most likely a mannose 6-phosphate residue [Kaplan et al. (1977) Proc. Natl Acad. Sci. U.S.A. 74, 2026-2030; Ullrich et al. (1978) Hoppe-Seyler's Z. Physiol. Chem. 359, 1591-1598]. Loss of alpha-N-acetylglucosaminidase endocytosis after treatment with endoglucosaminidase H indicated that the recognition site of alpha-N-acetylglucosaminidase is located on N-glycosidically linked oligosaccharides of the high mannose type. Acidic oligosaccharides with an average molecular weight of 2200 were liberated from alpha-N-acetylglucosaminidase by endoglucosaminidase H. These oligosaccharides were susceptible to degradation by alkaline phosphatase, alpha-mannosidase and beta-N-acetylglucosaminidase. At the non-reducing terminal these oligosaccharides bear phosphorylated mannose and/or N-acetylglucosamine residues.  相似文献   

3.
Adsorptive endocytosis of five different lysosomal enzymes from various human and non-human sources was susceptible to inhibition by mannose and l-fucose, methyl α-d-mannoside, α-anomeric p-nitrophenyl glycosides of mannose and l-fucose, mannose 6-phosphate and fructose 1-phosphate. A few exceptions from this general scheme were observed for particular enzymes, particularly for β-glucuronidase from human urine. The inhibition of α-N-acetylglucosaminidase endocytosis by mannose, p-nitrophenyl α-d-mannoside and mannose 6-phosphate was shown to be competitive. The loss of endocytosis after alkaline phosphatase treatment of lysosomal enzymes supports the hypothesis that the phosphorylated sugars compete with a phosphorylated carbohydrate on the enzymes for binding to the cell-surface receptors [Kaplan, Achord & Sly (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 2026–2030]. Endocytosis of `low-uptake' forms of α-N-acetylglucosaminidase and α-mannosidase was likewise susceptible to inhibition by sugar phosphates and by alkaline phosphatase treatment, suggesting that `low-uptake' forms are either contaminated with `high-uptake' forms or are internalized via the same route as `high-uptake' forms. The existence of an alternative route for adsorptive endocytosis of lysosomal enzymes is indicated by the unaffected adsorptive endocytosis of rat liver β-glucuronidase in the presence of phosphorylated sugars and after treatment with alkaline phosphatase.  相似文献   

4.
Cultured non-parenchymal rat liver cells internalize human urine alpha-N-acetylglucosaminidase, human skin beta-N-acetylglucosaminidase and pig kidney alpha-mannosidase. Different heat-stabilities of endocytosed and endogenous alpha-mannosidase activity provided indirect evidence that the increase in intracellular activity resulted from uptake. The high efficiency and the saturation kinetics of uptake indicated that these enzymes become internalized by adsorptive endocytosis. Competition experiments with glycoproteins bearing known carbohydrates at their non-reducing terminals, with mannans, methyl glycosides and monosaccharides, established that the uptake of these three lysosomal enzymes is mediated by the binding to cell-surface receptors that recognize mannose and N-acetylglucosamine residues. The decreased uptake after treatment of these enzymes with either beta-N-acetylglucosaminidase or alpha-mannosidase was in accordance with the results of the inhibition experiments. Removal of oligosaccharides of the high-mannose type by treatment with endoglucosaminidase H inhibited uptake almost completely, suggesting that the sugars recognized by cell-surface receptors of non-parenchymal liver cells are located in the outer core of these oligosaccharides. A comparison of the uptake of these three lysosomal enzymes by parenchymal and non-parenchymal rat liver cells indicates that infused alpha-N-acetylglucosaminidase is taken up preferentially by hepatocytes, whereas alpha-mannosidase and beta-N-acetylglucosaminidase are localized predominantly in non-parenchymal rat liver cells.  相似文献   

