首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In order to compare paternal and maternal gene activity at the protein synthesis level during early development, androgenetic and gynogenetic mouse embryos were experimentally produced by microsurgically removing either the female or the male pronucleus from fertilized mouse eggs. The resulting haploid eggs were diploidized in a medium containing cytochalasin B and then cultured under normal conditions to the blastocyst stage. Protein synthesis was analyzed at different stages of preimplantation development using 2-dimensional polyacrylamide gel electrophoresis. Both types of uniparental embryos synthesized a similar set of proteins independent of whether the paternal or the maternal genome was present. The isodiploid embryos expressed a protein pattern that corresponded remarkably to normal embryos at the subsequent cleavage stage. This temporal change is probably due to the fact that the operated haploid eggs were kept overnight in cytochalasin B in order to allow chromosomal replication to occur without cell division, and the resulting eggs therefore corresponded to normal 2-cell embryos with respect to karyokinesis but differed as far as cytokinesis was concerned. Several 2-cell specific proteins appeared in these isodiploid eggs and, similarly, following their first cleavage some 4-cell specific proteins were detected in 2-cell androgenetic and gynogenetic embryos. The discordance between nuclear and cellular division, which was retained through the 4-cell stage, however disappeared during subsequent cleavage divisions. At the blastocyst stage, both kinds of uniparental embryos showed a similar protein pattern compared to normal embryos. Our data suggest that some stage-specific proteins are synthesized during preimplantation development and correspond to nuclear rather than cellular divisions.Some of these results were presented at the 13th Annual Meeting of the Union of Swiss Societies of Experimental Biology in Lausanne, March 1981 (Petzoldt et al. 1981)  相似文献   

2.
The experimental removal of the polar lobe, an anucleate cytoplasmic protrusion formed in preparation for the first cleavage, from the egg of Ilyanassa obsoleta results in grossly abnormal embryonic development. In experiments reported here normal and delobed embryos, as well as isolated polar lobes, were incubated with [35S]methionine for 4 hr beginning at the completion of the first cleavage or 21 hr later during epiboly. Proteins were extracted and examined by fluorography after resolution by two-dimensional polyacrylamide gel electrophoresis. In normal embryos the synthesis of several proteins begins or ends between the two stages investigated. In isolated polar lobes a subset of these developmental changes in protein synthesis occurs, indicating that the regulation of these events is independent of concomitant nuclear activity and probably involves selective regulation of the translation of mRNA stored in the eggs. The patterns of protein synthesis in normal embryos and delobed embryos are qualitatively extremely similar, though quantitative differences are also observed. No proteins can be detected which are synthesized exclusively in polar lobes.  相似文献   

3.
The synthesis of basic proteins has been studied in the oocytes, eggs and embryos of the South African clawed frog, Xenopus laevis. A group of newly synthesized proteins has been identified as histones by the following criteria: solubility properties; incorporation of [3H]lysine and [3H]arginine in the correct proportions, but lack of incorporation of [3H]tryptophan; co-cleotrophoresis with marker histones in various types of polyacrylamide gels, including a type run in two dimensions; peptide analysis of the arginine-rich fraction, F2A1. The four main histone fractions other than F1 were found to be synthesized at all stages of development. F1 histone synthesis was first detected at the late blastula stage.Rates of histone synthesis were estimated for the different stages of development and it was concluded that histone synthesis was not co-ordinated with DNA synthesis either temporally or quantitatively. Histone synthesis was unusual in the following major respects: histones were synthesized in oocytes, and yet in these cells DNA replication had not occurred for several months; histones were synthesized in activated or fertilized eggs at a rate far in excess (about 500 times) of the immediate requirements. We suggest that in order to provide enough histones for the late blastula embryo a store of histone is accumulated during the early cleavage stages and possibly during oogenesis.  相似文献   

4.
The absolute rates of synthesis of specific ribosomal proteins have been determined during growth and meiotic maturation of mouse oocytes, as well as during early embryogenesis in the mouse. These measurements were made possible by the development of a high-resolution twodimensional gel electrophoresis procedure capable of resolving basic proteins with isoelectric points between 9.1 and 10.2. Mouse ribosomal proteins were separated on such gels and observed rates of incorporation of [35S]methionine into each of 12 representative ribosomal proteins were converted into absolute rates of synthesis (femtograms or moles synthesized/hour/oocyte or embryo) by using previously determined values for the absolute rates of total protein synthesis in mouse oocytes and embryos (R. M. Schultz, M. J. LaMarca, and P. M. Wassarman, 1978,Proc. Nat. Acad. Sci. USA,75, 4160;R. M. Schultz, G. E. Letourneau, and P. M. Wassarman, 1979,Develop. Biol.,68, 341–359). Ribosomal proteins were synthesized at all stages of oogenesis and early embryogenesis examined and, while equimolar amounts of ribosomal proteins were found in ribosomes, they were always synthesized in nonequimolar amounts during development. Rates of synthesis of individual ribosomal proteins differed from each other by more than an order of magnitude in some cases. Synthesis of ribosomal proteins accounted for 1.5, 1.5, and 1.1% of total protein synthesis during growth of the oocyte, in the fully grown oocyte, and in the unfertilized egg, respectively. During meiotic maturation of mouse oocytes the absolute rate of synthesis of ribosomal proteins decreased about 40%, from 620 to 370 fg/hr/cell, as compared to a 23% decrease in the rate of total protein synthesis during the same period. On the other hand, during early embryogenesis the absolute rates of synthesis of each of the 12 ribosomal proteins examined increased substantially as compared with those of the unfertilized egg, such that at the eight-cell stage of embryogenesis synthesis of ribosomal proteins (4.17 pg/hr/embryo) accounted for about 8.1% of the total protein synthesis in the embryo. Consequently, while the absolute rate of total protein synthesis increased about 1.5-fold during development from an unfertilized mouse egg to an eight-cell compacted embryo, the absolute rate of ribosomal protein synthesis increased more than 11-fold during the same period. These results seem to reflect the differences reported for the patterns of ribosomal RNA synthesis during early development of mammalian, as compared to nonmammalian, animal species. The results are compared with those obtained using oocytes and embryos fromXenopus laevis.  相似文献   

5.
Changes in the pattern of protein synthesis were analyzed during the in vitro development of the micromere-primary mesenchyme cell line of the sea urchin embryo. Micromeres were isolated and cultured from 16-cell stage embryos, and primary mesenchyme cells were isolated and cultured from early gastrulae. Both cell isolates developed normally in culture with about the same timing as their in situ counterparts in control embryos. Newly synthesized proteins were labeled with [3H]valine at several stages of development and were analyzed by two-dimensional polyacrylamide gel electrophoresis and fluorgraphy. The electrophoretic pattern of labeled proteins changed dramatically during development. More than half of the analyzed proteins underwent qualitative or quantitative changes in their relative rates of valine incorporation and these changes were highly specific to this cell line. Almost all of the changes were initiated prior to gastrulation and many prior to hatching. The highest frequency of changes in the micromere pattern of protein synthesis occurred between hatching and the start of gastrulation. This peak of activity coincided with the normal time of ingression of the primary mesenchyme and preceded the differentiation of spicules by more than 30 hr. Most of the observed changes were characterized as either decreases in the synthesis of proteins that showed maximum incorporation at the 16-cell stage or increases in the synthesis of proteins that showed maxima in the fully differentiated cells. Very few proteins exhibited transient synthetic maxima at intermediate stages. Thus, the program of protein synthesis associated with the development of micromeres consists largely of a switch in emphasis from early to late proteins, with the primary time of switching being between hatching and the onset of gastrulation.  相似文献   

6.
The patterns of proteins synthesized during embryonic development in Drosophila melanogaster have been examined by two-dimensional gel electrophoresis. Primary cell cultures prepared from donor embryos synchronized to ± 1 hr were labeled with [35S]methionine at 5, 11.5, 14.5, and 26 hr after oviposition. Of approximately 400 to 500 proteins detected, the synthesis of about 50 is developmentally modulated. The greatest number of changes in the synthesis of stage-specific proteins occurs at 11.5 and 14.5 hr after oviposition, periods just prior to and during the times of the greatest overt morphological and biochemical changes. At 11.5 hr, 35 stage-specific proteins are synthesized, including 19 that are not present at the previous stage examined. At 14.5 hr, 34 stage-specific proteins can be detected, including 11 newly synthesized proteins. However, 12 proteins from the previous stage are no longer synthesized. At the completion of embryonic differentiation, at 26 hr, no new proteins are synthesized and the synthesis of many present in earlier stages has decreased or stopped. Comparison of patterns of embryonic proteins to those synthesized by two Drosophila continuous cell lines reveals that the majority of proteins are common to all. However, only about 40% of the embryonic stage-specific proteins are present in either cell line. In addition, there are several proteins unique to each cell line that are not observed in any of the embryonic stages.  相似文献   