5.
Endocytosis of human spleen beta-glucuronidase by human fibroblasts can be completely impaired by the competitive inhibitor mannose 6-phosphate or by pretreatment with acid phosphatase or endoglycosidases H or F. However, endocytosis of bovine spleen and liver beta-glucuronidase is partially impaired by the same treatments, suggesting that the bovine enzyme contains two endocytosis recognition markers located in separate enzyme domains. The mannose 6-phosphate recognition marker seems to be responsible for approximately 23% of the bovine enzyme endocytosis. The existence of two lysosomal endocytosis systems in human fibroblasts is supported by the following facts: (a) the rate of endocytosis of mannose 6-phosphate-containing human beta-glucuronidase was not affected by the presence of high levels of the bovine enzyme (which has only the other marker). (b) Anti-215K mannose 6-phosphate receptor antibodies selectively impair the endocytosis of the beta-glucuronidase containing mannose 6-phosphate. (c) Weak bases exert a differential effect on human and bovine endocytosis. beta-Glucuronidase internalized by either system is targeted to secondary lysosomes of human beta-glucuronidase-deficient fibroblasts, where it is able to degrade accumulated glycosaminoglycans. These results suggest that human fibroblasts have two different and independent endocytic systems for targeting of acid hydrolases to lysosomes.  相似文献   

6.
beta-Hexosaminidase B purified from human fibroblast secretions was used as a ligand to study phosphomannosyl-enzyme receptors in membranes from rat tissues. Enzyme binding to rat liver membranes was saturable, competitively inhibited by mannose 6-phosphate, not dependent on calcium, and destroyed by prior treatment of the hexosaminidase with either alkaline phosphatase or endoglycosidase H. Most (90%) of the phosphomannosyl-enzyme receptors were found in endoplasmic reticulum, Golgi apparatus, and lysosomes; 9.5% in the plasma membrane, and less than 1% in nuclei and mitochondria. Receptors were vesicle-enclosed in all fractions except plasma membrane. Receptors in the endoplasmic reticulum apparently were occupied by endogenous ligands, but most receptors in lysosomes and plasma membrane were unoccupied. Most of the endogenous beta-hexosaminidase was in lysosomes and was released from vesicles by detergent treatment. Displacement of the residual receptor-bound endogenous beta-hexosaminidase (mostly in endoplasmic reticulum and Golgi apparatus) from detergent-treated membranes by mannose 6-phosphate released high uptake enzyme with properties expected for phosphomannosyl-enzymes. Mannose 6-phosphate-inhibitable enzyme receptor activity was found in nine rat organs and correlated roughly with their lysosomal enzyme content. These data support a general model for lysosomal enzyme transport in which the phosphomannosyl-enzyme receptor acts as a vehicle for delivery of newly synthesized acid hydrolases from the endoplasmic reticulum to lysosomes.  相似文献   

7.
beta-D-Glucuronidase (EC 3.2.1.31) was purified to homogeneity from human spleen, and enzyme fractions from CM-Sephadex were examined for uptake by fibroblasts and retention by a column of immobilized phosphomannosyl receptor. Uptake and binding were enhanced by treatment of the enzyme with alpha-N-acetylglucosaminyl phosphodiesterase, greatly reduced by prior treatment with alkaline phosphatase, and restored by subsequent treatment with alpha-N-acetylglucosaminyl phosphodiesterase. Immobilized phosphomannosyl receptor was used to separate high and low uptake enzyme forms. About 25% of the total beta-glucuronidase was retained by the receptor column and eluted with mannose 6-phosphate. The rate of uptake of retained enzyme was 2.5-3.0-fold greater than that of the enzyme applied to the receptor column. The fraction retained by the column was reduced to 5-10% by prior treatment of the enzyme with alkaline phosphatase. This phosphatase-resistant, receptor-retained fraction was taken up at only 24% the rate of non-phosphatase-treated, receptor-retained enzyme. However, its uptake was increased 7-fold by treatment with alpha-N-acetylglucosaminyl phosphodiesterase. The enhanced rate of pinocytosis conferred by treatment of the enzyme with alpha-N-acetylglucosaminyl phosphodiesterase was destroyed by a subsequent treatment with alkaline phosphatase. These studies demonstrate that although most of the "high uptake" enzyme in beta-glucuronidase from human spleen binds to receptors through phosphomonoesters of mannose, a significant fraction can interact with immobilized phosphomannosyl receptor and be taken up by fibroblasts through interactions involving mannose 6-phosphate in diester linkage with N-acetyl-D-glucosamine.  相似文献   

8.
The human colon adenocarcinoma cell lines SW 948, SW 1116, and SW 1222 were tested for their ability to sort and internalize lysosomal enzymes. The biosynthesis of the lysosomal enzymes cathepsin B, arylsulfatase A, and beta-hexosaminidase in these cell lines exhibits no significant differences to that in human fibroblasts. The intracellular targeting of newly synthesized hydrolases to the lysosomes relies in colon carcinoma cells on the mannose 6-phosphate receptor system. Both the cation-independent mannose 6-phosphate receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor are expressed in all colon carcinoma cell lines investigated. Endocytosis of lysosomal enzymes via mannose 6-phosphate receptors is reduced in colon carcinoma cells as compared with human fibroblasts. SW 1116 cells were shown to be deficient in receptor-mediated endocytosis of mannose 6-phosphate containing ligands. Ligands of other endocytic receptors as well as the fluid-phase marker horseradish peroxidase were internalized at normal rates. While antibodies against CI-MPR bind to the surface of SW 1116 cells, these antibodies cannot be internalized. These data suggest that the cycling of CI-MPR is specifically impaired in SW 1116 cells.  相似文献   

9.
Mannose 6-phosphate receptors carry newly synthesized lysosomal hydrolases from the trans-Golgi network to endosomes, then return to the trans-Golgi network for another round of enzyme delivery. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, interferes with the delivery of newly synthesized lysosomal enzymes to lysosomes. We used two independent assays of mannose 6-phosphate receptor trafficking to determine the precise step that is blocked by wortmannin. Using an assay that monitors resialylation of desialylated cell surface 300-kDa mannose 6-phosphate receptors, we found that receptor endocytosis and transport to the trans-Golgi network were not inhibited by 2 microM wortmannin. In addition, this concentration of drug had no effect on the transport of the mannose 6-phosphate receptor from late endosomes to the trans-Golgi network using a system that reconstitutes this transport process in cell extracts. Under the same conditions, wortmannin significantly inhibited the generation of mature cathepsin D. In addition, the structurally unrelated phosphatidylinositol 3-kinase inhibitor, LY294002, was also without effect when added to in vitro endosome-trans-Golgi network transport reactions. These experiments demonstrate that the interruption in lysosomal enzyme targeting is most likely due to a wortmannin-sensitive process required for the export of these receptors from the trans-Golgi network, consistent with the established role of phosphatidylinositol 3-kinase in the equivalent transport process in Saccharomyces cerevisiae.  相似文献   

10.
1. Pretreatment of cultured human skin fibroblasts with convanavalin A and wheat germ agglutinin inhibited endocytosis of alpha-N-acetylglucosaminidase and increased extracellular accumulation of beta-N-acetylglucosaminidase. 2. These effects were dose-dependent, reversible and could be prevented by haptenic carbohydrates, such as methyl alpha-D-mannoside or N-acetylglucosamine. 3. Pretreatment of fibroblasts with di- and monovalent succinylated concanavalin A inhibited alpha-N-acetylglucosaminidase endocytosis, but had no effect on extracellular beta-N-acetylglucosaminidase accumulation. 4. Concanavalin A-alpha-N-acetylglucosaminidase complexes become internalized via the recognition of the lectin. Complex formation prevents recognition of the phosphorylated carbohydrate on lysosomal enzymes that interacts with cell surface receptors specific for lysosomal enzymes. The inhibitory effect of all lectins tested on lysosomal enzyme endocytosis suggests that the cell surface receptors for lysosomal enzymes interact either directly with lectins or are closely linked to lectin receptors. The effect of polyvalent lectins on extracellular lysosomal enzyme accumulation is ascribed to their alteration of membrane fluidity.  相似文献   