7.
Messenger RNA has been isolated from the postribosomal supernatant of Spisula solidissima eggs. This mRNA directs the synthesis of several proteins when added to the ascites or wheat germ cell free system. No histone except F1 is coded for by Spisula egg mRNA, in contrast to what has been reported previously for sea urchin egg mRNA. In sea urchin eggs histone mRNA is among the abundant species of maternal mRNA.Histones have been prepared from Spisula embryos at different development stages and histone synthesis followed by incubation with (14C)lysine. The analysis by electrophoresis on acrylamide gels indicates that the pattern of synthesis of histones changes during development and that a new histone F1 fraction is actively synthesized from the 32–64 cells stage. In earlier embryos a different F1 histone is synthesized and the mRNA for this protein may be the only histone mRNA present in eggs.  相似文献   

8.
9.
10.
S K Howlett 《Cell》1986,45(3):387-396
The pattern of protein synthesis in the mouse egg shows several changes at fertilization and during first mitosis. Three groups of newly synthesized proteins, with molecular weights of about 30,000, 35,000, and 46,000, show variations in mobility on one- and two-dimensional gels that correlate with the cell cycle. Each group is composed of a polypeptide that is synthesized in unmodified form during interphase but is modified reversibly during meiosis or mitosis, by a process involving phosphorylation. Although these proteins cease to be synthesized during the second cell cycle, those made earlier persist and continue to show the same modifications during the next cell cycle. Like other eggs, fertilized mouse eggs show a requirement for protein synthesis in order to enter mitosis.  相似文献   

11.
《Insect Biochemistry》1986,16(2):337-345
The uptake of radiolabeled haemolymph and fat body proteins from fourth instar larvae of Heliothis zea (Boddie) by eggs of Microplitis croceipes (Cresson) was examined by SDS-polyacrylamide gel electrophoresis and by autoradiography. None of the 125I-labeled haemolymph proteins was detected in eggs exposed to the proteins in vivo. Although several of the proteins were observed in eggs incubated with the labeled proteins in vitro, none of these proteins was degraded or resynthesized into new structural proteins during development of the embryo. Similarly, no significant uptake of labeled fat body proteins by the eggs could be detected in vitro. On the other hand, protein synthesis measured by incorporation of [35S]methionine occurred throughout egg development. Proteins were synthesized at least 1 hr after the egg was deposited into the host. The protein patterns of eggs on one-dimensional SDS gels were complex and ranged in size from less than 18,500 to more than 330,000 mol. wt. The protein band patterns of the newly synthesized proteins showed some qualitative differences at 1–8, 16–32 and 40 hr after egg deposition. We conclude that eggs do not absorb or utilize the host apoproteins (or degradation products) but instead synthesize proteins de novo from free amino acids in the host haemolymph.  相似文献   

12.
Expression of nuclear lamins during mouse preimplantation development   总被引:2,自引:0,他引:2  
The expression of nuclear lamins during mouse preimplantation development was studied by immunofluorescence, immunoblotting and immunoprecipitation. Two sera were used, specific either for lamin B or lamins A and C. Both sera gave a positive staining of the nuclear periphery throughout preimplantation development (fertilized eggs to late blastocysts). Immunoblots revealed that the three lamins were present in eggs and blastocysts. However, lamin A from eggs was found to have a higher apparent Mr than lamin A from blastocysts and other mouse cells. Using immunoprecipitation, synthesis of lamin A was detected in eggs while synthesis of lamin B was detected in 8-cell embryos and blastocysts, indicating that at least some of the lamins used during early development do not come from a store in the egg. These results are discussed in relation to the possible role of lamins during cell differentiation.  相似文献   