11.
The effects of insulin on the subcellular distribution of the heavy chain of clathrin and on the insulin-like growth factor II (IGF-II) mannose 6-phosphate receptor were investigated in isolated rat adipocytes. Plasma membranes, intracellular membranes, and cytosol were separated by differential centrifugation, and the concentration of clathrin and receptor in each fraction was quantified by sequential immunoblotting with monoclonal and polyclonal antibodies against these proteins. A 3-fold increase in the amount of clathrin heavy chain associated with isolated plasma membranes was found after treatment of cells with low concentrations of insulin. This effect was complete within 2 min of stimulation at 37 degrees C and was abolished at 5-10 degrees C. The insulin-mediated increase in the cell surface concentration of receptors for IGF-II/mannose 6-phosphate displayed a similar time course and temperature dependence. A concomitant decrease in the concentration of IGF-II/mannose 6-phosphate receptors in intracellular membranes was observed. In contrast, no significant changes in the concentration of clathrin in this fraction could be detected. Instead, a marked decrease in the level of unassembled cytosolic clathrin was observed in insulin-treated cells compared with controls. These results suggest that insulin induces an increase in the assembly of cytosolic clathrin onto the plasma membrane in conjunction with its ability to increase the concentration of receptors on the cell surface.  相似文献   

12.
Proliferin secreted by cultured cells binds to mannose 6-phosphate receptors   总被引:19,自引:0,他引:19  
Proliferin is a prolactin-related glycoprotein secreted by proliferating mouse cell lines and by mouse placenta. In an attempt to identify target sites for proliferin action, we looked for proliferin receptors in murine fetal and maternal tissues during pregnancy using proliferin purified from the conditioned medium of a constructed Chinese hamster ovary cell line carrying amplified copies of proliferin cDNA. Purified proliferin bound to membrane preparations from fetal or maternal liver and from placenta with a Kd of 1 to 2 nM. The amount of proliferin bound per microgram of membrane protein varied markedly during pregnancy; maximal binding to day 16 fetal liver membranes was approximately 25 times that to liver membranes from adult animals. Binding to fetal and maternal receptors was specifically and completely inhibited by mannose 6-phosphate, with half-maximal inhibition at 10 microM. Furthermore, non-glycosylated proliferin did not inhibit the binding of the glycosylated protein. A approximately 300 Kd proliferin receptor was purified from the liver of pregnant mice using a proliferin affinity column and elution with mannose 6-phosphate. This receptor reacted with antibodies directed against the rat cation-independent mannose 6-phosphate receptor. We conclude that 1) proliferin secreted by cultured cell binds to cation-independent mannose 6-phosphate receptors and therefore may be a lysosomal protein or targeted to lysosomes, and 2) the concentration or activity of mannose 6-phosphate receptors in murine fetal and maternal liver and in placenta is regulated during pregnancy.  相似文献   

13.
The effect of brefeldin A (BFA) on the trafficking of the mannose 6-phosphate/insulin-like growth factor II receptor within the endocytic route was analyzed. Treatment with BFA induced a redistribution of the receptor to the cell surface and increased both the binding and internalization of ligands 2-4-fold. The effect of BFA was dose- and time-dependent and reversible. Determinations of transport rates showed that BFA increases the internalization rate and the externalization rate of the receptor. This implies that the higher surface concentration is due to higher concentrations of receptor at the intracellular sites from where they recycle to the cell surface. The effect of BFA was additive to the redistribution induced by insulin-like growth factors I and II and was observed in all human and rodent cell lines analyzed. BFA increased also the cell surface expression of the Mr 46,000 mannose 6-phosphate receptor but not of the transferrin receptor. The results indicate that BFA interferes with the transport of mannose 6-phosphate receptors and affects the endocytosis of lysosomal enzymes by increasing the number of receptors available for recycling to the cell surface.  相似文献   

14.
In a previous report we demonstrated that phosphorylated oligosaccharides isolated from acid hydrolases were subject to pinocytosis by phosphomannosyl receptors present on the cell surface of human fibroblasts [9]. However, limiting quantities of oligosaccharides precluded detailed comparison of the kinetics of pinocytosis of these phosphorylated oligosaccharides to those of the acid hydrolases from which they were derived. In this report we present studies comparing the kinetics of pinocytosis of acid hydrolases from NH4Cl-induced fibroblast secretions with those of concanavalin A-binding glycopeptides prepared from them by pronase digestion. The uptake of both secretion acid hydrolases and 125I-labeled glycopeptides was linear for at least 3 hr, saturable, inhibited competitively by mannose 6-phosphate, and destroyed by prior treatment of the ligand with alkaline phosphatase. The inhibition constants of excess unlabeled glycopeptide for the uptake of 125I-labeled glycopeptides (Ki of 1.5 X 10(-6) M) and for the uptake of secretion acid hydrolases (Ki of 2.2 X 10(-6) M) were remarkably similar. Furthermore, the Ki for mannose 6-phosphate inhibition of pinocytosis of glycopeptide uptake (3 X 10(-5) M) compares closely to that previously determined for the pinocytosis of intact "high-uptake" acid hydrolases (3-6 X 10(-5) M). "High-uptake" fractions of both ligands were prepared and quantified by affinity chromatography on immobilized phosphomannosyl receptors purified from bovine liver. Only 10% of the concanavalin A-binding glycopeptides bound to the immobilized phosphomannosyl receptors, while 80% of the acid hydrolases from which they were prepared bound and were eluted with 10 mM mannose 6-phosphate. However, the fraction of each type of ligand that binds to the immobilized phosphomannosyl receptors accounts for all the uptake activity of that ligand.  相似文献   

15.
P Lobel  K Fujimoto  R D Ye  G Griffiths  S Kornfeld 《Cell》1989,57(5):787-796
The cation-independent mannose 6-phosphate receptor (Cl-MPR) sorts newly synthesized lysosomal enzymes in the Golgi and endocytoses extracellular lysosomal enzymes. To determine the role of the 163 amino acid cytoplasmic domain of the Cl-MPR in these functions, receptor-deficient mouse L cells were transfected with normal bovine Cl-MPR cDNA or cDNAs mutated in the cytoplasmic domain. The normal Cl-MPR functioned in sorting and endocytosis. Mutant receptors with 40 and 89 residues deleted from the carboxyl terminus of the cytoplasmic tail functioned normally in endocytosis, but were partially impaired in sorting. Mutant receptors with larger deletions leaving only 7 and 20 residues of the cytoplasmic tail were defective in endocytosis and sorting. A mutant receptor containing alanine instead of tyrosine residues at positions 24 and 26 was defective in endocytosis, and partially impaired in sorting. Receptors deficient in endocytosis accumulated at the cell surface. These results indicate that the cytoplasmic domain of the Cl-MPR contains different signals for rapid endocytosis and efficient lysosomal enzyme sorting.  相似文献   

16.
beta-N-Acetylglucosaminidase isolated from the secretions of fibroblasts of mucolipidosis-II and -III patients is internalized by cultured non-parenchymal rat liver cells. The rate of endocytosis compared with that of beta-N-acetylglucosaminidase from control fibroblasts was 11 and 19% for the enzyme from mucolipidosis-II and -III patients respectively. The inhibition of endocytosis by mannan indicates that the beta-N-acetylglucosaminidase from mucolipidosis-II and -III patients is recognized by cell-surface receptors specific for mannose.  相似文献   