13.
The pattern of proteins synthesized at different stages of differentiation of the slime mold Dictyostelium discoideum was studied by two-dimensional polyacrylamide gel electrophoresis. Of the approximately 400 proteins detected during growth and/or development, synthesis of most continued throughout differentiation. Approximately 100 proteins show changes in their relative rates of synthesis. During the transition from growth to interphase, the major change observed is reduction in the relative rate of synthesis of about 8 proteins. Few further changes are noticeable until the stage of late cell aggregation, when production of about 40 new proteins begins and synthesis of about 10 is reduced considerably. Thereafter, there are few changes in the pattern of protein synthesis. Major changes in the relative rates of synthesis of a number of proteins are found during culmination, but few culmination-specific proteins are observed. In an attempt to understand the molecular basis for these changes, mRNA was isolated from different stages of differentiation and translated in an improved wheat germ cell-free system; the products were resolved on two-dimensional gels. The ratio of total translatable mRNA to total cellular RNA is constant throughout growth and differentiation. Messenger RNAs for many, but not all, developmentally regulated proteins can be identified by translation in cell-free systems. Actin is the major protein synthesized by vegetative cells and by early differentiating cells. The threefold increase in the relative rate of synthesis of actin during the first 2 hr of differentiation and the decrease which occurs thereafter can be accounted for by parallel changes in the amount of translatable actin mRNA. Most of the changes in the pattern of protein synthesis which occur during the late aggregation and culmination stages can also be accounted for by parallel increases or decreases in the amounts of translatable mRNAs encoding these proteins. It is concluded that mRNAs do not appear in a translatable form before synthesis of the homologous protein begins, and that regulation of protein synthesis during development is primarily at the levels of production or destruction of mRNA.  相似文献   

14.
Summary Strongylocentrotus purpuratus embryos were reared in 0.025 M LiCl, which causes commitment to vegetalized development within 5 h after treatment begun at fertilization. Treated and control embryos were labelled with35S-methionine for 3 h intervals from 2–14 h, solubilized, and subjected to 2-dimensional polyacrylamide gel electrophoresis. Comparison of autoradiographs of the gels, in which over 400 proteins can be detected, indicate that while LiCl treatment causes a short delay in the initiation or cessation of synthesis of a few proteins, no qualitative or major quantitative differences can be detected between control and treated embryos. Normal gastrulae and vegetalized exogastrulae labelled 38 h after fertilization have several differences in patterns of protein synthesis. We conclude that the early determinative events involved in vegetalization are not reflected in detectable differences in the pattern of protein synthesis.  相似文献   

15.
Changes in protein synthesis induced by heat shock of Strongylocentrotus purpuratus gastrulae were analyzed bt two-dimensional electrophoresis. Hyperthermia induces the synthesis of polypeptides having molecular masses of 90, 70, 50, 40, and 38 kDa. One of these, hsp90, appears as a pair of polypeptides which comigrates with proteins synthesized at normal temperature in eggs and embryos; these comigrating spots produce indistinguishable patterns upon electrophoretic analysis of partial V8 protease digests, indicating that hsp90 is synthesized throughout embryogenesis. The relative rate of incorporation of methionine into hsp90 is low in eggs and zygotes, but increases abruptly in morulae, constituting a rare and striking change in protein synthesis during early development. Cell-free translation analyses indicate that most of the mRNA encoding hsp90 resides in the pool of free ribonucleoprotein particles in eggs and early embryos, but shifts to polysomes by the 64-cell stage while remaining constant in mass. Thus the increase in synthesis of hsp90 appears to be via the selective activation of translation of a stored maternal mRNA. The shift of hsp90 mRNA to polysomes is accompanied by polyadenylation. Heat shock of eggs or zygotes did not result in translational activation of hsp90 mRNA. The sea urchin hsp90 doublet of spots comigrates with hsp90 induced by heat shock of chicken embryo fibroblasts, a conserved protein abundant in many cells of a variety of species.  相似文献   

16.
17.
Newly synthesized histones have been extracted from Rana pipiens oocytes or cleaving embryos previously injected with [3H]lysine or [3H]arginine. The radioactive proteins were fractionated by cation-exchange chromatography and electrophoresis on acid/urea or SDS-polyacrylamide gels; histones were identified by coelectrophoresis with authentic markers. From percentage total incorporation in the putative histones, and absolute rates of lysine or arginine incorporation, rates of histone synthesis were estimated. Rates of histone synthesis in two-cell embryos were at least 10-fold higher than in maturing oocytes. Between the two-cell and blastula stages, the rate increased an additional threefold, from about 1200 pg hr?1 per embryo to about 4500 pg hr?1 per embryo. While all histone classes are synthesized during cleavage, synthesis of the various classes is not coordinated; histones are not synthesized in the same relative proportions at which they are found in blastula chromatin. The synthesis of histone H4 in particular is barely detectable during cleavage. This, and other observations, suggested the existence of cytoplasmic histone pools. In approaching the possible existence of histone pools, the amount of H4 present in oocytes was determined. Oocytes contain about 74 ng of H4, an amount sufficient to allow development to the blastula stage. These data are compared to those reported by others on histone synthesis during cleavage in Xenopus.  相似文献   