17.
Cerebroside sulfatase also known as arylsulfatase A from human liver displays six microheteromer bands upon narrow pH range isoelectric focusing. Sialic acid residues only partially account for this enzyme multiplicity since neuraminidase treatment reduces the number of bands to three. Uptake studies with cultured fibroblasts strongly suggest arylsulfatase A has covalently bound mannose 6-phosphate residues. However, treatment with alkaline phosphatase and a battery of glycohydrolases failed to reduce the number of enzyme charge forms below three. These results imply that the neuraminidase-resistant charge microheterogeneity is not due to structures associated with the carbohydrate moiety of arylsulfatase A.  相似文献   

18.
During granule-mediated killing by cytotoxic T lymphocytes or natural killer cells, the serine protease granzyme B enters the target cell by endocytosis and induces apoptosis. Previous studies suggested a role for the mannose 6-phosphate receptor, but further experiments with purified granzyme B indicated this was not essential. Additionally, it is now clear that grB is exocytosed from killer cells in a high-molecular-weight complex with the proteoglycan serglycin. Here granzyme B was delivered as a purified monomer, or in complex with either glycosaminoglycans or serglycin, and killing was evaluated. When granzyme B was a monomer, soluble mannose 6-phosphate had a limited impact, whereas apoptosis induced by the complexed grB was effectively inhibited by mannose 6-phosphate. Most importantly, when granzyme B and perforin were delivered together from granules, inhibition by mannose 6-phosphate was also observed. In pulldown assays mediated by the cation-independent mannose 6-phosphate receptor, granzyme B bound to the receptor more intensely in the presence of immobilized heparan sulfate. We therefore propose the model that under physiological conditions serglycin-bound granzyme B is critically endocytosed by a mannose 6-phosphate receptor, and receptor binding is enhanced by cell surface heparan sulfate.  相似文献   

19.
The amount of mannose 6-phosphate/IGF II receptors in fibroblasts from five I-cell patients was about 2-fold higher than in control fibroblasts. The elevated receptor concentration, which led to a higher binding and uptake of mannose 6-phosphate containing ligands and to a higher binding of IGF II resulted from an increased rate of synthesis, while the stability of the receptor was comparable to that in control fibroblasts. Control fibroblasts respond to mannose 6-phosphate, IGF I, IGF II and tumor promoting phorbol esters with a rapid redistribution of mannose 6-phosphate/IGF II receptors from internal membranes to the cell surface. In I-cell fibroblasts only a moderate increase in cell surface receptors was seen after exposure to these effectors. In contrast to control fibroblasts the treatment of I-cell fibroblasts with lysosomotropic amines failed to affect the mannose 6-phosphate containing ligand binding to the receptor. These data provide evidence for multiple potential regulatory sites in intracellular mannose 6-phosphate/IGF II receptor pathway which differ in control and I-cell fibroblasts.  相似文献   

20.
In this report, we demonstrate a novel post-translational modification of the epidermal growth factor (EGF) receptor. This modification involves the presence of phosphate, previously thought to exist only on amino acid residues in the EGF receptor, on oligosaccharides of the receptor. We have utilized several independent approaches to determine that mannose phosphate is present on the EGF receptor in A-431 cells. Following metabolic labeling with 32P, immunoisolation of the EGF receptor, and digestion with Pronase radioactivity was determined to be present on high mannose type oligosaccharides by concanavalin A chromatography. Also, after acid hydrolysis of in vivo 32P-labeled EGF receptor, radioactivity was detected that co-migrated with mannose 6-phosphate on two-dimensional thin layer electrophoresis. This radiolabeled material co-eluted with a mannose 6-phosphate standard from a high pressure liquid chromatography anion exchange column. Last, an acid hydrolysate of [3H]mannose-labeled EGF receptor contained two radiolabeled fractions, as analyzed by thin layer electrophoresis, and the radioactivity in one of these fractions was substantially reduced by alkaline phosphatase treatment prior to electrophoresis. These experiments indicate that the mature EGF receptor in A-431 cells contains mannose phosphate. This is a novel modification for membrane receptors and has only been reported previously for lysosomal enzymes and a few secreted proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号