18.
Fertilized eggs of the brown alga Fucus have long been used as model organisms for investigating the early events in the establishment of polarity and subsequent embryogenesis since large numbers of zygotes can easily be obtained. We have analyzed protein synthesis in eggs and embryos during the first day of development using two-dimensional gels and found that synthesis of 12 of the 60 most prominent proteins changed either qualitatively or quantitatively. Actin and beta-tubulin were identified by immunoblotting; synthesis of these cytoskeletal proteins was initiated at different times during the first 12 hr of development. Unique, reproducible patterns of protein synthesis observed during development in the light permitted accurate staging of developing embryos. Inhibitors such as cytochalasin and sucrose, however, blocked morphogenesis without affecting protein synthesis, and, conversely, growth in the dark delayed protein synthesis but had very little effect on the timing of morphogenesis. The data are consistent with morphogenesis and protein synthesis being relatively independent during early embryogenesis. Actinomycin D added soon after fertilization had no effect on protein synthesis 1 day later, indicating that the proteins analyzed were encoded by maternal mRNA stored in the egg.  相似文献   

19.
In order to evaluate the dependence of the embryo on new mRNA synthesis during the period leading to blastulation, quantitative and qualitative aspects of protein synthesis in developing mouse morulae were investigated using α-amanitin, an inhibitor of RNA polymerase II. Only 1 of 423 early morulae cultured for 27 hr in the presence of 11 μg/ml α-amanitin cavitated, although most progressed as far as fully compacted morulae. About two-thirds of the untreated embryos cavitated during the same period. Incorporation of [35S]methionine into protein was measured at 3- or 4-hr intervals over a 24-hr period and showed a two- to fivefold increase in control embryos. This increase was blocked in the α-amanitin-treated group although initial levels of incorporation were maintained. Total uptake of the amino acid appeared to be unaffected by the inhibitor. RNA synthesis, as measured by [3H]uridine incorporation over the same period, was reduced by between 5 and 52%, and the preblastulation surge in RNA synthesis was also blocked by α-amanitin. Two-dimensional polyacrylamide gel electrophoresis of labeled polypeptides synthesized by the embryos after 24-hr incubation in the presence or absence of the inhibitor revealed three distinct classes of polypeptide. The majority of polypeptides continued to be synthesized in the presence of α-amanitin whereas a small number of polypeptides, the synthesis of which would normally have increased during the development of the morula to the blastocyst, were prevented from doing so. A few polypeptides which normally cease to be synthesized over this period continued to be synthesized in the presence of α-amanitin. It is concluded that, while most of the proteins detectable at the morula stage are synthesized on mRNA templates of relatively long translational life, the general surge in protein synthesis, including the increased synthesis of a few species of polypeptide, are dependent on continuous translational activity.  相似文献   

20.
The ability of seeds to withstand desiccation develops during embryogenesis and differs considerably among species. Paddy rice (Oryza sativa L.) grains readily survive dehydration to as low as 2% water content, whereas North American wild rice (Zizania palustris var interior [Fasset] Dore) grains are not tolerant of water contents below 6% and are sensitive to drying and imbibition conditions. During embryogenesis, dehydrin proteins, abscisic acid (ABA), and saccharides are synthesized, and all have been implicated in the development of desiccation tolerance. We examined the accumulation patterns of dehydrin protein, ABA, and soluble saccharides (sucrose and oligosaccharides) of rice embryos and wild rice axes in relation to the development of desiccation tolerance during embryogenesis. Dehydrin protein was detected immunologically with an antibody raised against a conserved dehydrin amino acid sequence. Both rice and wild rice embryos accumulated a 21-kD dehydrin protein during development, and an immunologically related 38-kD protein accumulated similarly in rice. Dehydrin protein synthesis was detected before desiccation tolerance had developed in both rice embryos and wild rice axes. However, the major accumulation of dehydrin occurred after most seeds of both species had become desiccation tolerant. ABA accumulated in wild rice axes to about twice the amount present in rice embryos. There were no obvious relationships between ABA and the temporal expression patterns of dehydrin protein in either rice or wild rice. Wild rice axes accumulated about twice as much sucrose as rice embryos. Oligosaccharides were present at only about one-tenth of the maximum sucrose concentrations in both rice and wild rice. We conclude that the desiccation sensitivity displayed by wild rice grains is not due to an inability to synthesize dehydrin proteins, ABA, or soluble carbohydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号